1
|
Dabrowski W, Siwicka-Gieroba D, Robba C, Bielacz M, Sołek-Pastuszka J, Kotfis K, Bohatyrewicz R, Jaroszyński A, Malbrain MLNG, Badenes R. Potentially Detrimental Effects of Hyperosmolality in Patients Treated for Traumatic Brain Injury. J Clin Med 2021; 10:4141. [PMID: 34575255 PMCID: PMC8467376 DOI: 10.3390/jcm10184141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperosmotic therapy is commonly used to treat intracranial hypertension in traumatic brain injury patients. Unfortunately, hyperosmolality also affects other organs. An increase in plasma osmolality may impair kidney, cardiac, and immune function, and increase blood-brain barrier permeability. These effects are related not only to the type of hyperosmotic agents, but also to the level of hyperosmolality. The commonly recommended osmolality of 320 mOsm/kg H2O seems to be the maximum level, although an increase in plasma osmolality above 310 mOsm/kg H2O may already induce cardiac and immune system disorders. The present review focuses on the adverse effects of hyperosmolality on the function of various organs.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino, 16100 Genova, Italy;
| | - Magdalena Bielacz
- Institute of Tourism and Recreation, State Vocational College of Szymon Szymonowicz, 22-400 Zamosc, Poland;
| | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Romuald Bohatyrewicz
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Andrzej Jaroszyński
- Department of Nephrology, Institute of Medical Science, Jan Kochanowski University of Kielce, 25-736 Kielce, Poland;
| | - Manu L. N. G. Malbrain
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
- International Fluid Academy, Dreef 3, 3360 Lovenjoel, Belgium
- Medical Department, AZ Jan Palfjin Hospital, Watersportlaan 5, 9000 Gent, Belgium
| | - Rafael Badenes
- Department of Anaesthesiology and Intensive Care, Hospital Clìnico Universitario de Valencia, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
2
|
Osmotherapy With Hypertonic Saline Attenuates Global Cerebral Edema Following Experimental Cardiac Arrest via Perivascular Pool of Aquaporin-4. Crit Care Med 2017; 44:e702-10. [PMID: 27035238 DOI: 10.1097/ccm.0000000000001671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES We tested the hypothesis that osmotherapy with hypertonic saline attenuates cerebral edema following experimental cardiac arrest and cardiopulmonary resuscitation by exerting its effect via the perivascular pool of aquaporin-4. We used mice with targeted disruption of the gene encoding α-syntrophin (α-Syn) that demonstrate diminished perivascular aquaporin-4 pool but retain the non-endfoot and ependymal pools. DESIGN Laboratory animal study. SETTING University animal research laboratory. INTERVENTIONS Isoflurane-anesthetized adult male wild-type C57B/6 or α-Syn mice were subjected to cardiac arrest/cardiopulmonary resuscitation and treated with either a continuous IV infusion of 0.9% saline or various concentrations of hypertonic saline. Serum osmolality, regional brain water content, blood-brain barrier disruption, and aquaporin-4 protein expression were determined at 24 hours after cardiac arrest/cardiopulmonary resuscitation. MEASUREMENTS AND MAIN RESULTS Hypertonic saline (7.5%) treatment significantly attenuated water content in the caudoputamen complex and cortex compared with 0.9% saline treatment in wild-type mice subjected to cardiac arrest/cardiopulmonary resuscitation. In contrast, in α-Syn mice subjected to cardiac arrest/cardiopulmonary resuscitation, 7.5% hypertonic saline treatment did not attenuate water content. Treatment with 7.5% hypertonic saline attenuated blood-brain barrier disruption at 24 hours following cardiac arrest/cardiopulmonary resuscitation in wild-type mice but not in α-Syn mice. Total aquaporin-4 protein expression was not different between 0.9% saline and hypertonic saline-treated wild-type mice. CONCLUSIONS Following experimental cardiac arrest/cardiopulmonary resuscitation: 1) continuous hypertonic saline therapy maintained to achieve serum osmolality of ≈ 350 mOsm/L is beneficial for the treatment of cerebral edema; 2) perivascular pool of aquaporin-4 plays a critical role in water egress from brain; and 3) hypertonic saline attenuates blood-brain barrier disruption via perivascular aquaporin-4 pool.
