1
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
2
|
Understanding pacing postconditioning-mediated cardiac protection: a role of oxidative stress and a synergistic effect of adenosine. J Physiol Biochem 2016; 73:175-185. [PMID: 27864790 DOI: 10.1007/s13105-016-0535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
We and others have demonstrated a protective role for pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury in the heart; however, the underlying mechanisms behind these protective effects are not completely understood. In this study, we wanted to further characterize PPC-mediated cardiac protection, specifically identify optimal pacing sites; examine the role of oxidative stress; and test the existence of a potential synergistic effect between PPC and adenosine. Isolated rat hearts were subjected to coronary occlusion followed by reperfusion. PPC involved three, 30 s, episodes of alternating left ventricular (LV) and right atrial (RA) pacing. Multiple pacing protocols with different pacing electrode locations were used. To test the involvement of oxidative stress, target-specific agonists or antagonists were infused at the beginning of reperfusion. Hemodynamic data were digitally recorded, and cardiac enzymes, oxidant, and antioxidant status were chemically measured. Pacing at the LV or RV but not at the heart apex or base significantly (P < 0.001) protected against ischemia-reperfusion injury. PPC-mediated protection was completely abrogated in the presence of reactive oxygen species (ROS) scavenger, ebselen; peroxynitrite (ONOO-) scavenger, uric acid; and nitric oxide synthase inhibitor, L-NAME. Nitric oxide (NO) donor, snap, however significantly (P < 0.05) protected the heart against I/R injury in the absence of PPC. The protective effects of PPC were significantly improved by adenosine. PPC-stimulated protection can be achieved by alternating LV and RA pacing applied at the beginning of reperfusion. NO, ROS, and the product of their interaction ONOO- play a significant role in PPC-induced cardiac protection. Finally, the protective effects of PPC can be synergized with adenosine.
Collapse
|
3
|
Zhang G, Gao S, Li X, Zhang L, Tan H, Xu L, Chen Y, Geng Y, Lin Y, Aertker B, Sun Y. Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep 2015; 5:9858. [PMID: 25928542 PMCID: PMC4415575 DOI: 10.1038/srep09858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
This study investigated whether pharmacological postconditioning with lactic acid and hydrogen rich saline can provide benefits similar to that of mechanical postconditioning. To our knowledge, this is the first therapeutic study to investigate the co-administration of lactic acid and hydrogen. SD rats were randomly divided into 6 groups: Sham, R/I, M-Post, Lac, Hyd, and Lac + Hyd. The left coronary artery was occluded for 45 min. Blood was withdrawn from the right atrium to measure pH. The rats were sacrificed at different time points to measure mitochondrial absorbance, infarct size, serum markers and apoptotic index. Rats in Lac + Hyd group had similar blood pH and ROS levels when compared to the M-Post group. Additionally, the infarct area was reduced to the same extent in Lac + Hyd and M-Post groups with a similar trends observed for serum markers of myocardial injury and apoptotic index. Although the level of P-ERK in Lac + Hyd group was lower, P-p38/JNK, TNFα, Caspase-8, mitochondrial absorbance and Cyt-c were all similar in Lac + Hyd and M-Post groups. The Lac and Hyd groups were able to partially mimic this protective role. These data suggested that pharmacological postconditioning with lactic acid and hydrogen rich saline nearly replicates the benefits of mechanical postconditioning.
Collapse
Affiliation(s)
- Guoming Zhang
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Song Gao
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xiaoyan Li
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Lulu Zhang
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Hong Tan
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Lin Xu
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Yaoyu Chen
- Department of Hematology, School of Pharmacology, Nanjing Medical University, Nanjing, 210029, China
| | - Yongjian Geng
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yanliang Lin
- Department of Center Laboratory, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Benjamin Aertker
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yuanyuan Sun
- Department of Ultrasound, the General Hospital of Jinan Military Command, Jinan 250031, China
| |
Collapse
|
4
|
Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation. J Transplant 2012; 2012:928954. [PMID: 22530110 PMCID: PMC3316985 DOI: 10.1155/2012/928954] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022] Open
Abstract
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Collapse
|
5
|
Suleiman MS, Zacharowski K, Angelini GD. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics. Br J Pharmacol 2007; 153:21-33. [PMID: 17952108 DOI: 10.1038/sj.bjp.0707526] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.
Collapse
Affiliation(s)
- M-S Suleiman
- Bristol Heart Institute and Department of Anaesthesia, Faculty of Medicine and Dentistry, Bristol Royal Infirmary, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|