1
|
Atanasovska T, Smith R, Graff C, Tran CT, Melgaard J, Kanters JK, Petersen AC, Tobin A, Kjeldsen KP, McKenna MJ. Protection against severe hypokalemia but impaired cardiac repolarization after intense rowing exercise in healthy humans receiving salbutamol. J Appl Physiol (1985) 2018; 125:624-633. [PMID: 29745804 DOI: 10.1152/japplphysiol.00680.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intense exercise induces pronounced hyperkalemia, followed by transient hypokalemia in recovery. We investigated whether the β2 agonist salbutamol attenuated the exercise hyperkalemia and exacerbated the postexercise hypokalemia, and whether hypokalemia was associated with impaired cardiac repolarization (QT hysteresis). Eleven healthy adults participated in a randomized, counterbalanced, double-blind trial receiving either 1,000 µg salbutamol (SAL) or placebo (PLAC) by inhalation. Arterial plasma potassium concentration ([K+]a) was measured at rest, during 3 min of intense rowing exercise, and during 60 min of recovery. QT hysteresis was calculated from ECG ( n = 8). [K+]a increased above baseline during exercise (rest, 3.72 ± 0.7 vs. end-exercise, 6.81 ± 1.4 mM, P < 0.001, mean ± SD) and decreased rapidly during early recovery to below baseline; restoration was incomplete at 60 min postexercise ( P < 0.05). [K+]a was less during SAL than PLAC (4.39 ± 0.13 vs. 4.73 ± 0.19 mM, pooled across all times, P = 0.001, treatment main effect). [K+]a was lower after SAL than PLAC, from 2 min preexercise until 2.5 min during exercise, and at 50 and 60 min postexercise ( P < 0.05). The postexercise decline in [K+]a was correlated with QT hysteresis ( r = 0.343, n = 112, pooled data, P = 0.001). Therefore, the decrease in [K+]a from end-exercise by ~4 mM was associated with reduced QT hysteresis by ~75 ms. Although salbutamol lowered [K+]a during exercise, no additive hypokalemic effects occurred in early recovery, suggesting there may be a protective mechanism against severe or prolonged hypokalemia after exercise when treated by salbutamol. This is important because postexercise hypokalemia impaired cardiac repolarization, which could potentially trigger arrhythmias and sudden cardiac death in susceptible individuals with preexisting hypokalemia and/or heart disease. NEW & NOTEWORTHY Intense rowing exercise induced a marked increase in arterial potassium, followed by a pronounced decline to hypokalemic levels. The β2 agonist salbutamol lowered potassium during exercise and late recovery but not during early postexercise, suggesting a protective effect against severe hypokalemia. The decreased potassium in recovery was associated with impaired cardiac QT hysteresis, suggesting a link between postexercise potassium and the heart, with implications for increased risk of cardiac arrhythmias and, potentially, sudden cardiac death.
