1
|
Trencsényi G, Képes Z. Scandium-44: Diagnostic Feasibility in Tumor-Related Angiogenesis. Int J Mol Sci 2023; 24:ijms24087400. [PMID: 37108559 PMCID: PMC10138813 DOI: 10.3390/ijms24087400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in novel radionuclides other than gallium-68 (68Ga) or copper-64 (64Cu) to establish selective radiotracers for the imaging of tumour-associated neo-angiogenesis. Given its ideal decay characteristics (Eβ+average: 632 KeV) and a half-life (T1/2 = 3.97 h) that is well matched to the pharmacokinetic profile of small molecules targeting angiogenesis, scandium-44 (44Sc) has gained meaningful attention as a promising radiometal for positron emission tomography (PET) imaging. More recently, intensive research has been centered around the investigation of 44Sc-labelled angiogenesis-directed radiopharmaceuticals. Previous studies dealt with the evaluation of 44Sc-appended avb3 integrin-affine Arg-Gly-Asp (RGD) tripeptides, GRPR-selective aminobenzoyl-bombesin analogue (AMBA), and hypoxia-associated nitroimidazole derivatives in the identification of various cancers using experimental tumour models. Given the tumour-related hypoxia- and angiogenesis-targeting capability of these PET probes, 44Sc seems to be a strong competitor of the currently used positron emitters in radiotracer development. In this review, we summarize the preliminary preclinical achievements with 44Sc-labelled angiogenesis-specific molecular probes.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Clarifying expression patterns by renal lesion using transcriptome analysis and vanin-1 as a potential novel biomarker for renal injury in chickens. Poult Sci 2022; 101:102011. [PMID: 35901645 PMCID: PMC9334312 DOI: 10.1016/j.psj.2022.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Bird death is often caused by renal lesions induced by chemicals. The avian kidney has a renal portal system with significant blood flow that is sensitive to many chemicals. However, early avian biomarkers for kidney injury are yet to be identified. This study aimed to identify novel renal biomarkers. Acute kidney injury (AKI) can be divided into acute interstitial nephritis (AIN) and acute tubular necrosis (ATN). A chicken model of kidney damage was created by an injection of diclofenac or cisplatin, which caused either AIN or ATN, respectively. Microarray analysis was performed to profile the gene expression patterns in the chickens with nephropathy. A gene enrichment analysis suggested that the genes related to responses to external stimuli showed expression changes in both AIN and ATN. However, hierarchical clustering analyses suggested that gene expression patterns differed between AIN and ATN, and the number of biomarkers relating to renal damage was low. To identify early biomarkers for nephropathy, we focused on genes that were induced at various levels of renal damage. The gene, vanin-1 (VNN1) was highly induced in the early stages of renal damage. A quantitative real-time PCR analysis supported this finding. These results suggest VNN1 could be a useful early biomarker of kidney injury in avian species.
Collapse
|
3
|
Pooja D, Gunukula A, Gupta N, Adams DJ, Kulhari H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int J Biochem Cell Biol 2019; 114:105567. [DOI: 10.1016/j.biocel.2019.105567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
|
4
|
Zhang J, Tian Y, Li D, Niu G, Lang L, Li F, Liu Y, Zhu Z, Chen X. 68Ga-NOTA-Aca-BBN(7-14) PET imaging of GRPR in children with optic pathway glioma. Eur J Nucl Med Mol Imaging 2019; 46:2152-2162. [PMID: 31270559 DOI: 10.1007/s00259-019-04392-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Optic pathway glioma (OPG) is a rare neoplasm that arises predominantly during childhood. Its location in a sensitive region involving the optic pathways, onset in young patients and controversial therapy choice make the management of OPG a challenge in paediatric neuro-oncology. In this study we assessed gastrin-releasing peptide receptor (GRPR)-targeted positron emission tomography (PET) imaging in children with OPG, and the application of a PET/MRI imaging-guided surgery navigation platform. METHODS Eight children (five boys, mean age 8.81 years, range 5-14 years) with suspicion of optic pathway glioma on MRI were recruited. Written informed consent was obtained from all patients and legal guardians. Brain PET/CT or PET/MRI acquisitions were performed 30 min after intravenous injection of 1.85 MBq/kg body weight of 68Ga-NOTA-Aca-BBN(7-14). Four patients also underwent 18F-FDG brain PET/CT for comparison. All patients underwent surgical resection within 1 week. RESULTS All 11 lesions (100%) in the eight patients showed prominent 68Ga-NOTA-Aca-BBN(7-14) uptake with excellent contrast in relation to surrounding normal brain tissue. Tumour-to-background ratios (SUVmax and SUVmean) were significantly higher for 68Ga-NOTA-Aca-BBN(7-14) than for 18F-FDG (28.4 ± 5.59 vs. 0.47 ± 0.11 and 18.3 ± 4.99 vs. 0.35 ± 0.07, respectively). Fusion images for tumour delineation were obtained in all patients using the PET/MRI navigation platform. All lesions were pathologically confirmed as OPGs with positive GRPR expression, and 75% were pilocytic astrocytoma WHO grade I and 25% were diffuse astrocytoma WHO grade II. There was a positive correlation between the SUV of 68Ga-NOTA-Aca-BBN(7-14) and the expression level of GRPR (r2 = 0.56, P < 0.01, for SUVmax; r2 = 0.47, P < 0.05, for SUVmean). CONCLUSION This prospective study showed the feasibility of 68Ga-NOTA-Aca-BBN(7-14) PET in children with OPG for tumour detection and localization. 68Ga-NOTA-Aca-BBN(7-14) PET/MRI may be helpful for assisting surgery planning in OPG patients with severe symptoms, GRPR-targeted PET has the potential to provide imaging guidance for further GRPR-targeted therapy in patients with OPG.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science and PUMC, Beijing, 100730, China.,THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, 99437, Bad Berka, Germany
