1
|
El Hawary R, Meshaal S, Lotfy S, Abd Elaziz D, Alkady R, Eldash A, Erfan A, Chohayeb E, Saad M, Darwish R, Boutros J, Galal N, Elmarsafy A. Cernunnos deficiency: Further delineation in 5 Egyptian patients. Eur J Med Genet 2023; 66:104840. [PMID: 37703920 DOI: 10.1016/j.ejmg.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Cernunnos deficiency is a rare genetic disorder characterized by immunodeficiency, microcephaly, growth retardation, bird-like facies, sensitivity to ionizing radiation, few autoimmune manifestations, premature aging of hematopoietic stem cells at an early age, and occasional myeloproliferative disease. Herein we present five Egyptian Cernunnos patients from 3 different families. We describe the patients' clinical phenotypes, their immunological profile as well as genetic results. Sequence analysis revealed three different mutations in the NHEJ1 gene: a nonsense variant c.532C > T; p.(Arg178Ter), an intronic variant c.178-1G > A and a frameshift insertion variant c.233dup; p.(Asn78LysfsTer14). In conclusion, Cernunnos deficiency can have a wide range of clinical features. The characteristic immune profile including a decrease in recent thymic emigrants and naive T cells, markedly elevated memory T cells together with normal to high IgM, and a decrease in IgG and IgA. This immune profile is highly suggestive of Cernunnos deficiency in T-B-NK + SCID patients especially surviving for older ages.
Collapse
Affiliation(s)
- Rabab El Hawary
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Safa Meshaal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sohilla Lotfy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Abd Elaziz
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Radwa Alkady
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alia Eldash
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Erfan
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy Chohayeb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai Saad
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania Darwish
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jeannette Boutros
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aisha Elmarsafy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Esmaeilzadeh H, Bordbar MR, Hojaji Z, Habibzadeh P, Afshinfar D, Miryounesi M, Fardaei M, Faghihi MA. An immunocompetent patient with a nonsense mutation in NHEJ1 gene. BMC MEDICAL GENETICS 2019; 20:45. [PMID: 30898087 PMCID: PMC6429708 DOI: 10.1186/s12881-019-0784-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage. DSBs are repaired by homologous recombination or non-homologous end-joining (NHEJ). NHEJ, which is central to the process of V(D)J recombination is the principle pathway for DSB repair in higher eukaryotes. Mutations in NHEJ1 gene have been associated with severe combined immunodeficiency. CASE PRESENTATION The patient was a 3.5-year-old girl, a product of consanguineous first-degree cousin marriage, who was homozygous for a nonsense mutation in NHEJ1 gene. She had initially presented with failure to thrive, proportional microcephaly as well as autoimmune hemolytic anemia (AIHA), which responded well to treatment with prednisolone. However, the patient was immunocompetent despite having this pathogenic mutation. CONCLUSIONS Herein, we report on a patient who was clinically immunocompetent despite having a pathogenic mutation in NHEJ1 gene. Our findings provided evidence for the importance of other end-joining auxiliary pathways that would function in maintaining genetic stability. Clinicians should therefore be aware that pathogenic mutations in NHEJ pathway are not necessarily associated with clinical immunodeficiency.