Collapse
Affiliation(s)
- Tania Atanasovska
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Robert Smith
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,Department of Anaesthesia, Western Hospital , Melbourne, Victoria , Australia
| | - Claus Graff
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University , Aalborg , Denmark
| | - Cao T Tran
- Division of Cardiology, John Hopkins University School of Medicine , Baltimore, Maryland
| | - Jacob Melgaard
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University , Aalborg , Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, Copenhagen University , Copenhagen , Denmark
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Antony Tobin
- Intensive Care Unit, St. Vincent Hospital , Melbourne, Victoria , Australia
| | - Keld P Kjeldsen
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University , Aalborg , Denmark.,Medical Department, Copenhagen University Hospital (Holbæk Hospital), Holbæk, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, Copenhagen University , Copenhagen , Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| |
Collapse
|
2
|
Wiśniowska B, Polak S. Drug-physiology interaction and its influence on the QT prolongation-mechanistic modeling study. J Pharmacokinet Pharmacodyn 2018; 45:483-490. [PMID: 29546612 DOI: 10.1007/s10928-018-9583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The current study is an example of drug-disease interaction modeling where a drug induces a condition which can affect the pharmacodynamics of other concomitantly taken drugs. The electrophysiological effects of hypokaliemia and heart rate changes induced by the antiasthmatic drugs were simulated with the use of the cardiac safety simulator. Biophysically detailed model of the human cardiac physiology-ten Tusscher ventricular cardiomyocyte cell model-was employed to generate pseudo-ECG signals and QTc intervals for 44 patients from four clinical studies. Simulated and observed mean QTc values with standard deviation (SD) for each reported study point were compared and differences were analyzed with Student's t test (α = 0.05). The simulated results reflected the QTc interval changes measured in patients, as well as their clinically observed interindividual variability. The QTc interval changes were highly correlated with the change in plasma potassium both in clinical studies and in the simulations (Pearson's correlation coefficient > 0.55). The results suggest that the modeling and simulation approach could provide valuable quantitative insight into the cardiological effect of the potassium and heart rate changes caused by electrophysiologically inactive, non-cardiological drugs. This allows to simulate and predict the joint effect of several risk factors for QT prolongation, e.g., drug-dependent QT prolongation due to the ion channels inhibition and the current patient physiological conditions.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Str., 30-688, Krakow, Poland.
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Str., 30-688, Krakow, Poland.,Simcyp (Part of Certara), Sheffield, S2 4SU, UK
| |
Collapse
|
3
|
Laiho A, Laitinen TM, Hartikainen P, Hartikainen JEK, Laitinen TP, Simula S. Cardiac repolarization during fingolimod treatment in patients with relapsing-remitting multiple sclerosis. Brain Behav 2018; 8:e00925. [PMID: 29484274 PMCID: PMC5822581 DOI: 10.1002/brb3.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Background Fingolimod is a sphingosine-1-phosphate receptor modulator for the treatment of relapsing-remitting multiple sclerosis (RRMS). Despite an established effect on heart rate, the effect of fingolimod on cardiac repolarization is not completely known. Methods Twenty-seven patients with RRMS underwent 24-hr ambulatory ECG before fingolimod (baseline), at the day of fingolimod initiation (1D) and after three-month treatment (3M). The mean values of RR-interval as well as QT-interval corrected by Bazzet's (QTcBaz) and Fridericia's (QTcFri) formula were compared between baseline, 1D, and 3M over 24-hr period as well as at daytime and nighttime. Results QTcBaz over 24-hr was shorter at 1D (414 ± 20 ms, p < .001) and at 3M (414 ± 20 ms, p < .001) than at baseline (418 ± 20 ms). In contrast, QTcFri over 24-hr was longer at 1D (410 ± 19 ms, p < .001) but similar at 3M (406 ± 19 ms, p = .355) compared to baseline (407 ± 19 ms). Daytime QTcBaz was shorter at 1D (p < .001) and at 3M (p = .007), whereas daytime QTcFri was longer at 1D (p < .05) but similar at 3M (p = ns) compared to baseline. During the night, changes were observed neither in QTcBaz nor in QTcFri between baseline, 1D, and 3M. Conclusions Changes in cardiac repolarization after fingolimod initiation were mild and occurred at daytime. Ambiguously, QTcBaz demonstrated shortening, whereas QTcFri showed prolongation in cardiac repolarization after fingolimod initiation. The formula applied for QT-interval correction needs to be taken carefully into account as evaluating pharmacovigilance issues related to fingolimod.