| | - Yongji Tian
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Brain Tumor, Beijing, 100730, China
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Brain Tumor, Beijing, 100730, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science and PUMC, Beijing, 100730, China
| | - Yuhan Liu
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Brain Tumor, Beijing, 100730, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. .,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science and PUMC, Beijing, 100730, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA(inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer. Nucl Med Commun 2019; 40:278-286. [PMID: 30763290 DOI: 10.1097/mnm.0000000000000966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKROUND Human tumors show intrinsic heterogeneity and changes in phenotype during disease progression, which implies different expression levels of cell surface receptors. The research on new heterodimeric lutetium-177 (Lu)-radiopharmaceuticals interacting with two different targets on tumor cells is a strategy for improvement of radiotheranostic performance. This study aimed to synthesize and characterize the Lu-DOTA-PSMA(inhibitor)-Lys-bombesin (Lu-DOTA-iPSMA-Lys-BN) heterodimer and to evaluate its potential to target prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPr) overexpressed in prostate cancer. METHODS The heterodimeric conjugate was synthesized and characterized by infrarred, mass, and H-NMR spectroscopies. The ligand was labeled with Lu and the radiochemical purity was assessed by radio-high-performance liquid chromatography. PSMA/GRPr affinity and the heterobivalent effect on cell viability were evaluated in LNCaP and PC3 prostate cancer cell lines. The biodistribution profile (3 and 96 h) was assessed in athymic mice with induced prostate tumors. Using pulmonary LNCaP (PSMA-positive) and PC3 (GRPr-negative) micrometastasis models, the influence of heterobivalency and affinity on tumor uptake was quantified (micro-SPECT/CT). RESULTS Lu-iPSMA-BN (radiochemical purity>98%) showed specific recognition for PSMA and GRPr (IC50=5.62 and 3.49 nmol/l, respectively) with a significant decrease in cell viability (10.15% of cell viability in LNCaP and 40.10% in PC3 at 48 h), as well as high LNCaP and PC3 tumor uptake (5.21 and 3.21% ID/g at 96 h, respectively). Micro-SPECT/CT imaging showed the heterodimer ability to target the tumors (SUVmax of 1.93±0.30 and 1.76±0.10 in LNCaP and PC3, respectively), possibly influenced by the heterobivalent effect. Lu-DOTA-iPSMA-Lys-BN showed suitable affinity for PSMA and GRPr. CONCLUSION The results warrant further preclinical studies to establish the Lu-radiotracer theranostic efficacy.
Collapse
|
6
|
Ma Z, Zhang Y, Su J, Li X, Yang S, Qiao W, Suo C, Lei Z. Distribution of the pig gastrin-releasing peptide receptor and the effect of GRP on porcine Leydig cells. Peptides 2018; 99:142-152. [PMID: 28966141 DOI: 10.1016/j.peptides.2017.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023]
Abstract
Gastrin-releasing peptide (GRP) is a mammalian bombesin (BN)-like peptide which plays a role in a number of important physiological functions via its receptor (gastrin-releasing peptide receptor, GRPR) in most animals. However, little is known about the gene encoding GRPR and its functions (especially reproduction) in pigs. In this study, we first cloned and analyzed the pig GRPR cDNA. Then we systematically investigated the expression levels of GRPR mRNA by relative real-time PCR (RT-PCR), and analyzed the distribution of the GRPR protein in pig tissues via immunohistochemistry (IHC). Finally, we studied the effect of GRP on testosterone secretion and GRPR (mRNA and protein) expression in Leydig cells. Results showed that the pig GRPR cDNA cloned at 1487bp, including one open reading frame (ORF) of 1155bp and encodes 384 amino acids. Significantly, compared with other species, the cDNA sequence and amino acid sequence of the pig GRPR were highly homologous and conservative. The RT-PCR results showed that: in the central nervous system (CNS) and the pituitary, GRPR mRNA was found in the cerebellum, hypophysis, spinal cord and hypothalamus; in the peripheral tissues, GRPR mRNA was mainly expressed in the pancreas, esophagus, ovary, testis, spleen, thymus, jejunum lymph node, muscle and fat. Moreover, the IHC results showed that GRPR immunoreactivity was widely distributed in the pig tissues and organs, such as the pancreas, esophagus, testis, ovary, spleen, pituitary gland and adrenal gland. In addition, we found that GRP promotes testosterone secretion, and increases GRPR mRNA and protein expression in cultured Leydig cells in vitro. These molecular and morphological data not only describe the anatomical locations of GRPR in pigs, but also provide the theoretical foundation for further research into its possible physiological functions in pigs. These results suggest that the GRP/GRPR system may play an important role in regulating the reproductive system of the boar.