Collapse
Affiliation(s)
- Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Hojaji
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorna Afshinfar
- Persian BayanGene Research and Training Center, Shiraz, Iran
| | - Mohammad Miryounesi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Fardaei
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz, Iran. .,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
3
|
Liu Z, Yu M, Fei B, Sun J, Wang D. Nonhomologous end joining key factor XLF enhances both 5-florouracil and oxaliplatin resistance in colorectal cancer. Onco Targets Ther 2019; 12:2095-2104. [PMID: 30936724 PMCID: PMC6430989 DOI: 10.2147/ott.s192923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third commonly diagnosed cancer with a high risk of death. After curative surgery, 40% of patients will have metastases or develop recurrence. Therefore, chemotherapy is significantly responsible as the major therapy method. However, chemoresistance is found in almost all metastatic patients and remains a critical obstacle to curing CRC. Materials and methods Cell viability is analyzed by sulforhodamine B staining assay. The nonhomologous end joining (NHEJ) repair ability of each cell line was determined by NHEJ reporter assay. mRNA expression levels of NHEJ factors are detected by real-time quantitative polymerase chain reaction. The protein expression levels were observed by western blot assay. Results Our study found that 5-florouracil (5-Fu) and oxaliplatin (OXA)-resistant HCT116 and LS174T cells showed upregulated efficiency of DNA double-strand repair pathway NHEJ. We then identified that the NHEJ key factor XLF is responsible for the chemoresistance and XLF deficiency sensitizes CRC cells to 5-Fu and OXA significantly. Conclusion Our research first demonstrates that the NHEJ pathway, especially its key factor XLF, significantly contributes to chemoresistance in CRC.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Miao Yu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, Jilin 130021, China,
| |
Collapse
|
4
|
Do TV, Hirst J, Hyter S, Roby KF, Godwin AK. Aurora A kinase regulates non-homologous end-joining and poly(ADP-ribose) polymerase function in ovarian carcinoma cells. Oncotarget 2017; 8:50376-50392. [PMID: 28881569 PMCID: PMC5584138 DOI: 10.18632/oncotarget.18970] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023] Open
Abstract
Ovarian cancer is usually diagnosed at late stages when cancer has spread beyond the ovary and patients ultimately succumb to the development of drug-resistant disease. There is an urgent and unmet need to develop therapeutic strategies that effectively treat ovarian cancer and this requires a better understanding of signaling pathways important for ovarian cancer progression. Aurora A kinase (AURKA) plays an important role in ovarian cancer progression by mediating mitosis and chromosomal instability. In the current study, we investigated the role of AURKA in regulating the DNA damage response and DNA repair in ovarian carcinoma cells. We discovered that AURKA modulated the expression and activity of PARP, a crucial mediator of DNA repair that is a target of therapeutic interest for the treatment of ovarian and other cancers. Further, specific inhibition of AURKA activity with the small molecule inhibitor, alisertib, stimulated the non-homologous end-joining (NHEJ) repair pathway by elevating DNA-PKcs activity, a catalytic subunit required for double-strand break (DSB) repair, as well as decreased the expression of PARP and BRCA1/2, which are required for high-fidelity homologous recombination-based DNA repair. Further, AURKA inhibition stimulates error-prone NHEJ repair of DNA double-strand breaks with incompatible ends. Consistent with in vitro findings, alisertib treatment increased phosphorylated DNA-PKcs(pDNA-PKcsT2609) and decreased PARP levels in vivo. Collectively, these results reveal new non-mitotic functions for AURKA in the regulation of DNA repair, which may inform of new therapeutic targets and strategies for treating ovarian cancer.
Collapse
Affiliation(s)
- Thuy-Vy Do
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Stephen Hyter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katherine F. Roby
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Morio T. Recent advances in the study of immunodeficiency and DNA damage response. Int J Hematol 2017; 106:357-365. [PMID: 28550350 DOI: 10.1007/s12185-017-2263-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022]
Abstract
DNA breaks can be induced by exogenous stimuli or by endogenous stress, but are also generated during recombination of V, D, and J genes (V(D)J recombination), immunoglobulin class switch recombination (CSR). Among various DNA breaks generated, DNA double strand break (DSB) is the most deleterious one. DNA damage response (DDR) is initiated when DSBs are detected, leading to DNA break repair by non-homologous end joining (NHEJ). The process is critically important for the generation of diversity for foreign antigens; and failure to exert DNA repair leads to immunodeficiency such as severe combined immunodeficiency and hyper-IgM syndrome. In V(D)J recombination, DSBs are induced by RAG1/2; and generated post-cleavage hairpins are resolved by Artemis/DNA-PKcs/KU70/KU80. DDR is initiated by ataxia-telangiectasia mutated as a master regulator together with MRE11/RAD50/NBS1 complex. Finally, DSBs are repaired by NHEJ. The defect of one of the molecules shows various degree of immunodeficiency and radiosensitivity. Upon CSR inducing signal, DSBs induced by activation-induced cytidine deaminase and endonucleases elicit DDR. Broken ends are repaired either by NHEJ or by mismatch repair system. Patients with radiosensitive SCID require hematopoietic cell transplantation as a curative therapy; but the procedures for eradication of recipient hematopoietic cells are often associated with severe toxicity.
