1
|
Fraenkl SA, Simon Q, Yucel Y, Gupta N, Wittwer VV, Frueh BE, Tschanz SA. Impact of cerebral hypoperfusion-reperfusion on optic nerve integrity and visual function in the DBA/2J mouse model of glaucoma. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001078. [PMID: 36161839 PMCID: PMC9476133 DOI: 10.1136/bmjophth-2022-001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Objective One of the most important risk factors for developing a glaucomatous optic neuropathy is elevated intraocular pressure. Moreover, mechanisms such as altered perfusion have been postulated to injure the optical path. In a mouse model, we compare first negative effects of cerebral perfusion/reperfusion on the optic nerve structure versus alterations by elevated intraocular pressure. Second, we compare the alterations by isolated hypoperfusion-reperfusion and isolated intraocular pressure to the combination of both. Methods and analysis Mice were divided in four groups: (1) controls; (2) perfusion altered mice that underwent transient bi-common carotid artery occlusion (BCCAO) for 40 min; (3) glaucoma group (DBA/2J mice); (4) combined glaucoma and altered perfusion (DBA/2J mice with transient BCCAO). Optic nerve sections were stereologically examined 10–12 weeks after intervention. Results All experimental groups showed a decreased total axon number per optic nerve compared with controls. In DBA/2J and combined DBA/2J & BCCAO mice the significant decrease was roughly 50%, while BCCAO leaded to a 23% reduction of axon number, however reaching significance only in the direct t-test. The difference in axon number between BCCAO and both DBA/2J mice was almost 30%, lacking statistical significance due to a remarkably high variation in both DBA/2J groups. Conclusion Elevated intraocular pressure in the DBA/2J mouse model of glaucoma leads to a much more pronounced optic nerve atrophy compared with transient forebrain hypoperfusion and reperfusion by BCCAO. A supposed worsening effect of an altered perfusion added to the pressure-related damage could not be detected.
Collapse
Affiliation(s)
| | - Quentin Simon
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Yeni Yucel
- Keenan Research Centre, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Valéry V Wittwer
- Department of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland.,Ophthalmologic Network Organization (ONO), Geneva, Switzerland
| | - Beatrice E Frueh
- Department of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
2
|
Hamarat Y, Deimantavicius M, Dambrauskas V, Labunskas V, Putnynaite V, Lucinskas P, Siaudvytyte L, Simiene E, Stoskuviene A, Januleviciene I, Petkus V, Ragauskas A. Prospective Pilot Clinical Study of Noninvasive Cerebrovascular Autoregulation Monitoring in Open-Angle Glaucoma Patients and Healthy Subjects. Transl Vis Sci Technol 2022; 11:17. [PMID: 35138342 PMCID: PMC8842541 DOI: 10.1167/tvst.11.2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To analyze the cerebrovascular autoregulation (CA) dynamics in patients with normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) as well as healthy subjects using noninvasive ultrasound technologies for the first time. Methods The CA status of 10 patients with NTG, 8 patients with HTG, and 10 healthy subjects was assessed, using an innovative noninvasive ultrasonic technique, based on intracranial blood volume slow-wave measurements. Identified in each participant were intraocular pressure, ocular perfusion pressure, and CA-related parameter volumetric reactivity index (VRx), as well as the duration and doses of the longest cerebral autoregulation impairment (LCAI). In addition, we calculated the associations of these parameters with patients' diagnoses. Results The VRx value, the LCAI dose, and duration in healthy subjects were significantly lower than in patients with NTG (P < 0.05). However, no significant differences were noted in these parameters between healthy subjects and HTG and between NTG and HTG groups. Conclusions NTG is associated with the disturbed cerebral blood flow and could be diagnosed by performing noninvasive CA assessments. Translational Relevance The VRx monitoring method can be applied to a wider range of patient groups, especially patients with normal-tension glaucoma.