Collapse
|
3
|
Conivaptan, a Selective Arginine Vasopressin V1a and V2 Receptor Antagonist Attenuates Global Cerebral Edema Following Experimental Cardiac Arrest via Perivascular Pool of Aquaporin-4. Neurocrit Care 2017; 24:273-82. [PMID: 26732270 DOI: 10.1007/s12028-015-0236-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cerebral edema is a major cause of mortality following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Arginine vasopressin (AVP) and water channel aquaporin-4 (AQP4) have been implicated in the pathogenesis of CA-evoked cerebral edema. In this study, we examined if conivaptan, a V1a and V2 antagonist, attenuates cerebral edema following CA/CPR in wild type (WT) mice as well as mice with targeted disruption of the gene encoding α-syntrophin (α-syn(-/-)) that demonstrate diminished perivascular AQP4 pool. METHODS Isoflurane-anesthetized adult male WT C57Bl/6 and α-syn(-/-) mice were subjected to 8 min CA/CPR and treated with either bolus IV injection (0.15 or 0.3 mg/kg) followed by continuous infusion of conivaptan (0.15 mg/kg/day or 0.3 mg/kg/day), or vehicle infusion for 48 h. Serum osmolality, regional brain water content, and blood-brain barrier (BBB) disruption were determined at the end of the experiment. Sham-operated mice in both strains served as controls. RESULTS Treatment with conivaptan elevated serum osmolality in a dose-dependent manner. In WT mice, conivaptan at 0.3 mg dose significantly attenuated regional water content in the caudoputamen (81.0 ± 0.5 vs. 82.5 ± 0.4% in controls; mean ± SEM) and cortex (78.8 ± 0.2 vs. 79.4 ± 0.2% in controls), while conivaptan at 0.15 mg was not effective. In α-syn(-/-) mice, conivaptan at 0.3 mg dose did not attenuate water content compared with controls. Conivaptan (0.3 mg/kg/day) attenuated post-CA BBB disruption at 48 h in WT mice but not in α-syn(-/-) mice. CONCLUSIONS Continuous IV infusion of conivaptan attenuates cerebral edema and BBB disruption following CA. These effects of conivaptan that are dependent on the presence of perivascular pool of AQP4 appear be mediated via its dual effect on V1 and V2 receptors.
Collapse
|
4
|
Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci 2016; 17:64. [PMID: 27733124 PMCID: PMC5062881 DOI: 10.1186/s12868-016-0299-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebral oedema is closely related to the permeability of blood-brain barrier, vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) all of which are important blood-brain barrier (BBB) permeability regulatory factors. Zonula occludens 1 (ZO-1) and claudin-5 are also the key components of BBB. Hypertonic saline is widely used to alleviate cerebral oedema. This study aimed to explore the possible mechanisms underlying hypertonic saline that ameliorates cerebral oedema effectively. METHODS Middle cerebral artery occlusion (MCAO) model in Sprague-Dawley (SD) rats and of oxygen-glucose deprivation model in primary astrocytes were used in this study. The brain water content (BWC) was used to assess the effect of 10 % HS on cerebral oedema. The assessment of Evans blue (EB) extravasation was performed to evaluate the protective effect of 10 % HS on blood-brain barrier. The quantification of VEGF, VEGFR2, ZO-1 and claudin-5 was used to illustrate the mechanism of 10 % HS ameliorating cerebral oedema. RESULTS BWC was analysed by wet-to-dry ratios in the ischemic hemisphere of SD rats; it was significantly decreased after 10 % HS treatment (P < 0.05). We also investigated the blood-brain barrier protective effect by 10 % HS which reduced EB extravasation effectively in the peri-ischemic brain tissue. In parallel to the above notably at 24 h following MCAO, mRNA and protein expression of VEGF and VEGFR2 in the peri-ischemic brain tissue was down-regulated after 10 % HS treatment (P < 0.05). Along with this, in vitro studies showed increased VEGF and VEGFR2 mRNA and protein expression in primary astrocytes under hypoxic condition (P < 0.05), but it was suppressed after HS treatment (P < 0.05). In addition, HS inhibited the down-regulation of ZO-1, claudin-5 effectively. CONCLUSIONS The results suggest that 10 % HS could alleviate cerebral oedema possibly through reducing the ischemia induced BBB permeability as a consequence of inhibiting VEGF-VEGFR2-mediated down-regulation of ZO-1, claudin-5.
