1
|
Sud S, Friedrich JO, Adhikari NKJ, Fan E, Ferguson ND, Guyatt G, Meade MO. Comparative Effectiveness of Protective Ventilation Strategies for Moderate and Severe Acute Respiratory Distress Syndrome. A Network Meta-Analysis. Am J Respir Crit Care Med 2021; 203:1366-1377. [PMID: 33406009 DOI: 10.1164/rccm.202008-3039oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rationale: Choosing the best ventilation strategy for acute respiratory distress syndrome (ARDS) is complex, yet it is highly relevant to clinicians during a respiratory pandemic. Objectives: To compare the effects of low Vt, high Vt, high positive end-expiratory pressure (PEEP), prone ventilation, high-frequency oscillation, and venovenous extracorporeal membrane oxygenation (VV ECMO) on mortality in ARDS. Methods: We performed a network meta-analysis of randomized trials. We applied the Grading of Recommendations Assessment, Development and Evaluation methodology to discern the relative effect of interventions on mortality. Measurements and Main Results: We analyzed 34 trials including 9,085 adults with primarily moderate-to-severe ARDS (median baseline PaO2/FiO2, 118; interquartile range, 110-143). Prone positioning combined with low Vt was the best strategy (risk ratio [RR], 0.74 [95% confidence interval (CI), 0.60-0.92] vs. low Vt; high certainty). VV ECMO was also rated among the best (RR, 0.78 [95% CI, 0.58-1.05] vs. low Vt; RR, 0.66; [95% CI, 0.49-0.88] vs. high Vt) but was rated with lower certainty because VV ECMO was restricted to very severe ARDS (mean baseline PaO2/FiO2<75). High PEEP combined with low Vt was rated intermediately (RR, 0.91 [95% CI, 0.81-1.03] vs. low Vt; low certainty; RR, 0.77 [95% CI, 0.65-0.91] vs. high Vt; moderate certainty). High Vt was rated worst (RR, 1.19 [95% CI, 1.02-1.37] vs. low Vt; moderate certainty), and we found no support for high-frequency oscillation or high Vt with prone ventilation. Conclusions: These findings suggest that combining low Vt with prone ventilation is associated with the greatest reduction in mortality for critically ill adults with moderate-to-severe ARDS.
Collapse
Affiliation(s)
- Sachin Sud
- Division of Critical Care, Department of Medicine, Trillium Health Partners-University of Toronto, Mississauga, Ontario, Canada.,Institute of Better Health, Trillium Health Partners, Mississauga, Ontario, Canada
| | | | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Gordon Guyatt
- Department of Health Research Methods, Evidence and Impact
| | - Maureen O Meade
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Griffiths MJD, McAuley DF, Perkins GD, Barrett N, Blackwood B, Boyle A, Chee N, Connolly B, Dark P, Finney S, Salam A, Silversides J, Tarmey N, Wise MP, Baudouin SV. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res 2019; 6:e000420. [PMID: 31258917 PMCID: PMC6561387 DOI: 10.1136/bmjresp-2019-000420] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
The Faculty of Intensive Care Medicine and Intensive Care Society Guideline Development Group have used GRADE methodology to make the following recommendations for the management of adult patients with acute respiratory distress syndrome (ARDS). The British Thoracic Society supports the recommendations in this guideline. Where mechanical ventilation is required, the use of low tidal volumes (<6 ml/kg ideal body weight) and airway pressures (plateau pressure <30 cmH2O) was recommended. For patients with moderate/severe ARDS (PF ratio<20 kPa), prone positioning was recommended for at least 12 hours per day. By contrast, high frequency oscillation was not recommended and it was suggested that inhaled nitric oxide is not used. The use of a conservative fluid management strategy was suggested for all patients, whereas mechanical ventilation with high positive end-expiratory pressure and the use of the neuromuscular blocking agent cisatracurium for 48 hours was suggested for patients with ARDS with ratio of arterial oxygen partial pressure to fractional inspired oxygen (PF) ratios less than or equal to 27 and 20 kPa, respectively. Extracorporeal membrane oxygenation was suggested as an adjunct to protective mechanical ventilation for patients with very severe ARDS. In the absence of adequate evidence, research recommendations were made for the use of corticosteroids and extracorporeal carbon dioxide removal.