Collapse
Affiliation(s)
- Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ying Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Sheng Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wenna Qiao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chuan Suo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Moscona JC, Peters MN, Schally AV, Srivastav S, Delafontaine P, Irimpen A. The effects of a growth hormone-releasing hormone antagonist and a gastrin-releasing peptide antagonist on intimal hyperplasia of the carotid artery after balloon injury in a diabetic rat model☆. Artery Res 2017. [DOI: 10.1016/j.artres.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Zhang J, Li D, Lang L, Zhu Z, Wang L, Wu P, Niu G, Li F, Chen X. 68Ga-NOTA-Aca-BBN(7-14) PET/CT in Healthy Volunteers and Glioma Patients. J Nucl Med 2015; 57:9-14. [PMID: 26449838 DOI: 10.2967/jnumed.115.165316] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED This work was designed to study the safety, biodistribution, and radiation dosimetry of a gastrin-releasing peptide receptor (GRPR)-targeting, (68)Ga-labeled bombesin (BBN) peptide derivative PET tracer, NOTA-Aca-BBN(7-14) (denoted as (68)Ga-BBN) in healthy volunteers and to assess the level of receptor expression in glioma patients. METHODS Four healthy volunteers (2 male and 2 female) underwent whole-body PET/CT at multiple time points after a bolus injection of (68)Ga-BBN (111 ± 148 MBq). Regions of interest were drawn manually over major organs, and time-activity curves were obtained. Dosimetry was calculated using the OLINDA/EXM software. Twelve patients with glioma diagnosed by contrast-enhanced MRI underwent PET/CT at 30-45 min after (68)Ga-BBN injection. Within 1 wk afterward, the tumor was surgically removed and immunohistochemical staining of tumor samples against GRPR was performed and correlated with the PET/CT results. RESULTS (68)Ga-BBN was well tolerated in all healthy volunteers, with no adverse symptoms being noticed or reported. (68)Ga-BBN cleared rapidly from the circulation and was excreted mainly through the kidneys and urinary tract. The total effective dose equivalent and effective dose were 0.0335 ± 0.0079 and 0.0276 ± 0.0066 mSv/MBq, respectively. In glioma patients, all MRI-identified lesions showed high signal intensity on (68)Ga-BBN PET/CT. SUVmax and SUVmean were 2.08 ± 0.58 and 1.32 ± 0.37, respectively. With normal brain tissue as background, tumor-to-background ratios were 24.0 ± 8.85 and 13.4 ± 4.54 based on SUVmax and SUVmean, respectively. The immunohistochemical staining confirmed a positive correlation between SUV and GRPR expression level (r(2) = 0.71, P < 0.001). CONCLUSION (68)Ga-BBN is a PET tracer with favorable pharmacokinetics and a favorable dosimetry profile. It has the potential to evaluate GRPR expression in glioma patients and guide GRPR-targeted therapy of glioma.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peilin Wu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
9
|
Czarnecka AM, Kornakiewicz A, Lian F, Szczylik C. Future perspectives for mTOR inhibitors in renal cell cancer treatment. Future Oncol 2015; 11:801-17. [DOI: 10.2217/fon.14.303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ABSTRACT Everolimus is a mTOR inhibitor that demonstrates antitumor and antiangiogenic activities. In a randomized Phase III trial, patients with metastatic renal cell carcinoma who progressed on sunitinib/sorafenib were treated with everolimus and showed significant improvement in progression-free survival compared with best supportive care. Novel approaches in treatment are expected to ensure less toxic therapies and increase efficacy of everolimus. To provide a new perspective for mTOR inhibitor research and therapy, we discuss renal cell carcinoma cancer stem cells as a potential target for mTOR inhibitors and present new concepts on emerging antiangiogenic therapies. Finally, we point why systems biology approach with reverse molecular engineering may also contribute to the field of drug discovery in renal cell carcinoma.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Anna Kornakiewicz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Fei Lian
- Emory School of Medicine Atlanta, GA 30322, USA
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| |
Collapse
|
10
|