Collapse
Affiliation(s)
- Aapo Laiho
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Tiina M. Laitinen
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Päivi Hartikainen
- Neuro CenterDepartment of NeurologyKuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | | | - Tomi P. Laitinen
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Sakari Simula
- Department of NeurologyMikkeli Central HospitalMikkeliFinland
| |
Collapse
|
4
|
Bunsawat K, White DW, Kappus RM, Baynard T. Caffeine delays autonomic recovery following acute exercise. Eur J Prev Cardiol 2014; 22:1473-9. [PMID: 25297344 DOI: 10.1177/2047487314554867] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/19/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impaired autonomic recovery of heart rate (HR) following exercise is associated with an increased risk of sudden death. Caffeine, a potent stimulator of catecholamine release, has been shown to augment blood pressure (BP) and sympathetic nerve activity; however, whether caffeine alters autonomic function after a bout of exercise bout remains unclear. METHODS In a randomized, crossover study, 18 healthy individuals (26 ± 1 years; 23.9 ± 0.8 kg·m(-2)) ingested caffeine (400 mg) or placebo pills, followed by a maximal treadmill test to exhaustion. Autonomic function and ventricular depolarization/repolarization were determined using heart rate variability (HRV) and corrected QT interval (QTc), respectively, at baseline, 5, 15, and 30 minutes post-exercise. RESULTS Maximal HR (HRmax) was greater with caffeine (192 ± 2 vs. 190 ± 2 beat·min(-1), p < 0.05). During recovery, HR, mean arterial pressure (MAP), and diastolic blood pressure (DBP) remained elevated with caffeine (p < 0.05). Natural log transformation of low-to-high frequency ratio (LnLF/LnHF) of HRV was increased compared with baseline at all time points in both trials (p < 0.05), with less of an increase during 5 and 15 minutes post-exercise in the caffeine trial (p < 0.05). QTc increased from baseline at all time points in both trials, with greater increases in the caffeine trial (p < 0.05). CONCLUSIONS Caffeine ingestion disrupts post-exercise autonomic recovery because of increased sympathetic nerve activity. The prolonged sympathetic recovery time could subsequently hinder baroreflex function during recovery and disrupt the stability of autonomic function, potentiating a pro-arrhythmogenic state in young adults.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Department of Kinesiology and Nutrition, The University of Illinois at Chicago, IL, USA
| | - Daniel W White
- Department of Kinesiology and Nutrition, The University of Illinois at Chicago, IL, USA
| | - Rebecca M Kappus
- Department of Kinesiology and Nutrition, The University of Illinois at Chicago, IL, USA
| | - Tracy Baynard
- Department of Kinesiology and Nutrition, The University of Illinois at Chicago, IL, USA
| |
Collapse
|
5
|
Laitinen T, Lyyra-Laitinen T, Huopio H, Vauhkonen I, Halonen T, Hartikainen J, Niskanen L, Laakso M. Electrocardiographic alterations during hyperinsulinemic hypoglycemia in healthy subjects. Ann Noninvasive Electrocardiol 2008; 13:97-105. [PMID: 18426434 DOI: 10.1111/j.1542-474x.2008.00208.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We evaluated the arrhythmogenic potential of hypoglycemia by studying electrocardiographic (ECG) changes in response to hyperinsulinemic hypoglycemia and associated sympathoadrenal counterregulatory responses in healthy subjects. METHODS The study population consisted of 18 subjects, aged 30-40 years. Five-minute ECG recordings and blood samplings were performed at baseline and during the euglycemic and hypoglycemic hyperinsulinemic clamp studies. PR, QT, and QTc intervals of electrocardiogram and ECG morphology were assessed from signal-averaged ECG. RESULTS Although cardiac beat interval remained unchanged, PR interval decreased (P < 0.01) and QTc interval (P < 0.001) increased in response to hyperinsulinemic hypoglycemia. Concomitant morphological alterations consisted of slight increases in R-wave amplitude and area (P < 0.01 for both), significant decreases in T-wave amplitude and area (P < 0.001 for both), and moderate ST depression (P < 0.001). Counterregulatory norepinephrine response correlated with amplification of the R wave (r =-0.620, P < 0.05) and epinephrine response correlated with flattening of the T wave (r =-0.508, P < 0.05). CONCLUSIONS Hyperinsulinemic hypoglycemia with consequent sympathetic humoral activation is associated with several ECG alterations in atrioventricular conduction, ventricular depolarization, and ventricular repolarization. Such alterations in cardiac electrical function may be of importance in provoking severe arrhythmias and "dead-in-bed" syndrome in diabetic patients with unrecognized hypoglycemic episodes.