Collapse
Affiliation(s)
| | - Danny Francis McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Gavin D Perkins
- Warwick Clinical Trials Unit, University of Warwick, Coventry, West Midlands, UK
| | | | - Bronagh Blackwood
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Andrew Boyle
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Nigel Chee
- Academic Department of Critical Care, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Paul Dark
- Division of Infection, Immunity and Respiratory Medicine, NIHR Biomedical Research Centre, University of Manchester, Manchester, Greater Manchester, UK
| | - Simon Finney
- Peri-Operative Medicine, Barts Health NHS Trust, London, UK
| | - Aemun Salam
- Peri-Operative Medicine, Barts Health NHS Trust, London, UK
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Nick Tarmey
- Academic Department of Critical Care, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Simon V Baudouin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Mentzelopoulos SD, Anninos H, Malachias S, Zakynthinos SG. "Low-" versus "high"-frequency oscillation and right ventricular function in ARDS. A randomized crossover study. J Intensive Care 2018; 6:58. [PMID: 30202530 PMCID: PMC6122746 DOI: 10.1186/s40560-018-0327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background Recent, large trials of high-frequency oscillation (HFO) versus conventional ventilation (CV) in acute respiratory distress syndrome (ARDS) reported negative results. This could be explained by an HFO-induced right ventricular (RV) dysfunction/failure due to high intrathoracic pressures and hypercapnia. We hypothesized that HFO strategies aimed at averting/attenuating hypercapnia, such as "low-frequency" (i.e., 4 Hz) HFO and 4-Hz HFO with tracheal-gas insufflation (HFO-TGI), may result in an improved RV function relative to "high-frequency" (i.e., 7 Hz) HFO (which may promote hypercapnia) and similar RV function relative to lung protective CV. Methods We studied 17 patients with moderate-to-severe ARDS [PaO2-to-inspiratory O2 fraction ratio (PaO2/FiO2) < 150]. RV function was assessed by transesophageal echocardiography (TEE). Patients received 60 min of CV for TEE-guided, positive end-expiratory pressure (PEEP) "optimization" and subsequent stabilization; 60 min of 4-Hz HFO for "study mean airway pressure (mPaw)" titration to peripheral oxygen saturation ≥ 95%, without worsening RV function as assessed by TEE; 60 min of each tested HFO strategy in random order; and another 60 min of CV using the pre-HFO, TEE-guided PEEP setting. Study measurements (i.e., gas exchange, hemodynamics, and TEE data) were obtained over the last 10 min of pre-HFO CV, of each one of the three tested HFO strategies, and of post-HFO CV. Results The mean "study HFO mPaw" was 8-10 cmH2O higher relative to pre-HFO CV. Seven-Hz HFO versus 4-Hz HFO and 4-Hz HFO-TGI resulted in higher mean ± SD right-to-left ventricular end-diastolic area ratio (RVEDA/LVEDA) (0.64 ± 0.15 versus 0.56 ± 0.14 and 0.52 ± 0.10, respectively, both p < 0.05). Higher diastolic/systolic eccentricity indexes (1.33 ± 0.19/1.42 ± 0.17 versus 1.21 ± 0.10/1.26 ± 0.10 and 1.17 ± 0.11/1.17 ± 0.13, respectively, all p < 0.05). Seven-Hz HFO resulted in 18-28% higher PaCO2 relative to all other ventilatory strategies (all p < 0.05). Four-Hz HFO-TGI versus pre-HFO CV resulted in 15% lower RVEDA/LVEDA, and 7%/10% lower diastolic/systolic eccentricity indexes (all p < 0.05). Mean PaO2/FiO2 improved by 77-80% during HFO strategies versus CV (all p < 0.05). Mean cardiac index varied by ≤ 10% among strategies. Percent changes in PaCO2 among strategies were predictive of concurrent percent changes in measures of RV function (R2 = 0.21-0.43). Conclusions In moderate-to-severe ARDS, "short-term" 4-Hz HFO strategies resulted in better RV function versus 7-Hz HFO, partly attributable to improved PaCO2 control, and similar or improved RV function versus CV. Trial registration This study was registered 40 days prior to the enrollment of the first patient at ClinicalTrials.gov, ID no. NCT02027129, Principal Investigator Spyros D. Mentzelopoulos, date of registration January 3, 2014.