Ischia J, Patel O, Sethi K, Nordlund MS, Bolton D, Shulkes A, Baldwin GS. Identification of binding sites for C-terminal pro-gastrin-releasing peptide (GRP)-derived peptides in renal cell carcinoma: a potential target for future therapy. BJU Int 2015; 115:829-38. [PMID: 25130393 DOI: 10.1111/bju.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine the expression and biology of the neuroendocrine growth factor gastrin-releasing peptide (GRP) and other proGRP-derived peptides in renal cancer. MATERIALS AND METHODS Receptor binding studies, enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay, were used to quantitate the presence of proGRP-derived peptide receptors and their ligands in renal cancer cell lines and human renal cancers. Biological activity of proGRP peptides was confirmed with proliferation, migration, and extracellular-signal-regulated kinases 1 and 2 (ERK1/2) activation assays in vitro. In vivo, ACHN renal cancer xenografts were treated with proGRP-derived peptides to assess tumour size and necrosis. hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) expression were investigated with Western blotting and ELISA respectively, to determine the possible contribution of the proGRP peptides to tumour viability. RESULTS In ACHN cells that expressed both proGRP- and GRP-receptors, the expression of proGRP binding sites was 80-fold greater than the GRP-receptor (GRPR). C-terminal proGRP-derived peptides stimulated the activation of ERK1/2, but with a different time course to GRP, consistent with the suggestion that these peptides may have unique cellular functions. Both GRP and proGRP47-68 stimulated proliferation and migration of ACHN cells in vitro, but only GRP reduced the extent of tumour necrosis in ACHN xenografts. GRP, but not proGRP47-68, was able to induce HIF1α and VEGF expression in ACHN cells. This may account in part for the reduction in necrosis after GRP treatment. C-terminal proGRP-derived peptides were present in all three renal cancer cell lines and a panel of human renal cancers, but mature amidated GRP was absent. CONCLUSION C-terminal proGRP peptides are more abundant in renal cancers and their cell lines than the more extensively studied amidated peptide, GRP. These results suggest that C-terminal proGRP-derived peptides may be a better target for novel renal cancer treatments.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Ischia J, Patel O, Bolton D, Shulkes A, Baldwin GS. Expression and function of gastrin-releasing peptide (GRP) in normal and cancerous urological tissues. BJU Int 2014; 113 Suppl 2:40-7. [PMID: 24894852 DOI: 10.1111/bju.12594] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gastrin-releasing peptide (GRP) acts as an important regulatory peptide in several normal physiological processes and as a growth factor in certain cancers. In this review we provide a comprehensive overview of the current state of knowledge of GRP in urological tissues under both normal and cancerous conditions. GRP and its receptor, GRP-R, are expressed in the normal kidney and renal cancers. GRP can stimulate the growth of renal cancer cells. GRP and GRP-R are expressed in prostate cancer and GRP can stimulate the growth of prostate cancer cell lines. Importantly, GRP is a key neuroendocrine peptide, which may be involved in the progression of advanced prostate cancer and in the neuroendocrine differentiation of prostate cancer. Recent animal studies have shown that GRP and GRP-R are an integral part of male sexual function and play a crucial role in spinal control of erections and ejaculation.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, Austin Health, Melbourne, VIC, Australia; Department of Urology, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
12
|
Atala A. Re: antitumoral effects of vasoactive intestinal peptide in human renal cell carcinoma xenografts in athymic nude mice. J Urol 2014; 191:866-8. [PMID: 24522075 DOI: 10.1016/j.juro.2013.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|
13
|
Abstract
Gastrin releasing peptide (GRP) is a regulatory peptide that acts through its receptor (GRPR) to regulate physiological functions in various organs. GRPR is overexpressed in neoplastic cells of most prostate cancers and some renal cell cancers and in the tumoral vessels of urinary tract cancers. Thus, targeting these tumours with specifically designed GRP analogues has potential clinical application. Potent and specific radioactive, cytotoxic or nonradioactive GRP analogues have been designed and tested in various animal tumour models with the aim of receptor targeting for tumour diagnosis or therapy. All three categories of compound were found suitable for tumour targeting in animal models. The cytotoxic and nonradioactive GRP analogues have not yet shown convincing tumour-reducing effects in human trials; however, the first clinical studies of radioactive GRP analogues--both agonists and antagonists--suggest promising opportunities for both diagnostic tumour imaging and radiotherapy of prostate and other GRPR-expressing cancers.
