1
|
Expression of Cell Cycle Markers and Proliferation Factors during Human Eye Embryogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23169421. [PMID: 36012688 PMCID: PMC9409163 DOI: 10.3390/ijms23169421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The expression pattern of the markers p19, Ki-67, MSX1, MSX2, PDL1, pRB, and CYCLINA2 was quantitatively and semiquantitatively analyzed in histologic sections of the developing and postnatal human eye at week 8, in retinoblastoma, and in various uveal melanomas post hoc studies by double immunofluorescence. The p19 immunoreactivity characterized retinal and/or choroidal cells in healthy and tumor tissues: expression was lower in the postnatal retina than in the developing retina and retinoblastoma, whereas it was high in epithelioid melanomas. Ki67 expression was high in the developing eye, retinoblastoma, and choroidal melanomas. MSX1 and MSX2 expression was similar in the developing eye and retinoblastoma, whereas it was absent in the postnatal eye. Their different expression was evident between epithelioid and myxoid melanomas. Similarly, PDL1 was absent in epithelioid melanomas, whereas it was highly expressed in developing and tumor tissues. Expression of pRB and CYCA2 was characteristic of developing and tumorous eye samples but not of the healthy postnatal eye. The observed expression differences of the analyzed markers correlate with the origin and stage of cell differentiation of the tissue samples. The fine balance of expression could play a role in both human eye development and ocular tumorigenesis. Therefore, understanding their relationship and interplay could open new avenues for potential therapeutic interventions and a better understanding of the mechanisms underlying the developmental plasticity of the eye and the development of neoplasms.
Collapse
|
2
|
Naik PP. Cutaneous Malignant Melanoma: A Review of Early Diagnosis and Management. World J Oncol 2021; 12:7-19. [PMID: 33738001 PMCID: PMC7935621 DOI: 10.14740/wjon1349] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma (CM) is a malignant tumor formed from pigment-producing cells called melanocytes. It is one of the most aggressive and fatal forms of skin malignancy. In the last decades, CM's incidence has gradually risen, with 351,880 new cases in 2015. Since the 1960s, its incidence has increased steadily, in 2019, with approximately 96,000 new cases. A greater understanding of early diagnosis and management of CM is urgently needed because of the high mortality rates due to metastatic melanoma. Timely detection of melanoma is crucial for successful treatment, but diagnosis with histopathology may also pose a significant challenge to this objective. Early diagnosis and management are essential and contribute to better survival rates of the patient. To better control this malignancy, such information is expected to be particularly useful in the early detection of possible metastatic lesions and the development of new therapeutic approaches. This article reviews the available information on the early diagnosis and management of CM and discusses such information's potential in facilitating the future prospective.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospitals and Clinics, Hessa Street 331 West, Al Barsha 3, Exit 36 Sheikh Zayed Road, Opposite of American School, Dubai, United Arab Emirates.
| |
Collapse
|
3
|
Serum levels of miRNA-21-5p in vitiligo patients and effects of miRNA-21-5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes. J Dermatol Sci 2020; 101:22-29. [PMID: 33176966 DOI: 10.1016/j.jdermsci.2020.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epigenetics of vitiligo was evaluated in few studies. In particular, the role of miR-21, a microRNA involved in various processes, including melanogenesis, was never investigated. OBJECTIVE Evaluation of serum levels of miR-21-5p in vitiligo patients and miR-21-5p effects on melanogenesis. METHODS We measured serum levels of miR-21-5p in 40 patients affected by nonsegmental vitiligo and 40 sex- and age-matched healthy controls. Next, normal human melanocytes were transfected with miR-21-5p to study the effects of this microRNA, which targeted some proteins involved in melanogenesis pathway like SOX5, beta-catenin, cyclin-dependent kinase 2 (CDK2), and MITF. RESULTS The expression of miR-21-5p in vitiligo patients was 3.6-4454.4 fold (mean 990.4 ± 1397.9) higher than in controls. The relative expression of miR-21-5p was directly and significantly correlated with disease severity, defined by VASI (Vitiligo Area and Severity Index) score (Rho = 0.89, p = 10-7), but not other individual or clinical characteristics. In the second part of the study, a significant reduction of SOX5, beta-catenin and CDK2 protein expression and increase of MITF protein expression was observed in cultured melanocytes after 24 h trasfection with miR-21-5p. CONCLUSION According to literature, miR-21-5p upregulation and consequent SOX5 downregulation should upregulate melanogenesis, while vitiligo is characterized by skin depigmentation. Our results suggest that current knowledge of the pathogenesis of vitiligo is probably incomplete. Clinical manifestations could result from an altered balance between metabolic pathways with contrasting effects. In this view, miR-21-5p upregulation might be a tentative compensation mechanism. Further studies appear necessary to confirm and better understand our results and their importance.