Collapse
Affiliation(s)
- Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Wei Cao
- Zhuzhou Central Hospital, Zhuzhou, 412007, People's Republic of China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Gaofeng Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Hongke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
5
|
Mangat HS, Härtl R. Hypertonic saline for the management of raised intracranial pressure after severe traumatic brain injury. Ann N Y Acad Sci 2015; 1345:83-8. [PMID: 25726965 DOI: 10.1111/nyas.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hyperosmolar agents are commonly used as an initial treatment for the management of raised intracranial pressure (ICP) after severe traumatic brain injury (TBI). They have an excellent adverse-effect profile compared to other therapies, such as hyperventilation and barbiturates, which carry the risk of reducing cerebral perfusion. The hyperosmolar agent mannitol has been used for several decades to reduce raised ICP, and there is accumulating evidence from pilot studies suggesting beneficial effects of hypertonic saline (HTS) for similar purposes. An ideal therapeutic agent for ICP reduction should reduce ICP while maintaining cerebral perfusion (pressure). While mannitol can cause dehydration over time, HTS helps maintain normovolemia and cerebral perfusion, a finding that has led to a large amount of pilot data being published on the benefits of HTS, albeit in small cohorts. Prophylactic therapy is not recommended with mannitol, although it may be beneficial with HTS. To date, no large clinical trial has been performed to directly compare the two agents. The best current evidence suggests that mannitol is effective in reducing ICP in the management of traumatic intracranial hypertension and carries mortality benefit compared to barbiturates. Current evidence regarding the use of HTS in severe TBI is limited to smaller studies, which illustrate a benefit in ICP reduction and perhaps mortality.
Collapse
Affiliation(s)
- Halinder S Mangat
- Division of Stroke and Critical Care, Department of Neurology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
6
|
Sundaram V, Shaikh OS. Acute liver failure: current practice and recent advances. Gastroenterol Clin North Am 2011; 40:523-39. [PMID: 21893272 DOI: 10.1016/j.gtc.2011.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ALF is an important cause of liver-related morbidity and mortality. Advances in the management of ICH and SIRS, and cardiorespiratory, metabolic, and renal support have improved the outlook of such patients. Early transfer to a liver transplant center is essential. Routine use of NAC is recommended for patients with early hepatic encephalopathy, irrespective of the etiology. The role of hypothermia remains to be determined. Liver transplantation plays a critical role, particularly for those with advanced encephalopathy. Several detoxification and BAL support systems have been developed to serve as a bridge to transplantation or to spontaneous recovery. However, such systems lack sufficient reliability and efficacy to be applied routinely in clinical practice. Hepatocyte and stem cell transplantation may provide valuable adjunctive therapy in the future.