Collapse
|
14
|
Abstract
A precise definition of the tumor tissue targets to be selected for in vivo peptide receptor targeting, namely to know which peptide receptor is expressed in which type of cancer, is an important prerequisite for successful clinical application of this technology. In this short review, I give three selected examples of new and promising peptide receptor targets. In the somatostatin receptor field, based on in vitro receptor autoradiography experiments showing that much more sst(2) binding sites are detected in tumors using a (177)Lu-labeled sst(2) antagonist than a (177)Lu-labeled agonist, it can be proposed that, in addition to neuroendocrine tumors, nonneuroendocrine tumors with lower sst(2) levels such as breast carcinomas, renal cell carcinomas, and non-Hodgkin lymphomas may become potential candidates for sst(2) antagonist targeting. In the gastrin-releasing peptide receptor field, recent in vitro data show that not only tumor cells may overexpress gastrin-releasing peptide receptors but also neoangiogenic tumoral vessels, making tumors expressing high levels of gastrin-releasing peptide receptors in tumor vessels, such as ovarian or urinary tract cancers, attractive new candidates for gastrin-releasing peptide receptor targeting. In the incretin receptor field, it was found in vitro that, apart from glucagon-like peptide 1 receptors overexpressed in benign insulinomas, incretin receptors, especially the glucose-dependent insulinotropic polypeptide receptors, can be overexpressed in medullary thyroid cancers, an unexpected finding making also these tumors potential novel candidates for incretin receptor targeting. Due to the abundance of peptide receptors in various cancers, it may be possible in the future to define for each tumor type a corresponding overexpressed peptide receptor suitable for targeting.
Collapse
|
15
|
Protease-activated receptor 2 signaling upregulates angiogenic growth factors in renal cell carcinoma. Exp Mol Pathol 2012; 94:91-7. [PMID: 22960271 DOI: 10.1016/j.yexmp.2012.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 11/21/2022]
Abstract
Renal cell carcinoma (RCC) is a highly vascular tumor associated with expression of various angiogenic growth factors. The precise process of how these growth factors are regulated in RCC is not fully understood. Recent evidence suggests that protease activated receptors (PARs), a new family of G-protein coupled receptors, play a crucial role in vascular development and tumor progression through a variety of mechanisms. However, the nature of PAR expression in human RCC tissues and its function in regulating angiogenesis in RCC are largely unknown. In this study, we investigated the expression and function of PAR-2 in RCC. RT-PCR and immunohistochemistry assays show that PAR-2 expression is significantly increased in human RCC tissue compared with the adjacent non-neoplastic kidney tissue. In RCC derived cells, PAR-2 is functional as evidenced by robust signaling through MAP kinases including ERK1/2 and JNK. Furthermore, activation of PAR-2 significantly upregulates several angiogenic cytokines, including interleukin-6 (IL-6), IL-8, monocytes chemotactic protein-1 (MCP-1) and growth-related oncogene (GRO). To our knowledge, this is the first report that characterized PAR-2 expression in RCC tissue and further demonstrated that PAR-2 has a critical role in regulating angiogenesis in RCC.
Collapse
|
16
|
Reubi JC, Fleischmann A, Waser B, Rehmann R. Concomitant vascular GRP-receptor and VEGF-receptor expression in human tumors: molecular basis for dual targeting of tumoral vasculature. Peptides 2011; 32:1457-62. [PMID: 21605611 DOI: 10.1016/j.peptides.2011.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
Gastrin-releasing peptide (GRP) and GRP receptors (GRPR) play a role in tumor angiogenesis. Recently, GRPR were found to be frequently expressed in the vasculature of a large variety of human cancers. Here, we characterize these GRPR by comparing the vascular GRPR expression and localization in a selection of human cancers with that of an established biological marker of neoangiogenesis, the vascular endothelial growth factor (VEGF) receptor. In vitro quantitative receptor autoradiography was performed in parallel for GRPR and VEGF receptors (VEGFR) in 32 human tumors of various origins, using ¹²⁵I-Tyr-bombesin and ¹²⁵I-VEGF₁₆₅ as radioligands, respectively. Moreover, VEGFR-2 was evaluated immunohistochemically. All tumors expressed GRPR and VEGFR in their vascular system. VEGFR were expressed in the endothelium in the majority of the vessels. GRPR were expressed in a subpopulation of vessels, preferably in their muscular coat. The vessels expressing GRPR were all VEGFR-positive whereas the VEGFR-expressing vessels were not all GRPR-positive. GRPR expressing vessels were found immunohistochemically to co-express VEGFR-2. Remarkably, the density of vascular GRPR was much higher than that of VEGFR. The concomitant expression of GRPR with VEGFR appears to be a frequent phenomenon in many human cancers. The GRPR, localized and expressed in extremely high density in a subgroup of vessels, may function as target for antiangiogenic tumor therapy or angiodestructive targeted radiotherapy with radiolabeled bombesin analogs alone, or preferably together with VEGFR targeted therapy.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Bern, PO Box 62, Murtenstrasse 31, CH-3010 Bern, Switzerland.