Collapse
Affiliation(s)
- Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Heffernan KS, Jae SY, Lee M, Mojtahedi M, Evans EM, Zhu W, Fernhall B. Gender differences in QTc interval in young, trained individuals with lower spinal cord injury. Spinal Cord 2007; 45:518-21. [PMID: 17339885 DOI: 10.1038/sj.sc.3102049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Cross-sectional comparison. OBJECTIVE To examine gender differences in rate-corrected QT interval (QTc), an index of ventricular depolarization/repolarization, in young, trained men and women with lower spinal cord injury (SCI) and able-bodied (AB) controls. SETTING University of Illinois at Urbana-Champaign, Exercise and Cardiovascular Research Lab, USA. METHODS Subjects consisted of 16 athletes with SCI (eight men and eight women) and 16 age-matched AB active controls (eight men and eight women). QT interval dynamics was derived from ECG recordings and rate corrected using the Bazett formula. RESULTS Men with SCI had QTc similar to that of AB men (369.3+/-7.5 versus 357.9+/-3.0 ms, P>0.05). Women with SCI had QTc similar to that of AB women (400.0+/-4.6 versus 385.2+/-6.5 ms, P>0.05). AB women had longer QTc interval than AB men, and SCI women had longer QTc than SCI men (P<0.05). CONCLUSIONS Gender differences in ventricular depolarization/repolarization are present in trained individuals with SCI. Thus, similar to their AB gender-matched peers, women with SCI have longer QTc intervals and may be at greater risk for the development of untoward cardiac arrhythmias than men with SCI.
Collapse
Affiliation(s)
- K S Heffernan
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, IL, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Cheng HC, Incardona J, McCullough B. Isolated perfused and paced guinea pig heart to test for drug-induced changes of the QT interval. J Pharmacol Toxicol Methods 2006; 54:278-87. [PMID: 16507347 DOI: 10.1016/j.vascn.2006.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/18/2006] [Indexed: 11/25/2022]
Abstract
INTRODUCTION One of the biomarkers for assessing the risk of a cardiac adverse event is drug-induced prolongation of the QT interval. A model is needed for evaluating the potential liability of test compounds on QT interval in vitro. Since QT intervals can be generated from paced or spontaneously beating hearts, data so generated can also be used for validating QT(c) correction equations. METHODS Isolated guinea pig hearts were perfused in Locke's solution according to the Langendorff method. QT intervals were routinely measured from Lead II ECG waveforms. RESULTS Compounds known to inhibit HERG channel, such as dofetilide, prolonged the QT interval in this model. (+/-)Bay K8644, a calcium channel activator, prolonged the QT interval, while verapamil, a calcium channel blocker, shortened it. Procainamide, a sodium channel blocker, also prolonged the QT interval. Many of the compounds, which prolonged the QT interval, also prolonged PR interval, suggesting dual inhibition of the Ikr channel, the rapid component of delayed rectifier potassium channel, and the calcium channel. The QT/RR intervals exhibited a curvilinear relationship, which could be corrected into nearly straight horizontal lines by using correction equations derived from linear, parabolic, and hyperbolic models. However, these correction equations yielded different results on the QT prolongation produced by sotalol, which also slowed down the heart rate. With the data set obtained in this investigation, correction equations derived from linear and parabolic models worked better than the equations derived from the hyperbolic model. The exponential model did not fit at all. CONCLUSION QT intervals obtained under paced conditions provide the most direct and reliable QT information for a drug. The isolated perfused and paced guinea pig heart is a convenient model for studying the effect of compounds on QT interval in vitro.
Collapse
Affiliation(s)
- Hsien C Cheng
- Safety Pharmacology, Drug Safety Evaluation, Sanofi-Aventis, Bridgewater, NJ 08807, USA.
| | | | | |
Collapse
|
8
|
Strnadova C. The Assessment of QT/QTc Interval Prolongation in Clinical Trials: A Regulatory Perspective. ACTA ACUST UNITED AC 2005. [DOI: 10.1177/009286150503900409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2005. [DOI: 10.1002/pds.1030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|