Collapse
Affiliation(s)
- Spyros D Mentzelopoulos
- First Department of Intensive Care Medicine, National and Kapodestrian University of Athens Medical School, Evaggelismos General Hospital, 45-47 Ipsilandou Street, GR-10675 Athens, Greece
| | - Hector Anninos
- First Department of Intensive Care Medicine, National and Kapodestrian University of Athens Medical School, Evaggelismos General Hospital, 45-47 Ipsilandou Street, GR-10675 Athens, Greece
| | - Sotirios Malachias
- First Department of Intensive Care Medicine, National and Kapodestrian University of Athens Medical School, Evaggelismos General Hospital, 45-47 Ipsilandou Street, GR-10675 Athens, Greece
| | - Spyros G Zakynthinos
- First Department of Intensive Care Medicine, National and Kapodestrian University of Athens Medical School, Evaggelismos General Hospital, 45-47 Ipsilandou Street, GR-10675 Athens, Greece
| |
Collapse
|
4
|
Sud S, Sud M, Friedrich JO, Wunsch H, Meade MO, Ferguson ND, Adhikari NKJ. High-frequency oscillatory ventilation versus conventional ventilation for acute respiratory distress syndrome. Cochrane Database Syst Rev 2016; 4:CD004085. [PMID: 27043185 PMCID: PMC6516956 DOI: 10.1002/14651858.cd004085.pub4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND High-frequency oscillation (HFO) is an alternative to conventional mechanical ventilation that is sometimes used to treat people with acute respiratory distress syndrome, but effects on oxygenation, mortality and adverse clinical outcomes are uncertain. This review was originally published in 2004 and was updated in 2013 and again in 2015. OBJECTIVES To determine the effects of HFO compared to conventional mechanical ventilation on physiological outcomes, clinical outcomes, and mortality when used for the treatment of acute respiratory distress syndrome (ARDS). SEARCH METHODS We electronically searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Ovid), MEDLINE (Ovid), EMBASE (Ovid), and ISI, from inception to December 2015. We conducted the original search in 2002. We manually searched reference lists from included studies and review articles; searched conference proceedings of the American Thoracic Society (1994 to 2015), Society of Critical Care Medicine (1994 to 2015), European Society of Intensive Care Medicine (1994 to 2015), and American College of Chest Physicians (1994 to 2015); contacted clinical experts in the field; and searched for unpublished and ongoing trials in clinicaltrials.gov and controlled-trials.com. SELECTION CRITERIA Randomized controlled trials (RCTs) comparing treatment using HFO with conventional mechanical ventilation for children and adults diagnosed with ARDS. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data on clinical, physiological, and safety outcomes according to a predefined protocol. We contacted investigators of all included studies to clarify methods and obtain additional data. We used random-effects models in the analyses. MAIN RESULTS We include 10 RCTs (n = 1850); almost all participants had moderate or severe ARDS. For the primary analysis, the risk of bias was low in three studies and unclear in five studies; the overall quality of evidence was very low due to imprecision, inconsistency, indirectness and methodologic limitations. In participants randomized to HFO, there was no significant difference in hospital or 30-day mortality (risk ratio (RR) 0.92, 95% confidence interval (CI) 0.72 to 1.16; P = 0.46, I² = 66%; 8 trials, 1779 participants, 807 deaths) compared with conventional ventilation. One large multicentre RCT was terminated early because of increased mortality in participants randomized to HFO compared to mechanical ventilation with low tidal volume and high positive end expiratory pressure, with HFO reserved only as a rescue therapy. We found substantial between-trial statistical heterogeneity (I² = 0% to 66%) for clinical outcomes, including mortality. AUTHORS' CONCLUSIONS The findings of this systematic review suggest that HFO does not reduce hospital and 30-day mortality due to ARDS; the quality of evidence was very low. Our findings do not support the use of HFO as a first-line strategy in people undergoing mechanical ventilation for ARDS.