| | | | | | | |
Collapse
|
17
|
Tumor-associated macrophages in clear cell renal cell carcinoma express both gastrin-releasing peptide and its receptor: a possible modulatory role of immune effectors cells. World J Urol 2009; 28:335-41. [PMID: 20012906 PMCID: PMC2874056 DOI: 10.1007/s00345-009-0492-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/16/2009] [Indexed: 11/12/2022] Open
Abstract
Purpose Renal cell carcinomas (RCC) frequently express the gastrin-releasing peptide receptor (GRP-R). Gastrin-releasing peptide (GRP) stimulates tumor cell proliferation and neoangiogenesis. Tumor-associated macrophages (TAM) comprise an important cellular component of these tumors. We analyzed the GRP/GRP-R network in clear cell RCC (ccRCC) and non-clear cell RCC (non-ccRCC) with special regard to its expression by macrophages, tumor cells and microvessels. Methods Gastrin-releasing peptide and GRP-R expression in 17 ccRCC and 9 non-ccRCC were analyzed by RT-PCR, immunohistochemistry and double immunofluorescence staining. Results Tumor-associated macrophages expressed GRP and GRP receptor in ccRCC. Tumor cells and microvessels showed low to intermediate GRP-R expression in nearly all cases. In 12 ccRCC tumor epithelia also expressed low levels of GRP. Microvascular GRP expression was found in nine cases of ccRCC. For non-RCC, the expression of GRP and GRP receptor expression pattern was similar. Conclusions Tumor-associated macrophages are the main source of GRP in RCC. GRP receptor on TAM, tumor epithelia and microvessels might be a molecular base of a GRP/GRP receptor network, potentially acting as a paracrine/autocrine modulator of TAM recruitment, tumor growth and neoangiogenesis.
Collapse
|
18
|
Specific antibodies elicited by a novel DNA vaccine targeting gastrin-releasing peptide inhibit murine melanoma growth in vivo. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1033-9. [PMID: 19458203 DOI: 10.1128/cvi.00046-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The elevated expression and receptor binding of gastrin-releasing peptide (GRP) in various types of cancer, especially in malignant melanoma of the skin, suggest that GRP might be a putative target for immunotherapy in neoplastic diseases. We have therefore constructed a novel DNA vaccine coding for six tandem repeats of a fragment of GRP from amino acids 18 to 27 (GRP6) flanked by helper T-cell epitopes for increased immunogenicity, including HSP65, a tetanus toxoid fragment from amino acids 830 to 844 (T), pan-HLA-DR-binding epitope (PADRE) (P), and two repeats of a mycobacterial HSP70 fragment from amino acids 407 to 426 (M). The anti-GRP DNA vaccine (pCR3.1-VS-HSP65-TP-GRP6-M2) was constructed on a backbone of a pCR3.1 plasmid vector with eight 5'-GACGTT-3' CpG motifs and the VEGF183 signal peptide (VS). Intramuscular (IM) injections of anti-GRP vaccine in mice stimulated the production of high titers of specific antibodies against GRP and suppressed the growth of subcutaneous tumors of B16-F10 melanoma cells. Parallel results were obtained in vitro, showing inhibition of B16-F10 cell proliferation by GRP antisera. IM injections of the DNA vaccine also significantly attenuated tumor-induced angiogenesis associated with intradermal tumors of B16-F10 cells. In addition, lung invasion of intravenously injected cells was highly diminished, suggesting potent antimetastatic activity of the DNA vaccine. These findings support the highly immunogenic and potent antitumorigenic activity of specific anti-GRP antibodies elicited by the anti-GRP DNA vaccine.
Collapse
|
19
|
Koehl GE, Gaumann A, Geissler EK. Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin Exp Metastasis 2009; 26:329-44. [PMID: 19190882 DOI: 10.1007/s10585-008-9234-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 12/18/2008] [Indexed: 01/03/2023]
Abstract
Tumor angiogenesis is a major step in tumor progression to clinically symptomatic cancer and thus a potential target for cancer therapy. It is essential to understand the fundamental mechanisms of the angiogenic processes to provide a rational for testing inhibitory strategies for cancer treatment. The dorsal skin fold chamber provides a suitable (chronic) model for intravital microscopy to monitor the same tumor in time-lapse imaging series and in real-time functional analysis e.g., of blood flow. Adaptation of this model to several rodent species and tumor types has led to numerous physical and drug based therapy options. With modification of implantation techniques, motility and invasion of individual cells can be visualized, in addition to angiogenesis and microcirculation. Modern fluorescent techniques such as ex vivo labelling of specific cell populations and the introduction of stably fluorescent protein expressing cell lines further enhance the suitability of this technique. In addition, laser scanning and multiphoton microscopy in combination with genetically altered mouse strains and cell lines are making the DCSF even more attractive for mechanistic and interventional studies in cancer research. Here we review the preparation as well as the applications of the DCSF in tumor angiogenesis.
