1
|
ArefNezhad R, Rezaei-Tazangi F, Roghani-Shahraki H, Goleij P, Zare N, Motedayyen H, Aghazadeh E. Human umbilical cord mesenchymal stem cells: Heralding an effective treatment against esophageal cancer? Cell Biol Int 2023; 47:714-719. [PMID: 36718080 DOI: 10.1002/cbin.11991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Esophageal cancer (EC), as one of the leading causes of cancer-associated mortality, influences a remarkable population of subjects globally and is histologically divided into two types, comprising esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Although several therapeutic approaches are present for EC, such as radiotherapy, chemotherapy, and surgery, these options have low success with serious side effects, for example, gastrointestinal toxicity, esophagitis, and pulmonary complications. Thus, utilizing an effective tool with low side effects is urgent. Newly, mesenchymal stem cells (MSCs) have received special interest for treating diverse diseases, such as cancer. Among different sources of MSCs, human umbilical cord MSCs have notable benefits, and reports expressed that they may be effective in EC treatment. For this purpose, in this review study, we aimed to summarize evidence regarding the effects of human umbilical cord MSCs on EC with a mechanistic insight.
Collapse
Affiliation(s)
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran.,International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nabi Zare
- Coenzyme R Research Institute, Tehran, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elaheh Aghazadeh
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
HPV, KRAS mutations, alcohol consumption and tobacco smoking effects on esophageal squamous-cell carcinoma carcinogenesis. Int J Biol Markers 2018; 27:1-12. [DOI: 10.5301/jbm.2011.8737] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
Abstract
Esophageal squamous-cell carcinoma (ESCC) is an invasive neoplastic disease generally associated with poor survival rates. The incidence of ESCC is characterized by marked geographic variation, with highest rates noted in developing Southeastern African, Central and Eastern Asian countries. In the developed Western European and North American regions where there is a low disease incidence, heavy alcohol and cigarette consumption constitute major risk factors. The toxic effects of both these risk factors cause chronic irritation and inflammation of the esophageal mucosa, while at the cellular level they further confer mutagenic effects by the activation of oncogenes (e.g., RAS mutations), inhibition of tumor-suppressor genes, and profound DNA damage. Viral infections, particularly with human papillomavirus, may activate specific antiapoptotic, proliferative and malignant cellular responses that may be intensified in combination with the effects of alcohol and tobacco. In countries with a high ESCC incidence, low socioeconomic status and an inadequate diet of poorly preserved food are combined with basic nutritional deficiencies and inadequate medical treatment. These conditions are favorable to the above-mentioned risk factors implicated in ESCC development, which may be present and/or habitually used in certain populations. New perspectives in epidemiological studies of ESCC development and its risk factors allow genome-wide research involving specific environments and habits. Such research should consist of adequately large and representative samples, should use newly designed informative genetic markers, and apply genomic variation analysis of the functional transcripts involved in malignant cell cycle regulation and neoplastic transformation in the multi-step process of ESCC carcinogenesis.
Collapse
|
3
|
Rafacho BPM, Stice CP, Liu C, Greenberg AS, Ausman LM, Wang XD. Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice. Hepatobiliary Surg Nutr 2015; 4:124-34. [PMID: 26005679 DOI: 10.3978/j.issn.2304-3881.2014.08.06] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic and excessive alcohol consumption is an established risk for hepatic inflammation and carcinogenesis. Luteolin is one of the most common flavonoids present in plants and has potential beneficial effects against cancer. In this study, we examined the effect and potential mechanisms of luteolin supplementation in a carcinogen initiated alcohol-promoted pre-neoplastic liver lesion mouse model. METHODS C57BL/6 mice were injected with diethylnitrosamine (DEN) [i.p. 25 mg/kg of body weight (BW)] at 14 days of age. At 8 weeks of age mice were group pair-fed with Lieber-DeCarli liquid control diet or alcoholic diet [ethanol (EtOH) diet, 27% total energy from ethanol] and supplemented with a dose of 30 mg luteolin/kg BW per day for 21 days. RESULTS DEN-injected mice fed EtOH diet displayed a significant induction of pre-neoplastic lesions, a marker associated with presence of steatosis and inflammation. Dietary luteolin significantly reduced the severity and incidence of hepatic inflammatory foci and steatosis in DEN-injected mice fed EtOH diet, as well the presence of preneoplastic lesions. There was no difference on hepatic protein levels of sirtuin 1 (SIRT1) among all groups; however, luteolin supplementation significantly reversed alcohol-reduced SIRT1 activity assessed by the ratio of acetylated and total forkhead box protein O1 (FoXO1) and SIRT1 target proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α). CONCLUSIONS Dietary intake of luteolin prevents alcohol promoted pre-neoplastic lesions, potentially mediated by SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Bruna Paola Murino Rafacho
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Camilla Peach Stice
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Chun Liu
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Andrew S Greenberg
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Lynne M Ausman
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Xiang-Dong Wang
- 1 Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 2 Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil ; 3 Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA ; 4 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
4
|
Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness. Redox Biol 2014; 3:40-6. [PMID: 25462064 PMCID: PMC4297927 DOI: 10.1016/j.redox.2014.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD). While alcohol is necessary for the development of ALD, only 20-30% of alcoholics develop alcoholic steatohepatitis (ASH) with progressive liver disease leading to cirrhosis and liver failure (ALD). This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new avenues for therapy of ALD.