Collapse
|
4
|
Modelling of Protein Kinase Signaling Pathways in Melanoma and Other Cancers. Cancers (Basel) 2019; 11:cancers11040465. [PMID: 30987166 PMCID: PMC6520749 DOI: 10.3390/cancers11040465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a highly aggressive tumor with a strong dependence on intracellular signaling pathways. Almost half of all melanomas are driven by mutations in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) with BRAFV600E being the most prevalent mutation. Recently developed targeted treatment directed against mutant BRAF and downstream mitogen-activated protein kinase (MAPK) MAP2K1 (also termed MEK1) have improved overall survival of melanoma patients. However, the MAPK signaling pathway is far more complex than a single chain of consecutively activated MAPK enzymes and it contains nested-, inherent feedback mechanisms, crosstalk with other signaling pathways, epigenetic regulatory mechanisms, and interacting small non-coding RNAs. A more complete understanding of this pathway is needed to better understand melanoma development and mechanisms of treatment resistance. Network reconstruction, analysis, and modelling under the systems biology paradigm have been used recently in different malignant tumors including melanoma to analyze and integrate 'omics' data, formulate mechanistic hypotheses on tumorigenesis, assess and personalize anticancer therapy, and propose new drug targets. Here we review the current knowledge of network modelling approaches in cancer with a special emphasis on melanoma.
Collapse
|
5
|
Abbas O, Miller DD, Bhawan J. Cutaneous malignant melanoma: update on diagnostic and prognostic biomarkers. Am J Dermatopathol 2014; 36:363-79. [PMID: 24803061 DOI: 10.1097/dad.0b013e31828a2ec5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The incidence of cutaneous malignant melanoma has rapidly increased in recent years in all parts of the world, and melanoma is a leading cause of cancer death. As even relatively small melanomas may have metastatic potential, accurate assessment of progression is critical. Although diagnosis of cutaneous malignant melanoma is usually based on histopathologic criteria, these criteria may at times be inadequate in differentiating melanoma from certain types of benign nevi. As for prognosis, tumor (Breslow) thickness, mitotic rate, and ulceration have been considered the most important prognostic indicators among histopathologic criteria. However, there are cases of thin primary melanomas that have ultimately developed metastases despite complete excision. Given this, an accurate assessment of melanoma progression is critical, and development of molecular biomarkers that identify high-risk melanoma in its early phase is urgently needed. Large-scale genomic profiling has identified considerable heterogeneity in melanoma and suggests subgrouping of tumors by patterns of gene expression and mutation will ultimately be essential to accurate staging. This subgrouping in turn may allow for more targeted therapy. In this review, we aim to provide an update on the most promising new biomarkers that may help in the identification and prognostication of melanoma.