Collapse
Affiliation(s)
- Vinay Sundaram
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
7
|
New uses for my old friend*. Crit Care Med 2011; 39:1592-3. [DOI: 10.1097/ccm.0b013e3182148be3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cohn SM, Dubose JJ. Pulmonary contusion: an update on recent advances in clinical management. World J Surg 2010; 34:1959-70. [PMID: 20407767 DOI: 10.1007/s00268-010-0599-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pulmonary contusion is a common finding after blunt chest trauma. The physiologic consequences of alveolar hemorrhage and pulmonary parenchymal destruction typically manifest themselves within hours of injury and usually resolve within approximately 7 days. Clinical symptoms, including respiratory distress with hypoxemia and hypercarbia, peak at about 72 h after injury. The timely diagnosis of pulmonary contusion requires a high degree of clinical suspicion when a patient presents with trauma caused by an appropriate mechanism of injury. The clinical diagnosis of acute parenchymal lung injury is usually confirmed by thoracic computed tomography, which is both highly sensitive in identifying pulmonary contusion and highly predictive of the need for subsequent mechanical ventilation. Management of pulmonary contusion is primarily supportive. Associated complications such as pneumonia, acute respiratory distress syndrome, and long-term pulmonary disability, however, are frequent sequelae of these injuries.
Collapse
Affiliation(s)
- Stephen M Cohn
- Department of Surgery, University of Texas Health Sciences Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | |
Collapse
|
9
|
Migliati ER, Amiry-Moghaddam M, Froehner SC, Adams ME, Ottersen OP, Bhardwaj A. Na(+)-K (+)-2Cl (-) cotransport inhibitor attenuates cerebral edema following experimental stroke via the perivascular pool of aquaporin-4. Neurocrit Care 2010; 13:123-31. [PMID: 20458553 DOI: 10.1007/s12028-010-9376-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The Na(+)-K(+)-2Cl(-) cotransporter localized in the brain vascular endothelium has been shown to be important in the evolution of cerebral edema following experimental stroke. Previous in vivo studies have demonstrated that bumetanide, a selective Na(+)-K(+)-2Cl(-) cotransport inhibitor, attenuates ischemia-evoked cerebral edema. Recently, bumetanide has been shown to also inhibit water permeability via aquaporin-4 (AQP4) expressed in Xenopus laevis oocytes. We tested the hypothesis that the perivascular pool of AQP4 plays a significant role in the anti-edema effect of bumetanide by utilizing wild-type (WT) mice as well as mice with targeted disruption of alpha-syntrophin (alpha-Syn(-/-)) that lack the perivascular pool of AQP4. METHODS Isoflurane-anesthetized adult male WT C57Bl6 and alpha-Syn(-/-) mice were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by 24 or 48 h of reperfusion. Adequacy of MCAO and reperfusion was monitored with laser-Doppler flowmetry over the ipsilateral parietal cortex. Infarct volume (tetrazolium staining), cerebral edema (wet-to-dry ratios), and AQP4 protein expression (immunoblotting) were determined in different treatment groups in separate sets of experiments. RESULTS Bumetanide significantly attenuated infarct volume and decreased ipsilateral hemispheric water content in WT mice compared to vehicle treatment. In alpha-Syn(-/-) mice, bumetanide treatment had no effect on infarct volume or ischemia-evoked cerebral edema. Bumetanide-treated WT mice had a significant attenuation of AQP4 protein expression at 48 h post-MCAO compared to vehicle-treated WT mice. CONCLUSIONS These data suggest that bumetanide exerts its neuroprotective and anti-edema effects partly via blockade of the perivascular pool of AQP4 and may have therapeutic potential for ischemic stroke in the clinical setting.