Collapse
|
5
|
Hamid A. Folate malabsorption and its influence on DNA methylation during cancer development. DNA Cell Biol 2012. [PMID: 22468673 DOI: 10.1089/dna.2011.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The folate transport across the epithelial of the intestine, colon, kidney, and liver is essential for folate homeostasis. The relative localization of transporters in membranes is an important determinant for the vectorial flow of substrates across the epithelia. Folate deficiency is a highly prevalent vitamin deficiency in the world, and alcohol ingestion has been the major contributor. It can develop because of folate malabsorption in tissues, increased renal excretion dietary inadequacy, and altered hepatobiliary metabolism. Additionally, folate-mediated one-carbon metabolism is important for various cellular processes, including DNA synthesis and methylation. In this regard, the contribution of alcohol-associated and dietary folate deficiency to methylation patterns is under intense investigation, especially in cancer. The epigenetic events have increasing relevance in the development of strategies for early diagnosis, prevention, and treatment of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| |
Collapse
|
6
|
Tao MH, Marian C, Shields PG, Nie J, McCann SE, Millen A, Ambrosone C, Hutson A, Edge SB, Krishnan SS, Xie B, Winston J, Vito D, Russell M, Nochajski TH, Trevisan M, Freudenheim JL. Alcohol consumption in relation to aberrant DNA methylation in breast tumors. Alcohol 2011; 45:689-99. [PMID: 21168302 DOI: 10.1016/j.alcohol.2010.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/26/2010] [Accepted: 11/27/2010] [Indexed: 02/06/2023]
Abstract
The mechanism for the observed association of alcohol consumption breast cancer risk is not known; understanding that mechanism could improve understanding of breast carcinogenesis and optimize prevention strategies. Alcohol may impact breast malignancies or tumor progression by altering DNA methylation. We examined promoter methylation of three genes, the E-cadherin, p16, and retinoic acid-binding receptor-β2 (RAR-β2) genes in archived breast tumor tissues from participants in a population-based case-control study. Real time methylation-specific PCR was performed on 803 paraffin-embedded samples, and lifetime alcohol consumption was queried. Unordered polytomous and unconditional logistic regression were used to derive adjusted odds ratios (ORs) and 95% confidence intervals (CIs). RAR-β2 methylation was not associated with drinking. Among premenopausal women, alcohol consumption was also not associated with promoter methylation for E-cadherin and p16 genes. In case-case comparisons of postmenopausal breast cancer, compared with lifetime never drinkers, promoter methylation likelihood was increased for higher alcohol intake for E-cadherin (OR=2.39; 95% CI, 1.15-4.96), in particular for those with estrogen receptor-negative tumors (OR=4.13; 95% CI, 1.16-14.72), and decreased for p16 (OR=0.52; 95% CI, 0.29-0.92). There were indications that the association with p16 was stronger for drinking at younger ages. Methylation was also associated with drinking intensity independent of total consumption for both genes. We found alcohol consumption was associated with DNA methylation in postmenopausal breast tumors, suggesting that the association of alcohol and breast cancer may be related, at least in part, to altered methylation, and may differ by drinking pattern.
Collapse
|
7
|
Tseng YM, Tsai SM, Lin WS, Huang ZR, Lin CC, Yeh WH, Wu YR, Tsai LY. Effects of whey protein concentrate (WPC) on the distributions of lymphocyte subpopulations in rats with excessive alcohol intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12729-12734. [PMID: 21121609 DOI: 10.1021/jf103518u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To investigate the effects of whey protein concentrate (WPC) on antioxidant statuses and the lymphocyte subpopulations in the rats with alcohol intake, the antioxidant statuses in the peripheral blood (PB) and the lymphocyte subpopulations in the PB, spleen, and bone marrow (BM) of the rats fed with WPC (0.334 g/kg) and alcohol (6 g/kg) for 3 months were analyzed. Results showed that the effects of WPC on the glutathione peroxidase and glutathione in the PB, the T and B cells in the spleen, and the B cells in the BM were more apparent in the rats with alcohol intake; however, they are not apparent in the controls. Taken together, our results indicated that the immunity of rats might be enhanced by the increased antioxidant ability after WPC supplementation and the effects of WPC on the lymphocyte subpopulations were mainly in the spleen and BM and not in the PB.