Collapse
Affiliation(s)
- Yasin Hamarat
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania.,0000-0002-1343-5068
| | - Mantas Deimantavicius
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Vilius Dambrauskas
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Vaidas Labunskas
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Vilma Putnynaite
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Paulius Lucinskas
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Lina Siaudvytyte
- Eye Clinic, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Evelina Simiene
- Eye Clinic, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | - Vytautas Petkus
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arminas Ragauskas
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
3
|
Kristiansen M, Lindén C, Qvarlander S, Wåhlin A, Ambarki K, Hallberg P, Eklund A, Jóhannesson G. Feasibility of MRI to assess differences in ophthalmic artery blood flow rate in normal tension glaucoma and healthy controls. Acta Ophthalmol 2021; 99:e679-e685. [PMID: 33210819 PMCID: PMC8451810 DOI: 10.1111/aos.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Purpose To examine feasibility of phase‐contrast magnetic resonance imaging (PCMRI) and to assess blood flow rate in the ophthalmic artery (OA) in patients with normal tension glaucoma (NTG) compared with healthy controls. Methods Sixteen patients with treated NTG and 16 age‐ and sex‐matched healthy controls underwent PCMRI using a 3‐Tesla scanner and ophthalmological examinations. OA blood flow rate was measured using a 2D PCMRI sequence with a spatial resolution of 0.35 mm2. Results The blood flow rate in the NTG group was 9.6 ± 3.9 ml/min [mean ± SD] compared with 11.9 ± 4.8 ml/min in the control group. Resistance Index (RI) and Pulsatility Index (PI) were 0.73 ± 0.08 and 1.36 ± 0.29, respectively, in the NTG group and 0.68 ± 0.13 and 1.22 ± 0.40, respectively, in the healthy group. The mean visual field index (VFI) was 46% ± 25 for the worse NTG eyes. The measured differences observed between the NTG group and the control group in blood flow rate (p = 0.12), RI (p = 0.18) and PI (p = 0.27) were non‐significant. Conclusions This case–control study, using PCMRI, showed a slight, but non‐significant, reduction in OA blood flow rate in the NTG patients compared with the healthy controls. These results indicate that blood flow may be of importance in the pathogenesis of NTG. Considering that only a limited portion of the total OA blood flow supplies the ocular system and the large inter‐individual differences, a larger study or more advanced PCMRI technique might give the answer.
Collapse
Affiliation(s)
- Martin Kristiansen
- Department of Clinical Sciences Ophthalmology Umeå University Umeå Sweden
| | - Christina Lindén
- Department of Clinical Sciences Ophthalmology Umeå University Umeå Sweden
| | - Sara Qvarlander
- Department of Radiation Sciences Biomedical Engineering Umeå University Umeå Sweden
- Centre for Biomedical Engineering and Physics Umeå University Umeå Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences Biomedical Engineering Umeå University Umeå Sweden
- Centre for Biomedical Engineering and Physics Umeå University Umeå Sweden
- Umeå Center for Functional Brain Imaging Umeå University Umeå Sweden
| | - Khalid Ambarki
- Department of Radiation Sciences Biomedical Engineering Umeå University Umeå Sweden
- Centre for Biomedical Engineering and Physics Umeå University Umeå Sweden
| | - Per Hallberg
- Centre for Biomedical Engineering and Physics Umeå University Umeå Sweden
- Dept. of Applied Physics and Electronics Umeå University Umeå Sweden
| | - Anders Eklund
- Department of Radiation Sciences Biomedical Engineering Umeå University Umeå Sweden
- Centre for Biomedical Engineering and Physics Umeå University Umeå Sweden
| | - Gauti Jóhannesson
- Department of Clinical Sciences Ophthalmology Umeå University Umeå Sweden
- Wallenberg Center for Molecular Medicine Umeå University Umeå Sweden
| |
Collapse
|
4
|
Kuerten D, Fuest M, Walter P, Mazinani B, Plange N. Association of ocular blood flow and contrast sensitivity in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2021; 259:2251-2257. [PMID: 34019151 PMCID: PMC8352838 DOI: 10.1007/s00417-021-05235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the relationship of ocular blood flow (via arteriovenous passage time, AVP) and contrast sensitivity (CS) in healthy as well as normal tension glaucoma (NTG) subjects. Design Mono-center comparative prospective trial Methods Twenty-five NTG patients without medication and 25 healthy test participants were recruited. AVP as a measure of retinal blood flow was recorded via fluorescein angiography after CS measurement using digital image analysis. Association of AVP and CS at 4 spatial frequencies (3, 6, 12, and 18 cycles per degree, cpd) was explored with correlation analysis. Results Significant differences regarding AVP, visual field defect, intraocular pressure, and CS measurement were recorded in-between the control group and NTG patients. In NTG patients, AVP was significantly correlated to CS at all investigated cpd (3 cpd: r = − 0.432, p< 0.03; 6 cpd: r = − 0.629, p< 0.0005; 12 cpd: r = − 0.535, p< 0.005; and 18 cpd: r = − 0.58, p< 0.001), whereas no significant correlations were found in the control group. Visual acuity was significantly correlated to CS at 6, 12, and 18 cpd in NTG patients (r = − 0.68, p< 0.002; r = − 0.54, p< .02, and r = − 0.88, p< 0.0001 respectively), however not in healthy control patients. Age, visual field defect MD, and PSD were not significantly correlated to CS in in the NTG group. MD and PSD were significantly correlated to CS at 3 cpd in healthy eyes (r = 0.55, p< 0.02; r = − 0.47, p< 0.03). Conclusion Retinal blood flow alterations show a relationship with contrast sensitivity loss in NTG patients. This might reflect a disease-related link between retinal blood flow and visual function. This association was not recorded in healthy volunteers.