Collapse
Affiliation(s)
- Elton R Migliati
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
10
|
Clinical experience using 5% hypertonic saline as a safe alternative fluid for use in trauma. ACTA ACUST UNITED AC 2010; 68:1172-7. [PMID: 20453771 DOI: 10.1097/ta.0b013e3181d76d40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Published experience of hypertonic saline (HTS) use in resuscitation has described the use of commercially unavailable 7.5% solutions. The purpose of this study was to compare our experience with the administration of commercially available 5% HTS solution with that of well-matched controls who did not receive HTS. METHODS Prospective observational study of 51 trauma patients receiving 500 mL of 5% HTS during initial resuscitation. Patients who received HTS were 1:2 matched using age, gender, Injury Severity Score, Coma Score, Head Abbreviated Injury Scale, and injury mechanism to trauma patients who did not receive HTS. The laboratory values and outcomes of the two groups were compared. RESULTS Patients receiving HTS demonstrated no difference from the matched cohort in mean pH, international normalized ratio, or p/f ratios at 8 hours or 24 hours. The mean serum sodium of the HTS group was higher than controls at 8 hours (143.1 vs. 150.1 mg/dL, p < 0.001) and remained significantly more increased for 3 days without any adverse sequelae related to hypernatremia. No difference in mortality was noted between the two groups. A trend in decreased mortality was observed in patients with Coma Score <or=8 and Head Abbreviated Injury Scale score >or=3 (25.0% vs. 42.5%). The mean ventilator days were 7.3 for HTS group and 9.2 for the non-HTS group. CONCLUSION Although serum sodium remained increased for several days after HTS administration, no adverse sequelae as a result of hypernatremia resulted. Commercially available 5% HTS solution is safe for use in the resuscitation of trauma patients and may improve outcomes in a selected subset of patients with head injury.
Collapse
|
11
|
Libert N, de Rudnicki S, Cirodde A, Thépenier C, Mion G. Il y a-t-il une place pour le sérum salé hypertonique dans les états septiques graves ? ACTA ACUST UNITED AC 2010; 29:25-35. [DOI: 10.1016/j.annfar.2009.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 10/09/2009] [Indexed: 02/07/2023]
|
12
|
Bauer M, Kortgen A, Hartog C, Riedemann N, Reinhart K. Isotonic and hypertonic crystalloid solutions in the critically ill. Best Pract Res Clin Anaesthesiol 2009; 23:173-81. [PMID: 19653437 DOI: 10.1016/j.bpa.2008.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disorders of fluid and electrolyte balance in the critically ill are volume-related, compositional, or both. Targeting 'normal' values for plasma volume, osmolality and electrolytes might not be optimal in conditions as diverse as intracranial trauma/haemorrhage, hepatic encephalopathy, abdominal hypertension, or major surgery, because a hyperosmolar state seems to favourably affect tissue (brain and intestinal) oedema formation. However, adequately powered studies regarding the impact of hypertonic saline on outcome are lacking. Isotonic crystalloids are the cornerstone of resuscitation and must be balanced against natural or artificial colloids and vasopressors. Crystalloid resuscitation is superior to vasopressors in shock associated with blunt trauma, and is at least not inferior to colloids in septic shock. Traditional rules of thumb indicating the need for three to four times the amount of crystalloids for the plasma volume to be replaced are probably erroneous and might have contributed to association of overly aggressive crystalloid resuscitation with poor outcome.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Anesthesiology and Intensive Care Therapy, Friedrich-Schiller-University, Erlanger Allee, 101, D-07747 Jena, Germany.
