Growney EA, Linder HR, Garg K, Bledsoe JG, Sell SA. Bio-conjugation of platelet-rich plasma and alginate through carbodiimide chemistry for injectable hydrogel therapies.
J Biomed Mater Res B Appl Biomater 2019;
108:1972-1984. [PMID:
31846217 DOI:
10.1002/jbm.b.34538]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/04/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023]
Abstract
Alginate is a highly tailorable, biocompatible polymer whose properties can be tuned to mimic the properties of native nucleus pulposus (NP) tissue. Platelet-rich plasma (PRP) is a highly accessible, inexpensive, and readily available mix of pro-regenerative factors. By functionalizing alginate with PRP, a mechanically optimized, bioactive alginate NP analogue may stimulate NP cells to proliferate and accumulate matrix over a longer period of time than if the PRP were solely encapsulated within the hydrogel. In this study, PRP was chemically bound to alginate using carbodiimide chemistry and mechanically, physically, and cytologically compared to plain alginate as well as alginate containing free-floating lyophilized PRP. The alginates were mechanically and physically characterized; PRP-conjugated alginate had similar mechanical properties to controls and had the benefit of retained PRP proteins within the hydrogel. Human nucleus pulposus cells (hNPCs) were seeded within the modified alginates and cultured for 14 days. Quantification data of glycosaminoglycans suggests that PRP-incorporated alginate has the potential to increase ECM production within the characterized alginate constructs, and that PRP-functionalized alginate can retain protein within the hydrogel over time. This is the first study to functionalize the milieu of PRP proteins onto alginate and characterize the mechanical and physical properties of the modified alginates. This study also incorporates hNPCs into the characterized PRP-modified alginates to observe phenotypic maintenance when encapsulated within the in situ gelling constructs.
Collapse