Collapse
Affiliation(s)
- Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
6
|
XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation. Mol Cell Biol 2015; 35:3017-28. [PMID: 26100018 DOI: 10.1128/mcb.01503-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/15/2015] [Indexed: 01/21/2023] Open
Abstract
The classic nonhomologous end-joining (c-NHEJ) pathway is largely responsible for repairing double-strand breaks (DSBs) in mammalian cells. XLF stimulates the XRCC4/DNA ligase IV complex by an unknown mechanism. XLF interacts with XRCC4 to form filaments of alternating XRCC4 and XLF dimers that bridge DNA ends in vitro, providing a mechanism by which XLF might stimulate ligation. Here, we characterize two XLF mutants that do not interact with XRCC4 and cannot form filaments or bridge DNA in vitro. One mutant is fully sufficient in stimulating ligation by XRCC4/Lig4 in vitro; the other is not. This separation-of-function mutant (which must function as an XLF homodimer) fully complements the c-NHEJ deficits of some XLF-deficient cell strains but not others, suggesting a variable requirement for XRCC4/XLF interaction in living cells. To determine whether the lack of XRCC4/XLF interaction (and potential bridging) can be compensated for by other factors, candidate repair factors were disrupted in XLF- or XRCC4-deficient cells. The loss of either ATM or the newly described XRCC4/XLF-like factor, PAXX, accentuates the requirement for XLF. However, in the case of ATM/XLF loss (but not PAXX/XLF loss), this reflects a greater requirement for XRCC4/XLF interaction.
Collapse
|
7
|
Francis DB, Kozlov M, Chavez J, Chu J, Malu S, Hanna M, Cortes P. DNA Ligase IV regulates XRCC4 nuclear localization. DNA Repair (Amst) 2014; 21:36-42. [PMID: 24984242 DOI: 10.1016/j.dnarep.2014.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022]
Abstract
DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620-800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4.
Collapse
Affiliation(s)
- Dailia B Francis
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mikhail Kozlov
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jose Chavez
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jennifer Chu
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Shruti Malu
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mary Hanna
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Patricia Cortes
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
8
|
Kumar V, Alt FW, Oksenych V. Reprint of "Functional overlaps between XLF and the ATM-dependent DNA double strand break response". DNA Repair (Amst) 2014; 17:52-63. [PMID: 24767946 DOI: 10.1016/j.dnarep.2014.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
Abstract
Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors.
Collapse
Affiliation(s)
- Vipul Kumar
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Valentyn Oksenych
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
9
|
Kumar V, Alt FW, Oksenych V. Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair (Amst) 2014; 16:11-22. [PMID: 24674624 DOI: 10.1016/j.dnarep.2014.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 11/27/2022]
Abstract
Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors.
Collapse
Affiliation(s)
- Vipul Kumar
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Valentyn Oksenych
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
10
|
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10:e1004086. [PMID: 24453986 PMCID: PMC3894167 DOI: 10.1371/journal.pgen.1004086] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- CNRS, Centre de Recherches de Gif-sur-Yvette, FRC3115, Gif-sur-Yvette, France
- Université Paris-Sud, Département de Biologie, Orsay, France
| | - Pascale Bertrand
- CEA, DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Laboratoire Réparation et Vieillissement, Fontenay-aux-Roses, France
- UMR 8200 CNRS, Villejuif, France
| | - Bernard S. Lopez
- Université Paris-Sud, Département de Biologie, Orsay, France
- UMR 8200 CNRS, Villejuif, France
- Institut de Cancérologie, Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
11
|
Colnaghi R, Carpenter G, Volker M, O'Driscoll M. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin Cell Dev Biol 2011; 22:875-85. [PMID: 21802523 DOI: 10.1016/j.semcdb.2011.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 12/20/2022]
Abstract
Over the last decade or so, sophisticated technological advances in array-based genomics have firmly established the contribution of structural alterations in the human genome to a variety of complex developmental disorders, and also to diseases such as cancer. In fact, multiple 'novel' disorders have been identified as a direct consequence of these advances. Our understanding of the molecular events leading to the generation of these structural alterations is also expanding. Many of the models proposed to explain these complex rearrangements involve DNA breakage and the coordinated action of DNA replication, repair and recombination machinery. Here, and within the context of Genomic Disorders, we will briefly overview the principal models currently invoked to explain these chromosomal rearrangements, including Non-Allelic Homologous Recombination (NAHR), Fork Stalling Template Switching (FoSTeS), Microhomology Mediated Break-Induced Repair (MMBIR) and Breakage-fusion-bridge cycle (BFB). We will also discuss an unanticipated consequence of certain copy number variations (CNVs) whereby the CNVs potentially compromise fundamental processes controlling genomic stability including DNA replication and the DNA damage response. We will illustrate these using specific examples including Genomic Disorders (DiGeorge/Veleocardiofacial syndrome, HSA21 segmental aneuploidy and rec (3) syndrome) and cell-based model systems. Finally, we will review some of the recent exciting developments surrounding specific CNVs and their contribution to cancer development as well as the latest model for cancer genome rearrangement; 'chromothripsis'.