Collapse
Affiliation(s)
- Sachin Sud
- Trillium Health Center, University of TorontoDivision of Critical Care, Department of MedicineMississaugaONCanada
- Trillium Health PartnersInstitute for Better HealthMississaugaOntarioCanada
| | - Maneesh Sud
- University of TorontoDepartment of MedicineSuite RFE 3‐805200 Elizabeth StreetTorontoONCanadaM5G 2C4
| | - Jan O Friedrich
- Keenan Research Centre/Li Ka Shing Knowledge Institute; St Michael’s Hospital, Dalla Lana School of Public Health, University of TorontoInterdepartmental Division of Critical CareTorontoONCanada
| | - Hannah Wunsch
- University of TorontoDepartment of AnesthesiaTorontoONCanada
| | - Maureen O Meade
- McMaster UniversityDepartment of Clinical Epidemiology and Biostatistics1200 Main Street WestHamiltonONCanadaL8N 3Z5
| | - Niall D Ferguson
- University Health Network and Mount Sinai Hospital, University of TorontoInterdepartmental Division of Critical Care Medicine600 University AveSuite 18‐206TorontoONCanadaM5G 1X5
| | - Neill KJ Adhikari
- Sunnybrook Health Sciences CentreDepartment of Critical Care MedicineTorontoCanada
- University of TorontoInterdepartmental Division of Critical CareTorontoCanada
| | | |
Collapse
|
5
|
Meta-analysis of High-frequency Oscillation in Acute Respiratory Distress Syndrome and Accuracy of Results. Anesthesiology 2016; 124:246-7. [PMID: 26669995 DOI: 10.1097/aln.0000000000000930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
In Reply. Anesthesiology 2016; 124:247-8. [DOI: 10.1097/aln.0000000000000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Hupp SR, Turner DA, Rehder KJ. Is there still a role for high-frequency oscillatory ventilation in neonates, children and adults? Expert Rev Respir Med 2015; 9:603-18. [PMID: 26290121 DOI: 10.1586/17476348.2015.1077119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Critically ill patients with respiratory pathology often require mechanical ventilation and while low tidal volume ventilation has become the mainstay of treatment, achieving adequate gas exchange may not be attainable with conventional ventilator modalities. In attempt to achieve gas exchange goals and also mitigate lung injury, high frequency ventilation is often implemented which couples low tidal volumes with sustained mean airway pressure. This manuscript presents the physiology of high-frequency oscillatory ventilation, reviews the currently available data on its use and provides strategies and approaches for this mode of ventilation.
Collapse
Affiliation(s)
| | - David A Turner
- a Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Kyle J Rehder
- a Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
High-frequency Ventilation Does Not Provide Mortality Benefit in Comparison with Conventional Lung-protective Ventilation in Acute Respiratory Distress Syndrome. Anesthesiology 2015; 122:841-51. [DOI: 10.1097/aln.0000000000000306] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Background:
Despite implementation of lung-protective ventilation strategy, acute respiratory distress syndrome is associated with significant mortality, which necessitates the evaluation of ventilatory modes other than conventional lung-protective strategy. This meta-analysis of the randomized controlled trials has been undertaken to know whether high-frequency oscillatory ventilation (HFOV) provides any mortality benefit over conventional ventilation in adult patients with acute respiratory distress syndrome.
Methods:
Published randomized controlled trials comparing HFOV with conventional lung-protective ventilation in adult patients with acute respiratory distress syndrome were included in this meta-analysis.
Results:
A total 1,759 patient data from seven randomized controlled trials have been analyzed here. Primary outcome of the review is in-hospital/30-day mortality and secondary outcomes are duration of intensive care unit stay, duration of mechanical ventilation, requirement of additional treatment, and complications associated with the interventions. HFOV does not offer any in-hospital/30-day mortality benefit (386 of 886 in HFOV vs. 368 of 873 in conventional ventilation; risk ratio, 0.96; 95% CI, 0.77 to 1.19; P = 0.70) over conventional ventilation. It may also prolong the duration of mechanical ventilation (mean difference, 1.18 days; 95% CI, 0.00 to 2.35 days; P = 0.05). Duration of intensive care unit stay (mean difference, 1.24 days; 95% CI, −0.08 to 2.56 days; P = 0.06) and requirement of neuromuscular blocker is similar between two treatment arm. Incidence of refractory hypoxemia is significantly less (risk ratio, 0.60; 95% CI, 0.39 to 0.93; P = 0.02) with the use of HFOV. HFOV is not associated with increased incidence of barotrauma and refractory hypotension.
Conclusion:
HFOV should not be used routinely in all adult patients with acute respiratory distress syndrome as primary ventilation strategy in place of conventional lung-protective ventilation.