Collapse
Affiliation(s)
- David Kuerten
- Department of Ophthalmology, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52057, Aachen, Germany.
| | - Matthias Fuest
- Department of Ophthalmology, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52057, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52057, Aachen, Germany
| | - Babac Mazinani
- Department of Ophthalmology, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52057, Aachen, Germany
| | - Niklas Plange
- Department of Ophthalmology, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52057, Aachen, Germany
| |
Collapse
|
5
|
Vasile P, Valeria C, Speranţa S, Cătălina II, Miruna GB, Maria C, Dana MCD. Sympathetic context of the disease - a new era in glaucoma management. Rom J Ophthalmol 2021; 65:15-19. [PMID: 33817428 PMCID: PMC7995509 DOI: 10.22336/rjo.2021.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary open angle glaucoma (POAG) is a multifactorial optic neuropathy, which progresses in a chronic manner. Several etiological factors are involved, including genetic factors, race, age, IOP or vascular, systemic factors. IOP has an established role in the initiation and evolution of glaucoma, but its interactions with additional risk factors are complex. We propose the notion of the Glaucoma Etiological Area (GEA), as a representation of all the elements acting in collaboration in the physiopathology of each glaucoma case. When combined in different proportions, these elements may trigger the typical glaucomatous optic neuropathy (GON). We know that the statistical values of IOP are valid for normal eyes, but the glaucoma eye is not a normal eye. The notion of GEA can open a new perspective to interpret IOP values and to assess the true value of IOP control as a treatment for glaucoma. Applying the GEA theory allows us to tune the role of IOP. Additional factors, such as ocular properties (RGCL status, CCT, IOP fluctuation curve), ocular comorbidities (PEX, PDS), systemic comorbidities (arterial hypertension, vasospastic diseases such as migraines or Reynaud’s syndrome) or patient’s attitude towards glaucoma management (treatment compliance, access to follow-up and treatment) may greatly influence the evolution of GON and should be viewed holistically when developing a management plan for each patient. Applying the notion of GEA in clinical practice allows a more realistic approach of the pathophysiology of the disease and for a glaucoma treatment that is tailored to each patient. Abbreviations: AG = advanced glaucoma, BP = blood pressure, CCT = central corneal thickness, CIGTS = Collaborative Initial Glaucoma Treatment Study, CNTGS = Collaborative Normal-Tension Glaucoma Study, EMGT = Early Manifest Glaucoma Trial, GEA = glaucoma etiological area, GON = glaucomatous optic neuropathy, IOP = intraocular pressure, NTG = Normal Tension Glaucoma, OHTS = Ocular Hypertension Study, PDS = Pigmentary dispersion syndrome, PEX = Pseudoexfoliation syndrome, POAG - primary open-angle glaucoma, RGCL = retinal ganglion cell layer, VFL = visual field loss
Collapse
Affiliation(s)
- Potop Vasile
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Ophthalmology Department, Clinical Hospital of Ophthalmologic Emergencies, Bucharest, Romania
| | - Coviltir Valeria
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Ophthalmology Department, Clinical Hospital of Ophthalmologic Emergencies, Bucharest, Romania
| | - Schmitzer Speranţa
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Ophthalmology Department, Clinical Hospital of Ophthalmologic Emergencies, Bucharest, Romania
| | | | | | - Corbu Maria
- Ophthalmology Department, Clinical Hospital of Ophthalmologic Emergencies, Bucharest, Romania
| | - Margareta Cornelia Dăscălescu Dana
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Ophthalmology Department, Oftaclinic Bucharest, Romania
| |
Collapse
|
6
|