Collapse
Affiliation(s)
- Ossama Abbas
- *Associate Professor of Clinical Dermatology, Dermatology Department, American University of Beirut-Medical Center, Beirut, Lebanon; and †Assistant Professor of Dermatology (D.D.M.), Professor of Dermatology and Pathology (J.B.), Dermatopathology Section, Department of Dermatology, Boston University School of Medicine, Boston, MA
| | | | | |
Collapse
|
6
|
Kiszner G, Wichmann B, Nemeth IB, Varga E, Meggyeshazi N, Teleki I, Balla P, Maros ME, Penksza K, Krenacs T. Cell cycle analysis can differentiate thin melanomas from dysplastic nevi and reveals accelerated replication in thick melanomas. Virchows Arch 2014; 464:603-12. [PMID: 24682564 DOI: 10.1007/s00428-014-1570-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Cell replication integrates aberrations of cell cycle regulation and diverse upstream pathways which all can contribute to melanoma development and progression. In this study, cell cycle regulatory proteins were detected in situ in benign and malignant melanocytic tumors to allow correlation of major cell cycle fractions (G1, S-G2, and G2-M) with melanoma evolution. Dysplastic nevi expressed early cell cycle markers (cyclin D1 and cyclin-dependent kinase 2; Cdk2) significantly more (p < 0.05) than common nevi. Post-G1 phase markers such as cyclin A, geminin, topoisomerase IIα (peaking at S-G2) and aurora kinase B (peaking at G2-M) were expressed in thin (≤1 mm) melanomas but not in dysplastic nevi, suggesting that dysplastic melanocytes engaged in the cell cycle do not complete replication and remain arrested in G1 phase. In malignant melanomas, the expression of general and post-G1 phase markers correlated well with each other implying negligible cell cycle arrest. Post-G1 phase markers and Ki67 but none of the early markers cyclin D1, Cdk2 or minichromosome maintenance protein 6 (Mcm6) were expressed significantly more often in thick (>1 mm) than in thin melanomas. Marker expression did not differ between metastatic melanomas and thick melanomas, with the exception of aurora kinase A of which the expression was higher in metastatic melanomas. Combined detection of cyclin A (post-G1 phase) with Mcm6 (replication licensing) and Ki67 correctly classified thin melanomas and dysplastic nevi in 95.9 % of the original samples and in 93.2 % of cross-validated grouped cases at 89.5 % sensitivity and 92.6 % specificity. Therefore, cell cycle phase marker detection can indicate malignancy in early melanocytic lesions and accelerated cell cycle progression during vertical melanoma growth.
Collapse
Affiliation(s)
- Gergo Kiszner
- 1st Department of Pathology and Experimental Cancer Research and MTA-SE Tumor Progression Research Group, Semmelweis University, Ulloi ut 26, Budapest, 1085, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mauerer A, Roesch A, Hafner C, Stempfl T, Wild P, Meyer S, Landthaler M, Vogt T. Identification of new genes associated with melanoma. Exp Dermatol 2011; 20:502-7. [PMID: 21410771 DOI: 10.1111/j.1600-0625.2011.01254.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Repeated failures in melanoma therapy made clear that the molecular mechanisms leading to melanoma are still poorly understood. In this study, we aim to provide a more comprehensive understanding of the transcriptional profiles and signalling pathways associated with melanoma. METHODS Gene expression was analysed using the Affymetrix Human Genome U133A 2.0 GeneChip arrays. To avoid culture artifacts, we used microdissected fresh frozen material of 18 melanocytic nevi (MN), 20 primary melanomas (PM) and 20 metastatic melanomas (MM). Statistical analysis was performed with Genomatix Chipinspector, Ingenuity™ Software, SPSS Software and Partek Genomic Suite 6.4. Expression levels of selected transcripts were verified by quantitative real-time RT-PCR and immunostaining of a tissue microarray sampling more than 280 cases of MN, PM and MM with known clinical outcome. RESULTS A total of 284 differentially expressed genes was detected in PM compared with MN and 189 genes in MM compared with PM affecting common cancer pathways such as MAPK-, Wnt- and Notch-signalling. Using principal component analysis, the samples could be grouped according to their histological entity. We identified a panel of novel melanoma-associated markers: frizzled-related protein, an antagonist of Wnt; tranducin-like enhancer of split 1, a transcription factor partner of TCF/LEF-1; CNTN1, an activator of Notch signalling; two Serpin peptidase inhibitors, Serpin B3/B4 and the TGF-β family member GDF15, the latter with association to MAPK-signalling.
Collapse
Affiliation(s)
- Andreas Mauerer
- Department of Dermatology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cyclin-dependent kinase 2 (CDK-2) expression in nonmelanocytic human cutaneous lesions. Appl Immunohistochem Mol Morphol 2010; 18:357-64. [PMID: 20216405 DOI: 10.1097/pai.0b013e3181d4069c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lesions originating from different types of skin cells differ significantly with respect to their pathologic importance. The aim of this work was to examine as to what extent the differences in the origin are reflected in expression levels of CDK-2 and to investigate whether CDK-2 expression might be considered as potential marker useful for diagnostics and assessment of invasiveness of human nonmelanocytic lesions. We conducted comparative immunohistochemical studies of expression of cyclin-dependent kinase 2 (CDK-2) in 16 benign epithelial skin lesions, 11 precancerous lesions, 19 cases of basal cell carcinoma (first such study), 14 squamous cell carcinomas (SCCs), and 7 fibromas. Development of benign epithelial skin lesions was not associated with considerable increase of the CDK-2 expression. Increase of the CDK-2 level was observed in precancerous lesions, and the expression was strongest in SCCs. The level of CDK-2 may be related to invasiveness of skin cancers, as squamous cell carcinomas expressed the enzyme significantly stronger than basal cell carcinomas. Higher percentage fraction of CDK-2 positive cells observed in SCC compared with precancerous lesions may be useful for histopathologic diagnostics of this cancer. Moreover, strong immunohistochemical CDK-2 staining of the cancer cells present deep in dermis may facilitate their detection in histopathologic examinations.