Collapse
Affiliation(s)
- Gudrun E Koehl
- Department of Surgery, University of Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany.
| | | | | |
Collapse
|
20
|
Zhao KJ, Shen JK. Advances of gastrin-releasing peptide receptor in treatment of tumors. Shijie Huaren Xiaohua Zazhi 2009; 17:63-67. [DOI: 10.11569/wcjd.v17.i1.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian gastrin-releasing peptide (GRP), known as autocrine growth factors in tumors, is involved in the pathogenesis and progression of many human malignant tumors, and high expression of its receptor, GRPR, in a large spectrum of human cancers gives support to the conclusion that GRPR is a new molecular target in experimental and clinical cancer therapy. GRPRs may be potential carriers for cytotoxins, immunotoxins or radioactive compounds. Moreover, blocking gastrin-releasing peptide receptor signaling pathways by means of antisence oligonucleotide, RNA interference and its antagonists has exhibited impressive antitumor activity.
Collapse
|
21
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
22
|
Growth inhibition of non-small-cell lung carcinoma by BN/GRP antagonist is linked with suppression of K-Ras, COX-2, and pAkt. Proc Natl Acad Sci U S A 2007; 104:18671-6. [PMID: 18003891 DOI: 10.1073/pnas.0709455104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bombesin (BN) or gastrin-releasing peptide (GRP) can stimulate the growth of neoplasms such as breast cancer and small-cell lung carcinoma (SCLC). Antagonists of BN/GRP have been shown to inhibit these cancers. We evaluated whether antagonists of BN/GRP can suppress the growth of human non-SCLC (NSCLC) xenografted into nude mice. The effect of the administration of BN/GRP antagonist RC-3940-II on the growth of H460 and A549 NSCLC cell lines orthotopically xenografted into the intrapulmonary interstitium was examined. Protein levels of K-Ras, COX-2, Akt/pAkt, WT p53, Erk1/2, and lung resistance-related protein (LRP) in tumors were analyzed by Western blot analaysis, and receptors for BN/GRP were investigated by radioligand-binding studies. The effect of RC-3940-II on the proliferation of H460 and A549 cells in vitro was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. High-affinity receptors for BN/GRP were found on tumors. Treatment with RC-3940-II significantly (P < 0.001) inhibited growth of H460 and A549 NSCLC xenografts by 30-50% and led to an improved performance status, compared with controls. In H460 NSCLC, the antitumor effect was associated with a significant (P < 0.001) reduction in protein levels of K-Ras, COX-2, pAkt, and pERK1/2 and with a major augmentation in the expression of WT p53, compared with controls. In A549 NSCLC, pAkt and LRP were significantly down-regulated. Our findings demonstrate the efficacy of BN/GRP antagonist RC-3940-II for the treatment of NSCLC. The suppression of K-Ras, COX-2, pAkt, and LRP, as well as the up-regulation of WT p53 might contribute to the antitumor action of BN/GRP antagonists.
Collapse
|
23
|
Heuser M, Hemmerlein B, Püsken M, Koskinas N, Dullin C, Gross AJ, Zöller GM, Obenauer S. [Determination of renal carcinoma progression in small animals by means of flat-panel volumetric computer tomography]. Urologe A 2007; 46:1710-4. [PMID: 17932642 DOI: 10.1007/s00120-007-1568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE We investigated the feasibility of using flat panel volumetric computer tomography (fpVCT) for the detection of orthotopically implanted renal carcinomas in nude mice. MATERIALS AND METHODS One million renal cell carcinoma cells [A-498 line (Braunschweig, Germany), in 0.2 ml phosphate-buffered solution (PBS), pH 7.4] were injected into the left kidney of each of the eight nude mice. Each mouse was imaged twice (12 and 16 weeks after implantation) with fpVCT (GE prototype with circular gantry with two 1024 x 1024, 200 microm pixel size, aSi/CsI flat panel detector) after injection of 200 microl contrast medium to check for tumour spread. After 16 weeks the mice were killed and dissected, and the imaging findings in liver, kidneys and lung were compared with the macroscopic findings. RESULTS No local evidence of tumour or of metastatic spread was seen on fpVCT after 12 weeks in any of the mice. After 16 weeks fpVCT revealed tumour growth in 6 of the 16 kidneys. Two mice had each developed a multifocal renal cell carcinoma and one mouse, a bilateral renal tumour manifestation. In one mouse liver metastases were seen. The fpVCT findings correlated well with the observations recorded in the pathological examination. CONCLUSION fpVCT is an innovative and noninvasive imaging procedure that can be used for longitudinal investigation of tumour progression following orthotopic implantation of renal cell carcinoma to small animals. The use of a system of this kind will make a decisive contribution to reducing the number of animals used in experimental test projects.