Guidoboni G, Sacco R, Szopos M, Sala L, Verticchio Vercellin AC, Siesky B, Harris A. Neurodegenerative Disorders of the Eye and of the Brain: A Perspective on Their Fluid-Dynamical Connections and the Potential of Mechanism-Driven Modeling. Front Neurosci 2020; 14:566428. [PMID: 33281543 PMCID: PMC7689058 DOI: 10.3389/fnins.2020.566428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative disorders (NDD) such as Alzheimer's and Parkinson's diseases are significant causes of morbidity and mortality worldwide. The pathophysiology of NDD is still debated, and there is an urgent need to understand the mechanisms behind the onset and progression of these heterogenous diseases. The eye represents a unique window to the brain that can be easily assessed via non-invasive ocular imaging. As such, ocular measurements have been recently considered as potential sources of biomarkers for the early detection and management of NDD. However, the current use of ocular biomarkers in the clinical management of NDD patients is particularly challenging. Specifically, many ocular biomarkers are influenced by local and systemic factors that exhibit significant variation among individuals. In addition, there is a lack of methodology available for interpreting the outcomes of ocular examinations in NDD. Recently, mathematical modeling has emerged as an important tool capable of shedding light on the pathophysiology of multifactorial diseases and enhancing analysis and interpretation of clinical results. In this article, we review and discuss the clinical evidence of the relationship between NDD in the brain and in the eye and explore the potential use of mathematical modeling to facilitate NDD diagnosis and management based upon ocular biomarkers.
Collapse
Affiliation(s)
- Giovanna Guidoboni
- Department of Electrical Engineering and Computer Science, Department of Mathematics, University of Missouri, Columbia, MO, United States
| | - Riccardo Sacco
- Department of Mathematics, Politecnico di Milano, Milan, Italy
| | | | | | - Alice Chandra Verticchio Vercellin
- IRCCS - Fondazione Bietti, Rome, Italy.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Ophthalmology, University of Pavia, Pavia, Italy
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Harris A, Guidoboni G, Siesky B, Mathew S, Verticchio Vercellin AC, Rowe L, Arciero J. Ocular blood flow as a clinical observation: Value, limitations and data analysis. Prog Retin Eye Res 2020; 78:100841. [PMID: 31987983 PMCID: PMC8908549 DOI: 10.1016/j.preteyeres.2020.100841] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Alterations in ocular blood flow have been identified as important risk factors for the onset and progression of numerous diseases of the eye. In particular, several population-based and longitudinal-based studies have provided compelling evidence of hemodynamic biomarkers as independent risk factors for ocular disease throughout several different geographic regions. Despite this evidence, the relative contribution of blood flow to ocular physiology and pathology in synergy with other risk factors and comorbidities (e.g., age, gender, race, diabetes and hypertension) remains uncertain. There is currently no gold standard for assessing all relevant vascular beds in the eye, and the heterogeneous vascular biomarkers derived from multiple ocular imaging technologies are non-interchangeable and difficult to interpret as a whole. As a result of these disease complexities and imaging limitations, standard statistical methods often yield inconsistent results across studies and are unable to quantify or explain a patient's overall risk for ocular disease. Combining mathematical modeling with artificial intelligence holds great promise for advancing data analysis in ophthalmology and enabling individualized risk assessment from diverse, multi-input clinical and demographic biomarkers. Mechanism-driven mathematical modeling makes virtual laboratories available to investigate pathogenic mechanisms, advance diagnostic ability and improve disease management. Artificial intelligence provides a novel method for utilizing a vast amount of data from a wide range of patient types to diagnose and monitor ocular disease. This article reviews the state of the art and major unanswered questions related to ocular vascular anatomy and physiology, ocular imaging techniques, clinical findings in glaucoma and other eye diseases, and mechanistic modeling predictions, while laying a path for integrating clinical observations with mathematical models and artificial intelligence. Viable alternatives for integrated data analysis are proposed that aim to overcome the limitations of standard statistical approaches and enable individually tailored precision medicine in ophthalmology.