Collapse
|
9
|
Vrettou CS, Zakynthinos SG, Malachias S, Mentzelopoulos SD. The effect of high-frequency oscillatory ventilation combined with tracheal gas insufflation on extravascular lung water in patients with acute respiratory distress syndrome: a randomized, crossover, physiologic study. J Crit Care 2014; 29:568-73. [PMID: 24814973 DOI: 10.1016/j.jcrc.2014.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/31/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE High-frequency oscillation combined with tracheal gas insufflation (HFO-TGI) improves oxygenation in patients with acute respiratory distress syndrome (ARDS). There are limited physiologic data regarding the effects of HFO-TGI on hemodynamics and pulmonary edema during ARDS. The aim of this study was to investigate the effect of HFO-TGI on extravascular lung water (EVLW). MATERIALS AND METHODS We conducted a prospective, randomized, crossover study. Consecutive eligible patients with ARDS received sessions of conventional mechanical ventilation with recruitment maneuvers (RMs), followed by HFO-TGI with RMs, or vice versa. Each ventilatory technique was administered for 8 hours. The order of administration was randomly assigned. Arterial/central venous blood gas analysis and measurement of hemodynamic parameters and EVLW were performed at baseline and after each 8-hour period using the single-indicator thermodilution technique. RESULTS Twelve patients received 32 sessions. Pao2/fraction of inspired oxygen and respiratory system compliance were higher (P<.001 for both), whereas extravascular lung water index to predicted body weight and oxygenation index were lower (P=.021 and .029, respectively) in HFO-TGI compared with conventional mechanical ventilation. There was a significant correlation between Pao2/fraction of inspired oxygen improvement and extravascular lung water index drop during HFO-TGI (Rs=-0.452, P=.009). CONCLUSIONS High-frequency oscillation combined with tracheal gas insufflation improves gas exchange and lung mechanics in ARDS and potentially attenuates EVLW accumulation.
Collapse
Affiliation(s)
- Charikleia S Vrettou
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece.
| | - Spyros G Zakynthinos
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Sotirios Malachias
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Spyros D Mentzelopoulos
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| |
Collapse
|
10
|
Pelosi P, Sutherasan Y. High-frequency oscillatory ventilation with tracheal gas insufflation: the rescue strategy for brain-lung interaction. Crit Care 2013; 17:R179. [PMID: 23981807 PMCID: PMC4057213 DOI: 10.1186/cc12862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The occurrence of moderate to severe acute respiratory distress syndrome due to traumatic brain injury is not uncommon and is associated with an extremely high incidence of morbidity and mortality. Owing to the complex interaction between the lung and brain, protective ventilation for the lung with lower tidal volume and higher positive end-expiratory pressure with or without mild hypercapnia might be harmful for the brain, and maintaining normocapnia or mild hypocapnia by increasing tidal volume or respiratory rate (or both) with lower positive end-expiratory pressure levels for protecting the brain might lead to ventilator-induced lung injury. Balancing the end-point between lungs and brain becomes a challenging issue, and non-conventional modes of mechanical ventilation might play a role in the more difficult clinical cases. In this commentary, the authors discuss the rationale, based on the physiologic principle of targeting both vital organs, of applying high-frequency oscillation and tracheal gas insufflation in acute respiratory distress syndrome patients with traumatic brain injury.