Collapse
Affiliation(s)
- Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | | | | | | |
Collapse
|
12
|
Dutrannoy V, Demuth I, Baumann U, Schindler D, Konrat K, Neitzel H, Gillessen-Kaesbach G, Radszewski J, Rothe S, Schellenberger MT, Nürnberg G, Nürnberg P, Teik KW, Nallusamy R, Reis A, Sperling K, Digweed M, Varon R. Clinical variability and novel mutations in the NHEJ1 gene in patients with a Nijmegen breakage syndrome-like phenotype. Hum Mutat 2010; 31:1059-68. [DOI: 10.1002/humu.21315] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Barzilai A, Biton S, Shiloh Y. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 2008; 7:1010-27. [DOI: 10.1016/j.dnarep.2008.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Villa A, Marrella V, Rucci F, Notarangelo LD. Genetically determined lymphopenia and autoimmune manifestations. Curr Opin Immunol 2008; 20:318-24. [DOI: 10.1016/j.coi.2008.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 12/28/2022]
|
15
|
Kanaar R, Wyman C, Rothstein R. Quality control of DNA break metabolism: in the 'end', it's a good thing. EMBO J 2008; 27:581-8. [PMID: 18285819 DOI: 10.1038/emboj.2008.11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/14/2008] [Indexed: 12/27/2022] Open
Abstract
DNA ends pose specific problems in the control of genetic information quality. Ends of broken DNA need to be rejoined to avoid genome rearrangements, whereas natural DNA ends of linear chromosomes, telomeres, need to be stable and hidden from the DNA damage response. Efficient DNA end metabolism, either at induced DNA breaks or telomeres, does not result from the machine-like precision of molecular reactions, but rather from messier, more stochastic processes. The necessary molecular interactions are dynamically unstable, with constructive and destructive processes occurring in competition. In the end, quality control comes from the constant building up and tearing down of inappropriate, but also appropriate reaction steps in combination with factors that only slightly shift the equilibrium to eventually favour appropriate events. Thus, paradoxically, enzymes antagonizing DNA end metabolism help to ensure that genome maintenance becomes a robust process.
Collapse
Affiliation(s)
- Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Abstract
To cope with an unpredictable variety of potential pathogenic insults, the immune system must generate an enormous diversity of recognition structures, and it does so by making stepwise modifications at key genetic loci in each lymphoid cell. These modifications proceed through the action of lymphoid-specific proteins acting together with the general DNA-repair machinery of the cell. Strikingly, these general mechanisms are usually diverted from their normal functions, being used in rather atypical ways in order to privilege diversity over accuracy. In this Review, we focus on the contribution of a set of DNA polymerases discovered in the past decade to these unique DNA transactions.
Collapse
|
17
|
Wu D, Topper LM, Wilson TE. Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Genetics 2008; 178:1237-49. [PMID: 18245831 PMCID: PMC2278085 DOI: 10.1534/genetics.107.083535] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/13/2008] [Indexed: 11/18/2022] Open
Abstract
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization.