Collapse
Affiliation(s)
- Yang-Ming Tseng
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Number 386, Ta-chung 1st Road, Kaohsiung 81346, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lugakingira M. Poster Board Number: 15: Streptococcus mutans and Oral Keratinocyte Interactions During Exposure to Ethyl Alcohol and Malignant Transformation. J Oral Maxillofac Surg 2010. [DOI: 10.1016/j.joms.2010.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Toh Y, Oki E, Ohgaki K, Sakamoto Y, Ito S, Egashira A, Saeki H, Kakeji Y, Morita M, Sakaguchi Y, Okamura T, Maehara Y. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. Int J Clin Oncol 2010; 15:135-44. [PMID: 20224883 DOI: 10.1007/s10147-010-0057-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Indexed: 12/12/2022]
Abstract
Esophageal cancer is the eighth most common incident cancer in the world and ranks sixth among all cancers in mortality. Esophageal cancers are classified into two histological types; esophageal squamous cell carcinoma (ESCC), and adenocarcinoma, and the incidences of these types show a striking variety of geographic distribution, possibly reflecting differences in exposure to specific environmental factors. Both alcohol consumption and cigarette smoking are major risk factors for the development of ESCC. Acetaldehyde is the most toxic ethanol metabolite in alcohol-associated carcinogenesis, while ethanol itself stimulates carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Cigarette smoke contains more than 60 carcinogens and there are strong links between some of these carcinogens and various smoking-induced cancers; these mechanisms are well established. Synergistic effects of cigarette smoking and alcohol consumption are also observed in carcinogenesis of the upper aerodigestive tract. Of note, intensive molecular biological studies have revealed the molecular mechanisms involved in the development of ESCC, including genetic and epigenetic alterations. However, a wide range of molecular changes is associated with ESCC, possibly because the esophagus is exposed to many kinds of carcinogens including alcohol and cigarette smoke, and it remains unclear which alterations are the most critical for esophageal carcinogenesis. This brief review summarizes the general mechanisms of alcohol- and smoking-induced carcinogenesis and then discusses the mechanisms of the development of ESCC, with special attention to alcohol consumption and cigarette smoking.
Collapse
Affiliation(s)
- Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka 811-1395, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Esophageal cancer is a significant worldwide health problem because of its poor prognosis and high incidence in certain parts of the world. Tobacco smoke and alcohol consumption are significant risk factors for esophageal squamous cell carcinoma, whereas frequent gastroesophageal reflux and subsequent inflammatory reactions play a role in causing the adenocarcinoma. Esophageal carcinogenesis involves multiple genetic alterations. A large body of knowledge has been generated regarding molecular alterations associated with esophageal carcinogenesis. These alterations include aberrant cell cycle control, DNA repair, cellular enzymes, growth factor receptors, and nuclear receptors. This chapter reviews the most frequent gene alterations and their correlation with risk factors as well as the prevention strategies in esophageal cancer.
Collapse
Affiliation(s)
- Xiao-chun Xu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To apprise the reader of advances in 2005 in the epidemiology, pathogenesis, prognosis and treatment of alcoholic liver disease. Alcohol use has declined in developed countries, but the opposite is true elsewhere; alcoholic liver disease is a considerable burden worldwide. RECENT FINDINGS Genetic mechanisms for alcoholic liver disease are being discovered in addition to aggravating cofactors, such as hepatitis C, obesity and iron overload, and ameliorating ones, like coffee and tea drinking. The involvement of the innate immune system and the mechanisms of apoptosis in alcoholic liver disease are better appreciated, especially the emerging role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Steroid use and nutrition for alcoholic hepatitis are being refined, and the validity of the model for end-stage liver disease (MELD) score in predicting the outcome of alcoholic liver disease is upheld. Recidivism after liver transplantation for alcoholic liver disease adversely impacts long-term survival. SUMMARY Inroads are being made into the genetics of alcoholic liver disease and new phenomena are being uncovered in its pathogenesis, but safe and effective therapies for both alcoholic hepatitis and alcoholic cirrhosis are still wanting.
Collapse
Affiliation(s)
- Adrian Reuben
- Liver Service, Division of Gastroenterology/Hepatology and Liver Transplant Program, Medical University of South Carolina, Charleston, 29425, USA.
| |
Collapse
|