Collapse
Affiliation(s)
- Paolo Pelosi
- IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated
Diagnostics, University of Genoa, Largo Rosanna Benzi 8, 16132, Genova,
Italy
| | - Yuda Sutherasan
- Ramathibodi Hospital, Rama 6 Road, Mahidol University, 10400, Bangkok,
Thailand
| |
Collapse
|
11
|
Vrettou CS, Zakynthinos SG, Malachias S, Mentzelopoulos SD. High-frequency oscillation and tracheal gas insufflation in patients with severe acute respiratory distress syndrome and traumatic brain injury: an interventional physiological study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R136. [PMID: 23844839 PMCID: PMC4057500 DOI: 10.1186/cc12815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/11/2013] [Indexed: 01/25/2023]
Abstract
Introduction In acute respiratory distress syndrome (ARDS), combined high-frequency oscillation (HFO) and tracheal gas insufflation (TGI) improves gas exchange compared with conventional mechanical ventilation (CMV). We evaluated the effect of HFO-TGI on PaO2/fractional inspired O2 (FiO2) and PaCO2, systemic hemodynamics, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) in patients with traumatic brain injury (TBI) and concurrent severe ARDS. Methods We studied 13 TBI/ARDS patients requiring anesthesia, hyperosmolar therapy, and ventilation with moderate-to-high CMV-tidal volumes for ICP control. Patients had PaO2/FiO2 <100 mm Hg at end-expiratory pressure ≥10 cm H2O. Patients received consecutive, daily, 12-hour rescue sessions of HFO-TGI interspersed with 12-hour periods of CMV. HFO-TGI was discontinued when the post-HFO-TGI PaO2/FiO2 exceeded 100 mm Hg for >12 hours. Arterial/central-venous blood gases, hemodynamics, and ICP were recorded before, during (every 4 hours), and after HFO-TGI, and were analyzed by using repeated measures analysis of variance. Respiratory mechanics were assessed before and after HFO-TGI. Results Each patient received three to four HFO-TGI sessions (total sessions, n = 43). Pre-HFO-TGI PaO2/FiO2 (mean ± standard deviation (SD): 83.2 ± 15.5 mm Hg) increased on average by approximately 130% to163% during HFO-TGI (P < 0.01) and remained improved by approximately 73% after HFO-TGI (P < 0.01). Pre-HFO-TGI CMV plateau pressure (30.4 ± 4.5 cm H2O) and respiratory compliance (37.8 ± 9.2 ml/cm H2O), respectively, improved on average by approximately 7.5% and 20% after HFO-TGI (P < 0.01 for both). During HFO-TGI, systemic hemodynamics remained unchanged. Transient improvements were observed after 4 hours of HFO-TGI versus pre-HFO-TGI CMV in PaCO2 (37.7 ± 9.9 versus 41.2 ± 10.8 mm Hg; P < 0.01), ICP (17.2 ± 5.4 versus 19.7 ± 5.9 mm Hg; P < 0.05), and CPP (77.2 ± 14.6 versus 71.9 ± 14.8 mm Hg; P < 0.05). Conclusions In TBI/ARDS patients, HFO-TGI may improve oxygenation and respiratory mechanics, without adversely affecting PaCO2, hemodynamics, or ICP. These findings support the use of HFO-TGI as a rescue ventilatory strategy in patients with severe TBI and imminent oxygenation failure due to severe ARDS.
Collapse
|
12
|
Sud S, Sud M, Friedrich JO, Wunsch H, Meade MO, Ferguson ND, Adhikari NKJ. High-frequency ventilation versus conventional ventilation for treatment of acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev 2013:CD004085. [PMID: 23450549 DOI: 10.1002/14651858.cd004085.pub3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND High frequency oscillation is an alternative to conventional mechanical ventilation that is sometimes used to treat patients with acute respiratory distress syndrome, but effects on oxygenation, mortality and adverse clinical outcomes are uncertain. This review was originally published in 2004 and was updated in 2011. OBJECTIVES To determine clinical and physiological effects of high frequency oscillation (HFO) in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) compared to conventional ventilation. SEARCH METHODS We electronically searched CENTRAL (Ovid), MEDLINE (Ovid), EMBASE (Ovid), and ISI (from inception to March 2011). The original search was performed in 2002. We manually searched reference lists from included studies and review articles; searched conference proceedings of the American Thoracic Society (1994 to 2010), Society of Critical Care Medicine (1994 to 2010), European Society of Intensive Care Medicine (1994 to 2010), and American College of Chest Physicians (1994 to 2010); contacted clinical experts in the field; and searched for unpublished and ongoing trials in clinicaltrials.gov and controlled-trials.com. SELECTION CRITERIA Randomized controlled clinical trials comparing treatment using HFO with conventional mechanical ventilation for children and adults diagnosed with ALI or ARDS. DATA COLLECTION AND ANALYSIS Three authors independently extracted data on clinical, physiological, and safety outcomes according to a predefined protocol. We contacted investigators of all included studies to clarify methods and obtain additional data. We used random-effects models in the analyses. MAIN RESULTS Eight RCTs (n = 419) were included; almost all patients had ARDS. The risk of bias was low in six studies and unclear in two studies. The quality of evidence for hospital and six-month mortality was moderate and low, respectively. The ratio of partial pressure of oxygen to inspired fraction of oxygen at 24, 48, and 72 hours was 16% to 24% higher in patients receiving HFO. There were no significant differences in oxygenation index because mean airway pressure rose by 22% to 33% in patients receiving HFO (P < 0.01). In patients randomized to HFO, mortality was significantly reduced (RR 0.77, 95% CI 0.61 to 0.98; P = 0.03; 6 trials, 365 patients, 160 deaths) and treatment failure (refractory hypoxaemia, hypercapnoea, hypotension, or barotrauma) was less likely (RR 0.67, 95% CI 0.46 to 0.99; P = 0.04; 5 trials, 337 patients, 73 events). Other risks, including adverse events, were similar. We found substantial between-trial statistical heterogeneity for physiological (I(2) = 21% to 95%) but not clinical (I(2) = 0%) outcomes. Pooled results were based on few events for most clinical outcomes. AUTHORS' CONCLUSIONS The findings of this systematic review suggest that HFO was a promising treatment for ALI and ARDS prior to the uptake of current lung protective ventilation strategies. These findings may not be applicable with current conventional care, pending the results of large multi-centre trials currently underway.