Collapse
Affiliation(s)
- Dongliang Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | |
Collapse
|
18
|
Abstract
Normal development of an organism requires the ability to respond to DNA damage. A particularly deleterious lesion is a DNA double-strand break (DSB). The cellular response to DNA DSBs occurs via an integrated sensing and signaling network that maintains genomic stability. The outcomes of defective DNA DSB repair are related to the developmental stage of an organism, and often show striking tissue specificity. Many human diseases are associated with deficiencies in DNA DSB repair and can be characterized by neuropathology, immune deficiency, growth retardation or predisposition to cancer. This review will focus on the requirements of the DNA DSB response that function to maintain homeostasis during mammalian development.
Collapse
Affiliation(s)
- E R Phillips
- Department Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
19
|
Guirouilh-Barbat J, Rass E, Plo I, Bertrand P, Lopez BS. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc Natl Acad Sci U S A 2007; 104:20902-7. [PMID: 18093953 PMCID: PMC2409239 DOI: 10.1073/pnas.0708541104] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Indexed: 11/18/2022] Open
Abstract
XRCC4-null mice have a more severe phenotype than KU80-null mice. Here, we address whether this difference in phenotype is connected to nonhomologous end-joining (NHEJ). We used intrachromosomal substrates to monitor NHEJ of two distal double-strand breaks (DSBs) targeted by I-SceI, in living cells. In xrcc4-defective XR-1 cells, a residual but significant end-joining process exists, which primarily uses microhomologies distal from the DSB. However, NHEJ efficiency was strongly reduced in xrcc4-defective XR-1 cells versus complemented cells, contrasting with KU-deficient xrs6 cells, which showed levels of end-joining similar to those of complemented cells. Nevertheless, sequence analysis of the repair junctions indicated that the accuracy of end-joining was strongly affected in both xrcc4-deficient and KU-deficient cells. More specifically, these data showed that the KU80/XRCC4 pathway is conservative and not intrinsically error-prone but can accommodate non-fully complementary ends at the cost of limited mutagenesis.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Emilie Rass
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Isabelle Plo
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Pascale Bertrand
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Bernard S. Lopez
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| |
Collapse
|
20
|
Wu PY, Frit P, Malivert L, Revy P, Biard D, Salles B, Calsou P. Interplay between Cernunnos-XLF and Nonhomologous End-joining Proteins at DNA Ends in the Cell. J Biol Chem 2007; 282:31937-43. [PMID: 17720816 DOI: 10.1074/jbc.m704554200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cernunnos-XLF is the most recently identified core component in the nonhomologous end-joining (NHEJ) pathway for the repair of DNA double strand breaks (DSBs) in mammals. It associates with the XRCC4/ligase IV ligation complex and stimulates its activity in a still unknown manner. NHEJ also requires the DNA-dependent protein kinase that contains a Ku70/Ku80 heterodimer and the DNA-dependent protein kinase catalytic subunit. To understand the interplay between Cernunnos-XLF and the other proteins implicated in the NHEJ process, we have analyzed the interactions of Cernunnos-XLF and NHEJ proteins in cells after treatment with DNA double strand-breaking agents by means of a detergent-based cellular fractionation protocol. We report that Cernunnos-XLF is corecruited with the core NHEJ components on chromatin damaged with DSBs in human cells and is phosphorylated by the DNA-dependent protein kinase catalytic subunit. Our data show a pivotal role for DNA ligase IV in the NHEJ ligation complex assembly and recruitment to DSBs because the association of Cernunnos-XLF with the XRCC4/ligase IV complex relies primarily on the DNA ligase IV component, and an intact XRCC4/ligase IV complex is necessary for Cernunnos-XLF mobilization to damaged chromatin. Conversely, a Cernunnos-XLF defect has no apparent impact on the XRCC4/ligase IV association and recruitment to the DSBs or on the stimulation of the DNA-dependent protein kinase on DNA ends.
Collapse
Affiliation(s)
- Peï-Yu Wu
- Institut de Pharmacologie et de Biologie Structurale, CNRS-Université de Toulouse, UMR 5089, Toulouse, and INSERM, Hôpital Necker-Enfants Malades, U768, Unité Développement Normal et Pathologique du Système Immunitaire, F-75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|