Collapse
Affiliation(s)
- Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.
| | | | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Sunu Mathew
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alice C Verticchio Vercellin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA; University of Pavia, Pavia, Italy; IRCCS - Fondazione Bietti, Rome, Italy
| | - Lucas Rowe
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julia Arciero
- Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
8
|
|
9
|
Salerni F, Repetto R, Harris A, Pinsky P, Prud’homme C, Szopos M, Guidoboni G. Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions. PLoS One 2019; 14:e0216012. [PMID: 31412033 PMCID: PMC6693745 DOI: 10.1371/journal.pone.0216012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
This work aims at investigating the interactions between the flow of fluids in the eyes and the brain and their potential implications in structural and functional changes in the eyes of astronauts, a condition also known as spaceflight associated neuro-ocular syndrome (SANS). To this end, we propose a reduced (0-dimensional) mathematical model of fluid flow in the eyes and brain, which is embedded into a simplified whole-body circulation model. In particular, the model accounts for: (i) the flows of blood and aqueous humor in the eyes; (ii) the flows of blood, cerebrospinal fluid and interstitial fluid in the brain; and (iii) their interactions. The model is used to simulate variations in intraocular pressure, intracranial pressure and blood flow due to microgravity conditions, which are thought to be critical factors in SANS. Specifically, the model predicts that both intracranial and intraocular pressures increase in microgravity, even though their respective trends may be different. In such conditions, ocular blood flow is predicted to decrease in the choroid and ciliary body circulations, whereas retinal circulation is found to be less susceptible to microgravity-induced alterations, owing to a purely mechanical component in perfusion control associated with the venous segments. These findings indicate that the particular anatomical architecture of venous drainage in the retina may be one of the reasons why most of the SANS alterations are not observed in the retina but, rather, in other vascular beds, particularly the choroid. Thus, clinical assessment of ocular venous function may be considered as a determinant SANS factor, for which astronauts could be screened on earth and in-flight.
Collapse
Affiliation(s)
- Fabrizia Salerni
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Rodolfo Repetto
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Alon Harris
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Peter Pinsky
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States of America
| | - Christophe Prud’homme
- Institute of Advanced Mathematical Research UMR 7501, University of Strasbourg CNRS, Strasbourg, France
| | - Marcela Szopos
- Laboratoire MAP5 (UMR CNRS 8145), Université Paris Descartes, Sorbonne Paris Cité, France
| | - Giovanna Guidoboni
- Department of Electrical Engineering and Computer Science, Department of Mathematics, University of Missouri, Columbia, MO, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
BACKGROUND The primary pathophysiological feature of glaucoma is a progressive optic neuropathy with characteristic morphological changes of the optic disc and risk factors of age and intraocular pressure. Recently, involvement of other areas of the central nervous system (CNS) beyond the optic nerve has been demonstrated. This article addresses the proposition that glaucoma shares mechanistic and pathophysiologic features with neurodegenerations in the CNS. METHODS The literature on CNS alterations in patients with glaucoma is reviewed with particular focus on neuroimaging and pathological studies. A theoretical framework for assessing whether glaucoma is truly a neurodegenerative disease is developed based on the comparison with neurodegenerative and nonneurodegenerative diseases. RESULTS Although there is convincing evidence of abnormalities in CNS regions distal to the optic nerve in glaucoma, these are similar to those seen in other disorders of the proximal visual pathways, such as other optic neuropathies or retinal diseases. Similarly, features of glaucoma that are similar to neurodegenerations are also seen in nonneurodegenerative diseases. CONCLUSIONS Glaucoma is less likely a primary neurodegeneration affecting the CNS and more likely a primary optic neuropathy with secondary effects in the CNS.
Collapse
|
11
|
The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions. Neurol Res Int 2015; 2015:794829. [PMID: 26770824 PMCID: PMC4681798 DOI: 10.1155/2015/794829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023] Open
Abstract
The craniocervical junction (CCJ) is a potential choke point for craniospinal hydrodynamics and may play a causative or contributory role in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, MS, and ALS, as well as many other neurological conditions including hydrocephalus, idiopathic intracranial hypertension, migraines, seizures, silent-strokes, affective disorders, schizophrenia, and psychosis. The purpose of this paper is to provide an overview of the critical role of the CCJ in craniospinal hydrodynamics and to stimulate further research that may lead to new approaches for the prevention and treatment of the above neurodegenerative and neurological conditions.