| | | | | | | | | |
Collapse
|
13
|
Bruder N, Ichai C, Gelb AW. Hyponatremia and Subarachnoid Hemorrhage: Will That Be One Pinch or Two of Salt? Anesth Analg 2009; 108:1734-5. [DOI: 10.1213/ane.0b013e3181a32872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
HSD IS A BETTER RESUSCITATION FLUID FOR HEMORRHAGIC SHOCK WITH PULMONARY EDEMA AT HIGH ALTITUDE. Shock 2008; 30:714-20. [DOI: 10.1097/shk.0b013e31816f6b5b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Liu X, Zhang W, Alkayed NJ, Froehner SC, Adams ME, Amiry-Moghaddam M, Ottersen OP, Hurn PD, Bhardwaj A. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke. J Cereb Blood Flow Metab 2008; 28:1898-906. [PMID: 18648381 PMCID: PMC2667324 DOI: 10.1038/jcbfm.2008.83] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aquaporin-4 (AQP4) has been shown to be important in the evolution of stroke-associated cerebral edema. However, the role of AQP4 in stroke-associated cerebral edema as it pertains to sex has not been previously studied. The perivascular pool of AQP4 is important in the influx and efflux of water during focal cerebral ischemia. We used mice with targeted disruption of the gene encoding alpha-syntrophin (alpha-Syn(-/-)) that lack the perivascular AQP4 pool but retain the endothelial pool of this protein. Infarct volume at 72 h after transient focal ischemia (90 mins) in isoflurane-anesthetized mice was attenuated in both sexes with alpha-Syn deletion as compared with their wild-type (WT) counterparts. There were no sex differences in hemispheric water content in WT and alpha-Syn(-/-) mice or regional AQP4 expression in WT mice. In neither sex did alpha-Syn deletion lead to alterations in end-ischemic regional cerebral blood flow (rCBF). These data suggest that after experimental stroke: (1) there is no difference in stroke-associated cerebral edema based on sex, (2) AQP4 does not involve in sex-based differences in stroke volume, and (3) perivascular pool of AQP4 has no significant role in end-ischemic rCBF.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 2008; 36:2634-40. [PMID: 18679106 DOI: 10.1097/ccm.0b013e3181847853] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Osmotherapy with hypertonic saline ameliorates cerebral edema associated with experimental ischemic stroke. We tested the hypothesis that hypertonic saline exerts its antiedema effect by promoting an efflux of water from brain via the perivascular aquaporin-4 pool. We used mice with targeted disruption of the gene encoding alpha-syntrophin (alpha-Syn(-/-)) that lack the perivascular aquaporin-4 pool but retain the endothelial pool of this protein. DESIGN Prospective laboratory animal study. SETTING Research laboratory in a university teaching hospital. MEASUREMENTS AND MAIN RESULTS Halothane-anesthetized adult male wildtype C57B/6 and alpha-Syn(-/-) mice were subjected to 90 min of transient middle cerebral artery occlusion and treated with either a continuous intravenous infusion of 0.9% saline or 3% hypertonic saline (1.5 mL/kg/hr) for 48 hr. In the first series of experiments (n = 59), increased brain water content analyzed by wet-to-dry ratios in the ischemic hemisphere of wildtype mice was attenuated after hypertonic saline (79.9% +/- 0.5%; mean +/- SEM) but not after 0.9% saline (82.3% +/- 1.0%) treatment. In contrast in alpha-Syn(-/-) mice, hypertonic saline had no effect on the postischemic edema (hypertonic saline: 80.3% +/- 0.7%; 0.9% saline: 80.3% +/- 0.4%). In the second series of experiments (n = 32), treatment with hypertonic saline attenuated postischemic blood-brain barrier disruption at 48 hr in wildtype mice but not in alpha-Syn(-/-) mice; alpha-Syn(-/-) deletion alone had no effect on blood-brain barrier integrity. In the third series of experiments (n = 34), alpha-Syn(-/-) mice treated with either hypertonic saline or 0.9% saline had smaller infarct volume as compared with their wildtype counterparts. CONCLUSIONS These data demonstrate that 1) osmotherapy with hypertonic saline exerts antiedema effects via the perivascular pool of aquaporin-4, 2) hypertonic saline attenuates blood-brain barrier disruption depending on the presence of perivascular aquaporin-4, and 3) deletion of the perivascular pool of aquaporin-4 alleviates tissue damage after stroke, in mice subjected to osmotherapy and in nontreated mice.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review aims to provide an update on recent knowledge gained on hypertonic saline solutions for the treatment of intracranial hypertension. Explanatory approaches to the mechanisms underlying the edema-reducing effects of the solutions are outlined, practical aspects of use are presented, and trials that assessed their clinical utility are highlighted. RECENT FINDINGS With an established trauma system, hypertonic saline added to conventional fluid resuscitation did not improve long-term outcome in multiple injury with hypotension and brain trauma. In intensive care, hypertonic saline reduced intracranial hypertension after subarachnoid haemorrhage, brain trauma, and a variety of other brain diseases, including cerebral edema in acute liver failure. SUMMARY Hypertonic saline solutions have evolved as an alternative to mannitol or may be used in otherwise refractory intracranial hypertension to treat raised intracranial pressure. With high osmolar loads, the efficacy of the solution is enhanced, but no simple relationship between the saline concentration and the clinical effects of a solution is established. Caution is advised with high osmolar loads because they carry increased risks for potentially deleterious consequences of hypernatremia or may induce osmotic blood-brain barrier opening with possibly harmful extravasation of the hypertonic solution into the brain tissue.