Collapse
|
9
|
Cyclin D1 and D3 expression in melanocytic skin lesions. Arch Dermatol Res 2010; 302:545-50. [PMID: 20496072 PMCID: PMC2913004 DOI: 10.1007/s00403-010-1054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 11/09/2022]
Abstract
Cyclins, cyclin-dependent kinases, as well as proteins cooperating with them are responsible for cell cycle regulation which is crucial for normal development, injury repair, and tumorigenesis. D-type cyclins regulate G1 cell cycle progression by enhancing the activities of cyclin-dependent kinases, and their expression is frequently altered in tumors. Disturbances in cyclin expression were also reported in melanocytic skin lesions. The objective of the study was to evaluate the expression of cyclins D1 and D3 in common, dysplastic, and malignant melanocytic skin lesions. Forty-eight melanocytic skin lesions including common nevi (10), dysplastic nevi (24), and melanomas (14) were diagnosed by dermoscopy and excised. Expression of cyclin D1 and D3 was detected by immunohistochemistry and quantified as percentage of immunostained cell nuclei in each sample. In normal skin, expression of cyclins D1 and D3 was not detected. The mean percentage of cyclin D1-positive nuclei was 7.75% for melanoma samples, 5% for dysplastic nevi samples, and 0.34% for common nevi samples. For cyclin D3, the respective values were 17.8, 6.4, and 1.8%. Statistically significant differences in cyclin D1 expression were observed between melanomas and common nevi as well as between dysplastic and common nevi (p = 0.0001), but not between melanomas and dysplastic nevi. Cyclin D3 expression revealed significant differences between all investigated lesion types (p = 0.0000). The mean cyclin D1 and D3 scores of melanomas with Breslow thickness <1 mm and >1 mm were not significantly different. G1/S abnormalities are crucial for the progression of malignant melanoma, and enhanced cyclin D1 and D3 expression leading to increased melanocyte proliferation is observed in both melanoma and dysplastic nevi. In histopathologically ambiguous cases, lower cyclin D3 expression in dysplastic nevi can be a diagnostic marker for that lesion type.
Collapse
|
10
|
Narbutt J, Norval M, Slowik-Rylska M, Jochymski C, Kozłowski W, Sysa-Jedrzejowska A, Rogowski-Tylman M, Lesiak A. Suberythemal ultraviolet B radiation alters the expression of cell cycle-related proteins in the epidermis of human subjects without leading to photoprotection. Br J Dermatol 2009; 161:890-6. [PMID: 19709099 DOI: 10.1111/j.1365-2133.2009.09380.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Deregulation of the cell cycle proteins is one of the critical factors leading to cutaneous carcinogenesis. OBJECTIVES To monitor the expression of cell cycle proteins in the epidermis of subjects after repeated exposure to ultraviolet (UV) B radiation, and to test for the development of photoprotection by subsequent irradiation with a single erythemal UVB dose. METHODS A total of 26 healthy volunteers were divided into four groups: group 1 (n = 9) were given whole-body UVB irradiation for 10 consecutive days with 0.7 minimal erythema dose (MED), group 2 (n = 9) were irradiated as in group 1 followed 24 h later by a single UVB dose of 3 MED on buttock skin, group 3 (n = 4) were irradiated with a UVB dose of 3 MED on buttock skin, and group 4 (n = 4) were not irradiated. Skin biopsies were collected 24 h after the final irradiation and stained for cyclins A, B1, D1, and p16, p18, p21, p27, p53, pRB, Bax and Bcl-2. RESULTS The expression of cyclin D1, p18 and p21 was significantly higher in groups 1 and 2 compared with the nonirradiated group 4 controls and, in group 2, the expression of pRB, p53 and Bax was also increased. In group 3, only p53 and Bax proteins were significantly elevated compared with group 4. The expression of cyclin D1, p16, p18, p27, pRB and Bcl-2 was higher in group 2 compared with group 3. CONCLUSIONS Suberythemal UVB radiation was sufficient to cause changes in the expression of several epidermal cell cycle proteins. When tested by irradiation with a single erythemal UVB dose following the repeated exposures, no photoprotection against the UV-induced alteration in cell cycle protein expression was apparent.