Collapse
Affiliation(s)
- Sachin Sud
- Division of Critical Care, Department of Medicine, Trillium Health Center, University of Toronto, Mississauga, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To describe the most recent advances and clinical applications of adjunctive techniques in mechanical ventilation, focusing on their overall impact on mortality and their potential indications in critically ill patients. RECENT FINDINGS The modern variants of extracorporeal membrane oxygenation are not only rescue alternatives but also therapeutic options for patients with severe but potentially reversible acute respiratory distress syndrome. Prone positioning returns as a desirable therapeutic option for patients with severe acute respiratory distress syndrome. Recent reports suggest that permissive hypercapnia, therapeutic paralysis, sedation, and controlled hypothermia could potentially improve important clinical outcomes. Although more clinical trials are clearly needed to support the use of inhaled prostacyclins in severe respiratory failure, encouraging results have been described in recent publications. SUMMARY Giving the complexity and dynamism of acute lung injury, timing, severity, and pathophysiologic pertinence are mandatory components of decision-making when considering the application of adjunctive measures to support mechanical ventilation.
Collapse
|
14
|
Young NH, Andrews PJD. High-frequency oscillation as a rescue strategy for brain-injured adult patients with acute lung injury and acute respiratory distress syndrome. Neurocrit Care 2012; 15:623-33. [PMID: 21560002 DOI: 10.1007/s12028-011-9550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acute lung injury and acute respiratory distress syndrome (ARDS) occur frequently in brain-injured patients. Single organ dysfunction ventilator strategies result in a conflict between lung protective ventilation and the prevention of secondary neurological insult(s). The objectives of this study were to determine if clinical and physiological benefits of high-frequency oscillatory ventilation (HFOV) exist compared to conventional ventilation and to determine what data there are on the effects of HFOV on cerebral perfusion pressure and intracranial pressure. Systematic review was designed. An optimally sensitive search strategy was used that included; OVID MEDLINE, OVID EMBASE, Cochrane Clinical Trials Register, and hand searching of references of retrieved articles and proceedings of meetings. Study selection includes published randomized controlled trials comparing HFOV with conventional ventilation in adults with ARDS and observational studies of the use of HFOV in adults with ARDS and traumatic brain injury (TBI). Both authors reviewed all trials. A data extraction form was used. In adults with ARDS no mortality benefit has been shown with HFOV, oxygenation improves, arterial partial pressure of CO(2) may increase and there is no change in mean arterial blood pressure. There are few data describing HFOV in adults with TBI. In the small, low quality, studies that have been reported there have not been uncontrollable changes in intracranial pressure. HFOV has not been shown to have any mortality benefit in adults with ARDS. There are insufficient data to clarify the role, or safety, of HFOV in adults with TBI and concurrent ARDS.
Collapse
Affiliation(s)
- Neil H Young
- Department of Anaesthesia, Critical Care and Pain Medicine, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | |
Collapse
|
15
|
The role of high-frequency oscillatory ventilation in the treatment of acute respiratory failure in adults. Curr Opin Crit Care 2012; 18:70-9. [PMID: 22157255 DOI: 10.1097/mcc.0b013e32834f1805] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW High-frequency oscillatory ventilation (HFOV) is increasingly used in adults with the acute respiratory distress syndrome (ARDS), who remain hypoxemic during conventional mechanical ventilation. In this review, we will summarize the trials evaluating HFOV in adults with ARDS and discuss issues relevant to the clinician regarding the use of HFOV. RECENT FINDINGS Several observational and randomized trials support the safety of HFOV and improvements in oxygenation in adult patients with severe ARDS, who remain hypoxemic during conventional mechanical ventilation. SUMMARY HFOV theoretically meets the goals of lung-protective ventilation. On the basis of the current evidence, HFOV is associated with improvements in oxygenation in severe, adult ARDS. However, whether HFOV influences mortality, length of ICU stay, ventilator-free days, quality-of-life factors and is cost-effective remains to be determined. Large, prospective, randomized controlled trials such as the ongoing OSCAR and OSCILLATE trials will help further define the role of HFOV in adult ARDS.