Collapse
Affiliation(s)
- Sabine Himmelseher
- Department of Anaesthesiology, Klinikum rechts der Isar, Ismanigerstrasse 22, D-81675 Munich, Germany.
| |
Collapse
|
18
|
Effect of hypertonic saline concentration on cerebral and visceral organ water in an uninjured rodent model. Crit Care Med 2008; 36:256-61. [PMID: 18090381 DOI: 10.1097/01.ccm.0000295306.52783.1e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Hypertonic saline has been shown to be an effective osmotic agent to reduce brain water and hence brain volume and intracranial pressure. A direct correlation between dose and effect has been demonstrated, but no studies have compared the effects of different concentrations of the same osmotic load of hypertonic saline over time. We compared the effects of different tonicity of infused hypertonic saline on cerebral, lung, and small bowel water extraction over time under controlled conditions. DESIGN Laboratory study. SETTING Medical school. SUBJECTS Male Wistar rats (280-450 g). INTERVENTIONS Anesthetized rats were randomized to a 15-min intravenous bolus infusion of 0.9% NaCl or five equisodium but different concentrations of hypertonic saline: 4.2%, 7.5%, 10%, 23.4%, and 30%. Following infusion, animals remained anesthetized for 60, 180, or 300 mins without additional fluids given (n > or = 6 per group). Blood was sampled, total urine output was measured, and the animal was then killed under deep anesthesia. Cerebral, lung, and small bowel water contents were derived by wet/dry weight measures. MEASUREMENTS AND MAIN RESULTS After 60 mins, hypertonic saline administered at 50 mosm/kg resulted in an increase in serum osmolarity in all hypertonic saline groups (p < .05 vs. normal saline), with a significantly greater increase measured using 23.4% or 30% hypertonic saline (23.4%, 365.0 +/- 8.8 mosm/L, p < .05 vs. other lesser hypertonic saline doses). The durable effect was present throughout the 300-min period by all but the lowest hypertonic saline (4.2% NaCl). Lung but not small bowel organ water was diminished by hypertonic saline. Brain water content (79.1 +/- 0.2% in normal saline controls) was, however, significantly reduced. CONCLUSIONS Hypertonic saline is effective in reducing organ water content in a setting of preserved blood-brain barrier but is not as effective in visceral organs. At equiosmotic doses of hypertonic saline, concentration plays no substantial role in altering serum osmolarity but appears to benefit duration of action. At very high concentrations, such as 23.4% NaCl, additional water extraction is also manifested. At such high concentration of NaCl, tonicity, indeed, matters, especially in water shifts across the blood-brain barrier.
Collapse
|
19
|
Abstract
Osmotherapy is the mainstay in the medical management of cerebral edema with or without elevations in intracranial pressure. Several osmotic agents have been utilized in clinical practice over the past five decades in a variety of brain injury paradigms. The over-riding premise for their beneficial effects has been via egress of water from the brain into the vascular compartment. In addition, many of these agents have beneficial extraosmotic properties that portend their use in cerebral resuscitation and treatment of cerebral edema. Although there is a paucity of large, randomized clinical trials that compare various osmotic agents, data are emerging from prospective clinical case series. This article provides a historical perspective of osmotherapy, examines characteristics of osmotic agents, and discusses caveats in their use in the clinical setting. Furthermore, this review highlights the utility of osmotic agents as tools to understand emerging mechanistic concepts in the evolution of brain edema, which are yielding important data of translational significance from laboratory-based research.