Collapse
Affiliation(s)
- J Narbutt
- Department of Dermatology, Medical University of Lodz, 94-017 Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Molecular cloning, sequence characterization and tissue transcription profile analyses of two novel genes: LCK and CDK2 from the Black-boned sheep (Ovis aries). Mol Biol Rep 2009; 37:39-45. [PMID: 19340603 DOI: 10.1007/s11033-009-9532-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/23/2009] [Indexed: 01/31/2023]
Abstract
The complete coding sequences of two sheep genes--LCK and CDK2--were amplified using the rapid amplification of cDNA ends method based on three sheep EST sequences whose translated amino acids contain the domain PTKc_Lck_BIk and S_TKc domain, respectively. The sequence analyses of these two genes revealed that the sheep LCK gene encodes a protein of 509 amino acids which has high homology with the lymphocyte-specific protein tyrosine kinase (LCK) of eight species: bovine (99%), human (96%), dog (96%), Aotus nancymaae (95%), mouse (94%), rat (91%), horse (91%) and chicken (81%). The sheep CDK2 gene encodes a protein of 298 amino acids which has high homology with the cyclin-dependent kinase 2 (CDK2) of ten species: bovine (100%), goat (100%), rat (99%), mouse (99%), Chinese hamster (99%), dog (98%), golden hamster (98%), human (98%), horse (98%) and rhesus monkey (98%). The tissue transcription profile analyses indicated that that the Black-boned sheep LCK and CDK2 genes are generally but differentially expressed in the detected tissues including in tissues including spleen, muscle, skin, kidney, lung, liver and heart. These data serve as a foundation for further insight into these two genes.
Collapse
|
12
|
Torabian SZ, de Semir D, Nosrati M, Bagheri S, Dar AA, Fong S, Liu Y, Federman S, Simko J, Haqq C, Debs RJ, Kashani-Sabet M. Ribozyme-mediated targeting of IkappaBgamma inhibits melanoma invasion and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1009-16. [PMID: 19179607 DOI: 10.2353/ajpath.2009.080207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IkappaBgamma is one member of a family of proteins that can inhibit the nuclear localization of nuclear factor-kappaB. However, the other specific functions of IkappaBgamma are still poorly understood, and its effects on tumor metastasis have not yet been characterized. We examined the consequences of targeting IkappaBgamma in melanoma cells using a hammerhead ribozyme. We developed stable transformant B16-F10 melanoma cell lines that express a ribozyme that targets mouse IkappaBgamma (IkappaBgamma-144-Rz). Tail-vein injection of B16-F10 cells that stably express IkappaBgamma-144-Rz into mice resulted in a significant reduction of the metastatic potential of these cells. IkappaBgamma-144-Rz-expressing B16 cells were shown to have increased transcriptional activity of nuclear factor-kappaB. We then showed that IkappaBgamma-144-Rz-expressing cells demonstrated both reduced invasion and increased apoptosis, suggesting the existence of pathways through which IkappaBgamma promotes melanoma metastasis. Using gene expression profiling, we identified a differentially expressed gene set that is regulated by the stable suppression of IkappaBgamma that may participate in mediating its anti-metastatic effects; we also confirmed the altered expression levels of several of these genes by quantitative real time polymerase chain reaction. Plasmid-mediated expression of IkappaBgamma-144-Rz produced a significant inhibition of the metastatic progression of B16-F10 cells to the lung and resulted in significant anti-invasive and pro-apoptotic effects on murine Lewis lung carcinoma cells. Our results suggest a novel role for IkappaBgamma in promoting the metastatic progression of melanoma.
Collapse
Affiliation(s)
- Sima Z Torabian
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|