1
|
Qi Y, Qian R, Jia L, Fei X, Zhang D, Zhang Y, Jiang S, Fu X. Overexpressed microRNA-494 represses RIPK1 to attenuate hippocampal neuron injury in epilepsy rats by inactivating the NF-κB signaling pathway. Cell Cycle 2020; 19:1298-1313. [PMID: 32308116 DOI: 10.1080/15384101.2020.1749472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The effects of microRNAs (miRNAs) have been identified in epilepsy (Ep) in recent years, our research was focused on the functions of miR-494 in Ep and its inner mechanisms. METHODS The Ep modeled rats induced by lithium chloride-pilocarpine were treated with agomir-miR-494 or RIPK1-siRNA. The pathology of rat hippocampal tissues was observed. Expression of miR-494, receptor-interacting protein kinase 1 (RIPK1) and nuclear factor-kappaB (NF-κB) p65 was assessed by RT-qPCR and Western blot analysis. The hippocampal neurons of epileptic rats were successfully modeled, which were transfected with miR-494 mimics or RIPK1-siRNA to determine neurons' proliferation ability and cell apoptosis. The target relation between miR-494 and RIPK1 was measured by bioinformatics website and dual luciferase gene reporter assay. RESULTS The expression of miR-494 was reduced, while the expression of RIPK1 and NF-κB p65 was amplified in hippocampus of Ep rats. Elevated miR-494 repressed the expression of RIPK1 to ameliorate the hippocampal neuron injury, accelerate neuronal proliferation, and restrain neuronal apoptosis via inactivating the NF-κB signaling pathway, causing a deceleration of Ep development. Furthermore, amplified RIPK1 was able to reverse the amelioration of neuronal injury in Ep rats which was contributed by upregulated miR-494. CONCLUSION We found in this study that elevated miR-494 repressed RIPK1, causing an inactivation of the NF-κB signaling pathway and acceleration of cell proliferation, and suppression of apoptosis of hippocampal neurons in Ep rats, thereby attenuating the neuron injury and Ep development. Our research may provide novel targets for the therapy of Ep.
Collapse
Affiliation(s)
- Yinbao Qi
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Ruobing Qian
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Li Jia
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Xiaorui Fei
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Dong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Yiming Zhang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Sen Jiang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Xianming Fu
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| |
Collapse
|
2
|
Feng X, Xiong W, Yuan M, Zhan J, Zhu X, Wei Z, Chen X, Cheng X. Down-regulated microRNA-183 mediates the Jak/Stat signaling pathway to attenuate hippocampal neuron injury in epilepsy rats by targeting Foxp1. Cell Cycle 2019; 18:3206-3222. [PMID: 31571517 DOI: 10.1080/15384101.2019.1671717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, the impacts of microRNAs (miRNAs) have been identified in epilepsy (EP), this study was designed to assess the role of miR-183 in hippocampal neuron injury in EP. Rat EP models were established by injected with lithium-pilocarpine. The pathological observation of rats' hippocampus sections was conducted. Expression of miR-183, Foxp1, Jak1, Stat1, and Stat3 in rats' hippocampal tissues was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. The proliferation ability and the apoptosis of the rats' neurons were measured. Furthermore, the target relation between miR-183 and Foxp1 was determined by bioinformatics analysis and dual-luciferase gene reporter assay. The levels of miR-183, Jak1, Stat1, and Stat3 were elevated, and the expression of Foxp1 was declined in EP rats' hippocampal tissues. Inhibited miR-183 could up-regulate Foxp1, inhibited miR-183 together with up-regulated Foxp1 could repress hippocampal neuron injury, promote neuron proliferation, suppress neuron apoptosis, and inactivate the Jak/Stat signaling pathway, resulting in an attenuation of EP progression. Moreover, down-regulated Foxp1 could reverse the attenuation of EP progression which was contributed by inhibited miR-183. Our study implies that inhibited miR-183 could up-regulate Foxp1, resulting in an inactivation of the Jak/Stat signaling pathway and promotion of neuron proliferation, as well as inhibition of apoptosis of hippocampal neurons in EP rats, by which the hippocampal neuron injury and EP progression could be repressed.
Collapse
Affiliation(s)
- Xiangyong Feng
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Wei Xiong
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Mingqiong Yuan
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Jian Zhan
- Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University , Zunyi , Guizhou , PR. China
| | - Xiankun Zhu
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Zhijie Wei
- Department of Neurology, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Xidong Chen
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Xianbing Cheng
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| |
Collapse
|