Collapse
|
20
|
Lenz C, Rebel A, Waschke KF, Koehler RC, Frietsch T. Blood viscosity modulates tissue perfusion: sometimes and somewhere. ACTA ACUST UNITED AC 2007; 9:265-272. [PMID: 19122878 DOI: 10.1111/j.1778-428x.2007.00080.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Each organ possesses specific properties for controlling microvascular perfusion. Such specificity provides an opportunity to design transfusion fluids that target thrombo-embolic or vasospasm-induced ischemia in a particular organ or that optimize overall perfusion from systemic shock. The role of viscosity in the design of these fluids might be underestimated, because viscosity is rarely monitored or considered in critical care decisions. Studies linking viscosity-dependent changes of microvascular perfusion to outcome-relevant data suggest that whole blood viscosity is negligible as a determinant of microvascular perfusion under physiological conditions when autoregulation is effective. Because autoregulation is driven to maintain oxygen supply constant, the organism will compensate for changes in blood viscosity to sustain oxygen delivery. In contrast, under pathological conditions in the brain and elsewhere, increases of overall viscosity should be avoided - including all the situations where vascular autoregulatory mechanisms are inoperative due to ischemia, structural damage or physiologic dysfunction. As latter conditions are not to identify with high certainty, the risks that accompany therapeutic correction of blood viscosity are outweighing the benefits. The ability to bedside monitor blood viscosity and to link changes in viscosity to outcome parameters in various clinical conditions would provide more solid foundation for evidence-based clinical management.
Collapse
Affiliation(s)
- C Lenz
- Clinic of Anesthesiology and Critical Care Medicine, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
21
|
Abstract
Life-threatening, space-occupying brain edema occurs in up to 10% of patients with supratentorial infarcts and is traditionally associated with a high mortality rate of up to 80%. Management of these patients is currently being changed to an earlier and more aggressive treatment regimen. Early surgical decompression has recently been proven effective to reduce mortality and increase the number of patients with a favorable outcome in randomized controlled trials and is now the "antiedema" therapy of first choice for patients with large middle cerebral artery infarction aged 60 years or younger. Several medical treatment strategies have been proposed to control brain edema and reduce intracranial pressure, including different osmotherapeutics, hyperventilation, tromethamine, hypothermia, and barbiturate coma. None of these treatments is supported by level 1 evidence of efficacy in clinical trials, and some of them may even be detrimental. Preliminary results on hypothermia for space-occupying hemispheric infarction are encouraging, but far from definitive.
Collapse
Affiliation(s)
- Juergen Bardutzky
- Department of Neurology, University of Erlangen, Schwabachanlage 6, Germany.
| | | |
Collapse
|
22
|
Abstract
✓Cerebral edema is frequently encountered in clinical practice in critically ill patients with acute brain injury from diverse origins and is a major cause of increased morbidity and death in this subset of patients. The consequences of cerebral edema can be lethal and include cerebral ischemia from compromised regional or global cerebral blood flow (CBF) and intracranial compartmental shifts due to intracranial pressure gradients that result in compression of vital brain structures. The overall goal of medical management of cerebral edema is to maintain regional and global CBF to meet the metabolic requirements of the brain and prevent secondary neuronal injury from cerebral ischemia. Medical management of cerebral edema involves using a systematic and algorithmic approach, from general measures (optimal head and neck positioning for facilitating intracranial venous outflow, avoidance of dehydration and systemic hypotension, and maintenance of normothermia) to specific therapeutic interventions (controlled hyperventilation, administration of corticosteroids and diuretics, osmotherapy, and pharmacological cerebral metabolic suppression). This article reviews and highlights the medical management of cerebral edema based on pathophysiological principles in acute brain injury.
Collapse
Affiliation(s)
- Ahmed Raslan
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
23
|
Coimbra R. Salt in the vein, good for the brain …*. Crit Care Med 2007; 35:659-60. [PMID: 17251721 DOI: 10.1097/01.ccm.0000254038.10911.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|