Collapse
|
12
|
Sugiyama T. Glaucoma and Alzheimer's disease: Their clinical similarity and future therapeutic strategies for glaucoma. World J Ophthalmol 2014; 4:47-51. [DOI: 10.5318/wjo.v4.i3.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 04/30/2014] [Accepted: 07/14/2014] [Indexed: 02/06/2023] Open
Abstract
Glaucoma refers to a group of diseases characterized by optic neuropathies that are commonly associated with degeneration of the retinal ganglion cells. Although intraocular pressure (IOP) is the only proven treatable factor, several studies indicate that other factors are involved in the pathogenesis of glaucoma. Since normal tension glaucoma (NTG) is the most common glaucoma at least in Japan and South Korea, development of new therapeutic strategies for glaucoma, besides reduction of IOP, is crucial. The clinical characteristics and mechanisms underlying neuronal degeneration in Alzheimer’s disease, a progressive neurodegenerative disease, are similar to those of glaucoma. Impaired cerebral blood flow (CBF) is common to both these diseases; therefore, improving CBF may be considered a new treatment for glaucoma, especially for NTG. In addition, targeting the formation and aggravation pathway for amyloid-β and administration of apolipoprotein E-containing lipoproteins may be potential strategies for glaucoma treatment.
Collapse
|
13
|
Reduced Cerebrovascular Reactivity in Posterior Cerebral Arteries in Patients with Primary Open-Angle Glaucoma. Ophthalmology 2013; 120:2501-2507. [DOI: 10.1016/j.ophtha.2013.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 11/22/2022] Open
|
14
|
Abstract
Glaucomatous damage has been described as a slowly progressive neuronal degenerative process along the visual pathway. Decreased cerebral and ocular blood flow as well as impaired vascular autoregulation has been identified in glaucoma and have been shown to correlate with visual field loss. In low-tension glaucoma patients, diffuse cerebral ischemic changes have been detected through magnetic resonance imaging. Given these findings, it seems that for some patients, glaucomatous damage may be the ocular manifestation of a more widespread vascular abnormality involving the brain rather than a separate process isolated only to the eye and its immediate vasculature.
Collapse
Affiliation(s)
- Alon Harris
- Department of Ophthalmology, Glick Eye Institute, Indiana University Medical Center, Indianapolis, IN, USA
| | | | | |
Collapse
|
15
|
Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J, Zhang H. Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Exp Ophthalmol 2012; 41:43-9. [PMID: 22712443 DOI: 10.1111/j.1442-9071.2012.02832.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND To investigate nerve fibre damage of the visual pathway in patients with primary open-angle glaucoma using tract-based spatial statistical analysis of diffusion tensor imaging and correlate these measures with the clinical severity of glaucoma. DESIGN Cross-sectional study. PARTICIPANTS Twenty-five individuals with primary open-angle glaucoma and 24 healthy controls were recruited. METHODS All subjects underwent detailed ophthalmological examinations, including the cup-to-disc ratio, retinal nerve fibre layer thickness and visual fields test. Diffusion tensor imaging of the visual pathway was performed using a 3.0-T magnetic resonance scanner. MAIN OUTCOME MEASURES Diffusivity changes of the nerve fibres in the visual pathway were calculated through tract-based spatial statistical analysis. The mean diffusivity and fractional anisotropy were assessed and compared with ophthalmological measurements. RESULTS Compared with controls, bilateral optic tracts and optic radiations in primary open-angle glaucoma patients showed significantly decreased fractional anisotropy and increased mean diffusivity (P < 0.05). In the glaucoma group, the fractional anisotropy of the optic tracts and optic radiations varied consistently with the cup-to-disc ratio, retinal nerve fibre layer thickness and visual function analysis, respectively (P < 0.05). The mean diffusivity of the optic tracts correlated with these ophthalmological measurements (P < 0.05). However, no significant correlation was observed between the mean diffusivity of the optic radiations and the ophthalmological measurements (P > 0.05). CONCLUSIONS The optic tracts and optic radiations of primary open-angle glaucoma patients demonstrated radiological evidence of neurodegeneration. This varied with damage to the optic disc and with the loss of visual function. Tract-based spatial statistical analysis of diffusion tensor imaging is an objective and effective tool for detecting the loss of cortical nerve fibres in primary open-angle glaucoma.