Collapse
Affiliation(s)
- M Heuser
- Abteilung für Urologie, Asklepios Stadtklinik, Brunnenallee 19, Bad Wildungen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cornelio DB, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 2007; 18:1457-66. [PMID: 17351255 DOI: 10.1093/annonc/mdm058] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the last two decades, several lines of experimental evidence have suggested that the gastrin-releasing peptide (GRP) may act as a growth factor in many types of cancer. For that reason, gastrin-releasing peptide receptor (GRPR) antagonists have been developed as anticancer candidate compounds, exhibiting impressive antitumoral activity both in vitro and in vivo in various murine and human tumors. In this article, the GRPR cell surface expression profile in human malignancies is reviewed aiming at the identification of potential tumor types for future clinical trials with GRP analogues and antagonists. In this review, we summarize the current literature regarding the GRPR status in human malignancies. Source data were obtained by searching all published material available through Medline, PubMed and relevant articles from 1971 to 2006. The data available demonstrated a high expression of GRPRs in a large spectrum of human cancers, demonstrating the potential relevance of this intracellular signaling pathway in various human tumor models. The GRPR may be an interesting target for therapeutic intervention in human malignancies, as carriers for cytotoxins, immunotoxins or radioactive compounds, being also a potential tool for tumor detection.
Collapse
Affiliation(s)
- D B Cornelio
- Cancer Research Laboratory, Academic Hospital Research Center, Porto Alegre, Brazil
| | | | | |
Collapse
|
25
|
Kang JH, Ishola TA, Baregamian N, Mourot JM, Rychahou PG, Evers BM, Chung DH. Bombesin induces angiogenesis and neuroblastoma growth. Cancer Lett 2007; 253:273-81. [PMID: 17383815 PMCID: PMC2709810 DOI: 10.1016/j.canlet.2007.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/12/2022]
Abstract
Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is a trophic factor for highly vascular neuroblastomas; its mechanisms of action in vivo are unknown. We sought to determine the effects of BBS on the growth of neuroblastoma xenografts and on angiogenesis. BBS significantly increased the growth of SK-N-SH and BE(2)-C human neuroblastomas; tumors demonstrated increased expression of angiogenic markers, PECAM-1 and VEGF, as well as phosphorylated (p)-Akt levels. RC-3095, a BBS/GRP antagonist, attenuated BBS-stimulated tumor growth and angiogenesis in vivo. GRP or GRPR silencing significantly inhibited VEGF as well as p-Akt and p-mTOR expression in vitro. Our findings demonstrate that BBS stimulates neuroblastoma growth and the expression of angiogenic markers. Importantly, these findings suggest that novel therapeutic agents, targeting BBS-mediated angiogenesis, may be useful adjuncts in patients with advanced-stage neuroblastomas.
Collapse
Affiliation(s)
- Jung-Hee Kang
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Titilope A. Ishola
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Naira Baregamian
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Joshua M. Mourot
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Piotr G. Rychahou
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - B. Mark Evers
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Dai H. Chung
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| |
Collapse
|
26
|
Baumann Cornelio D, Meurer L, Roesler R, Schwartsmann G. Gastrin-Releasing Peptide Receptor Expression in Cervical Cancer. Oncology 2007; 73:340-5. [DOI: 10.1159/000134478] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/14/2007] [Indexed: 01/17/2023]
|
27
|
Slaton JW. Targeted chemotherapy with cytotoxic bombesin analogue AN-215 can overcome chemoresistance in experimental renal cell carcinomas. Urol Oncol 2006. [DOI: 10.1016/j.urolonc.2006.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Patel O, Shulkes A, Baldwin GS. Gastrin-releasing peptide and cancer. Biochim Biophys Acta Rev Cancer 2006; 1766:23-41. [PMID: 16490321 DOI: 10.1016/j.bbcan.2006.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, abundant evidence has been collected to suggest that gastrin-releasing peptide (GRP) and its receptors play an important role in the development of a variety of cancers. In fact, the detection of GRP and the GRP receptor in small cell lung carcinoma (SCLC), and the demonstration that anti-GRP antibodies inhibited proliferation in SCLC cell lines, established GRP as the prototypical autocrine growth factor. All forms of GRP are generated by processing of a 125-amino acid prohormone; recent studies indicate that C-terminal amidation of GRP18-27 is not essential for bioactivity, and that peptides derived from residues 31 to 125 of the prohormone are present in normal tissue and in tumors. GRP receptors can be divided into four classes, all of which belong to the 7 transmembrane domain family and bind GRP and/or GRP analogues with affinities in the nM range. Over-expression of GRP and its receptors has been demonstrated at both the mRNA and protein level in many types of tumors including lung, prostate, breast, stomach, pancreas and colon. GRP has also been shown to act as a potent mitogen for cancer cells of diverse origin both in vitro and in animal models of carcinogenesis. Other actions of GRP relevant to carcinogenesis include effects on morphogenesis, angiogenesis, cell migration and cell adhesion. Future prospects for the use of radiolabelled and cytotoxic GRP analogues and antagonists for cancer diagnosis and therapy appear promising.
Collapse
Affiliation(s)
- Oneel Patel
- University of Melbourne, Department of Surgery, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|