Collapse
|
16
|
Karcz M, Vitkus A, Papadakos PJ, Schwaiberger D, Lachmann B. State-of-the-art mechanical ventilation. J Cardiothorac Vasc Anesth 2011; 26:486-506. [PMID: 21601477 DOI: 10.1053/j.jvca.2011.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/01/2023]
Affiliation(s)
- Marcin Karcz
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
17
|
Scanographic comparison of high frequency oscillation with versus without tracheal gas insufflation in acute respiratory distress syndrome. Intensive Care Med 2011; 37:990-9. [DOI: 10.1007/s00134-011-2162-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
18
|
Mentzelopoulos SD, Malachias S, Kokkoris S, Roussos C, Zakynthinos SG. Comparison of high-frequency oscillation and tracheal gas insufflation versus standard high-frequency oscillation at two levels of tracheal pressure. Intensive Care Med 2010; 36:810-6. [PMID: 20232047 DOI: 10.1007/s00134-010-1822-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE In acute respiratory distress syndrome (ARDS), combined high-frequency oscillation (HFO) and tracheal gas insufflation (TGI) may improve oxygenation through a TGI-induced increase in mean tracheal pressure (P(tr)). We compared standard HFO and HFO-TGI matched for P(tr), in order to determine whether TGI affects gas exchange independently from P (tr). METHODS We conducted a prospective, randomized, crossover, physiological study in a 37-bed intensive care unit. Twenty-two patients with early acute lung injury (ALI) or ARDS were enrolled. On day 1, patients were ventilated with HFO, without (60 min) and combined with TGI (60 min) in random order. HFO/HFO-TGI sessions were repeated in inverse order within 7 h. HFO/HFO-TGI mean airway pressure (P(aw)) was titrated to a P(tr) that was either equal to (low P(aw)) or 3 cmH(2)O higher than (high P(aw)) the P(tr) of the preceding conventional mechanical ventilation. On day 2, the protocol was repeated at the alternative P(tr) level relative to day 1. RESULTS Gas exchange and hemodynamics were determined before, during, and after HFO/HFO-TGI sessions. HFO-TGI-high P(aw) versus HFO-high P(aw) resulted in significantly higher PaO(2)/inspired O(2) fraction (FiO(2)) [mean +/- standard error of the mean (SEM): 281.6 +/- 15.1 versus 199.0 +/- 15.0 mmHg; mean increase: 42%; P < 0.001]. HFO-TGI-low P(aw), versus HFO-low P(aw), resulted in significantly higher PaO(2)/FiO(2) (222.8 +/- 14.6 versus 141.3 +/- 8.7 mmHg; mean increase: 58%; P < 0.001). PaCO(2) was significantly lower during HFO-TGI-high P(aw) versus HFO-high P(aw) (45.3 +/- 1.6 versus 53.7 +/- 1.9 mmHg; mean decrease: 16%; P = 0.037). CONCLUSIONS At the same P(tr) level, HFO-TGI results in superior gas exchange compared with HFO.
Collapse
Affiliation(s)
- Spyros D Mentzelopoulos
- First Department of Intensive Care Medicine, University of Athens Medical School, Athens, Greece.
| | | | | | | | | |
Collapse
|
19
|
Prognostic factors for fatal adult influenza pneumonia. J Infect 2009; 58:439-45. [DOI: 10.1016/j.jinf.2009.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/08/2009] [Accepted: 03/07/2009] [Indexed: 11/22/2022]
|
20
|
High Frequency Oscillation for Acute Respiratory Failure in Adults. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Nichol A. High-frequency oscillation in acute respiratory distress syndrome: Who rescues the rescuer?*. Crit Care Med 2007; 35:1619-20. [PMID: 17522538 DOI: 10.1097/01.ccm.0000257363.84731.bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|