Collapse
Affiliation(s)
- Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hayashi N, Yamaoka-Endo M, Someya N, Fukuba Y. Blood flow in non-muscle tissues and organs during exercise: Nature of splanchnic and ocular circulation. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Shoshani YZ, Harris A, Rusia D, Spaeth GL, Siesky B, Pollack A, Wirostko B. Contrast sensitivity, ocular blood flow and their potential role in assessing ischaemic retinal disease. Acta Ophthalmol 2011; 89:e382-95. [PMID: 21518304 DOI: 10.1111/j.1755-3768.2011.02130.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To examine the definition, evaluation methodology, association to ocular blood flow and potential clinical value of contrast sensitivity (CS) testing in clinical and research settings, focusing in patients with ischemic retinal disease. METHODS A review of the medical literature focusing on CS and ocular blood flow in ischemic retinal disease. RESULTS CS may be more sensitive than other methods at detecting subtle defects or improvements in primarily central retinal ganglion cell function early on in a disease process. CS testing attempts to provide spatial detection differences which are not directly assessed with standard visual acuity chart testing. Analyzing all studies that have assessed both CS change and ocular blood flow, it is apparent that both choroidal circulation and retinal circulation may have an important role in influencing CS. CONCLUSION The concept that CS is directly influenced by ocular blood flow is supported by reviewing the studies involving both. Although the studies in the literature have not established a direct cause and effect relationship per se, the literature review makes it logical to assume that changes in retinal and choroidal blood flow influence CS. This raises the possibility that a subjective visual characteristic, specifically CS, may be able to be evaluated more objectively by studying blood flow. It appears appropriate to study the relationship between blood flow and CS more extensively to develop improved ways of measuring various aspects of blood flow to the eye and to best quantify early changes in visual function.
Collapse
Affiliation(s)
- Yochai Z Shoshani
- Department of Ophthalmology, Indiana School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ito Y, Nakamura S, Tanaka H, Tsuruma K, Shimazawa M, Araie M, Hara H. Lomerizine, a Ca2+ channel blocker, protects against neuronal degeneration within the visual center of the brain after retinal damage in mice. CNS Neurosci Ther 2009; 16:103-14. [PMID: 19788586 DOI: 10.1111/j.1755-5949.2009.00081.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to determine whether lomerizine, a Ca(2+) channel blocker, protects against neuronal degeneration within the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) after the induction of retinal damage by intravitreal injection of N-methyl-D-aspartate (NMDA) in mice. NMDA (20 mM/2 microL) was injected into the vitreous body of the left eye in mice (DAY 0). Lomerizine at 30 mg/kg, p.o. was administered daily from immediately after the injection of NMDA (DAY 0) to 90 days after (DAY 90). To investigate the neuroprotective effects of lomerizine, the retina, dLGN, and SC were examined using histochemistry and immunohistochemistry. Lomerizine reduced the retinal damage induced by NMDA and partially prevented the transsynaptic neuronal degeneration within dLGN and SC on the contralateral side. Moreover, lomerizine reduced the intravitreal NMDA induced decrease in the light-induced expression of c-Fos in the contralateral dLGN (used in this study to evaluate residual vision). These results indicate that lomerizine affords some protection against transsynaptic neuronal degeneration within the visual center of the mouse brain.
Collapse
Affiliation(s)
- Yasushi Ito
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Tsai JC. Influencing ocular blood flow in glaucoma patients: the cardiovascular system and healthy lifestyle choices. Can J Ophthalmol 2008; 43:347-50. [PMID: 18443608 DOI: 10.3129/i08-035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The cardiovascular system and lifestyle choices play important roles in influencing ocular blood flow regulation in patients with glaucoma. This includes the presence of vascular risk factors, abnormal autoregulatory responses, tissue oxygenation, and mitochondrial oxidative stress. Based on this comprehensive review, novel therapeutic approaches may be considered in selected patients for preventing and (or) delaying the progression of glaucoma.
Collapse
Affiliation(s)
- James C Tsai
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, Yale Eye Center, 40 Temple Street, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Harris A, Kagemann L, Ehrlich R, Rospigliosi C, Moore D, Siesky B. Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol 2008; 43:328-36. [DOI: 10.3129/i08-051] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|