1
|
Xie X, Luo C, Liang JY, Huang R, Yang JL, Li L, Li Y, Xing H, Chen H. NMDAR in bladder smooth muscle is not a pharmacotherapy target for overactive bladder in mice. PeerJ 2021; 9:e11684. [PMID: 34277150 PMCID: PMC8272467 DOI: 10.7717/peerj.11684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Overactive bladder (OAB) is a common condition that affects a significant patient population. The N-methyl-D-aspartate receptor (NMDAR) has a role in developing bladder overactivity, pharmacological inhibition of which inhibits bladder overactivity. The common pathogenesis of OAB involves bladder smooth muscle (BSM) overactivity. In this study, a smooth muscle-specific NMDAR knockout (SMNRKO) mouse model was generated. The bladders from SMNRKO mice displayed normal size and weight with an intact bladder wall and well-arranged BSM bundles. Besides, SMNRKO mice had normal voiding patterns and urodynamics and BSM contractility, indicating that NMDAR in BSM was not essential for normal physiological bladder morphology and function. Unexpectedly, cyclophosphamide (CYP)-treated SMNRKO and wild-type (WT) mice had similar pathological changes in the bladder. Furthermore, SMNRKO mice displayed similar altered voiding patterns and urodynamic abnormalities and impaired BSM contractility compared with WT mice after CYP treatment. MK801 partially reversed the pathological bladder morphology and improved bladder dysfunction induced by CYP, but did not cause apparent differences between WT mice and SMNRKO mice, suggesting that NMDAR in BSM was not involved in pathological bladder morphology and function. Moreover, the direct instillation of NMDAR agonists or antagonists into the CYP-induced OAB did not affect bladder urodynamic function, indicating that NMDAR in BSM was not the pharmacotherapy target of MK801 for CYP-induced cystitis. The findings indicated that NMDAR in BSM was not essential for normal physiological or pathological bladder morphology and function, and MK801 improving pathological bladder function was not mediated by an action on NMDAR in BSM.
Collapse
Affiliation(s)
- Xiang Xie
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chuang Luo
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Yu Liang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Run Huang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Li Yang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Linlong Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - YangYang Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongming Xing
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
2
|
Peng Z, Li M, Tan X, Xiang P, Wang H, Luo Y, Yang Y, Huang H, Chen Z, Xia H, Li Y, Zhang J, Gu C, Liu M, Wang Q, Chen M, Yang J. miR-211-5p alleviates focal cerebral ischemia-reperfusion injury in rats by down-regulating the expression of COX2. Biochem Pharmacol 2020; 177:113983. [PMID: 32311346 DOI: 10.1016/j.bcp.2020.113983] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
The present study was to investigate the role of microRNA (miR)-211-5p on cerebral ischemia-reperfusion injury (CIRI) and clarify its underlying mechanisms. Middle cerebral artery occlusion/reperfusion (MCAO/R) was operated on male Sprague Dawley (SD) rats, oxygen-glucose deprivation/reperfusion (OGD/R) was conducted on pheochromocytoma-12 (PC12) cells. Here, we found that miR-211-5p and Cyclooxygenase (COX2) expressions were altered in the plasma, cortex and hippocampus of MCAO/R-treated rats, as well as in the OGD/R-treaded PC12 cells. In vivo, overexpression of miR-211-5p resulted in decrease of infarct volumes, neurological deficit scores and histopathological damage. In vitro, miR-211-5p overexpression significantly decreased cell apoptosis and Lactate dehydrogenase (LDH) release rate, increased cell viability. Furthermore, our data showed that miR-211-5p overexpression markedly reduced the expressions of COX2 mRNA and protein, and the contents of Prostaglandin D2 (PGD2), PGE2, tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β). In addition, inhibition of COX2 significantly rescued the effects of miR-211-5p inhibitor. At last, dual luciferase experimental data showed that miR-211-5p regulated the mRNA stability of COX2 by directly binding to the 3'-untranslated region (3'-UTR) of COX2. In conclusion, our data suggested the neuroprotective effects of miR-211-5p on CIRI by targeting COX2.
Collapse
Affiliation(s)
- Zhe Peng
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Miaomiao Li
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Xiaodan Tan
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Pu Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Haifeng Huang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Chao Gu
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Maozhu Liu
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qiong Wang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Mengyuan Chen
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.
| |
Collapse
|
3
|
Patra PB, Patra S. Research Findings on Overactive Bladder. Curr Urol 2015; 8:1-21. [PMID: 26195957 PMCID: PMC4483299 DOI: 10.1159/000365682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022] Open
Abstract
Several physiopathologic conditions lead to the manifestation of overactive bladder (OAB). These conditions include ageing, diabetes mellitus, bladder outlet obstruction, spinal cord injury, stroke and brain injury, Parkinson's disease, multiple sclerosis, interstitial cystitis, stress and depression. This review has discussed research findings in human and animal studies conducted on the above conditions. Several structural and functional changes under these conditions have not only been observed in the lower urinary tract, but also in the brain and spinal cord. Significant changes were observed in the following areas: neurotransmitters, prostaglandins, nerve growth factor, Rho-kinase, interstitial cells of Cajal, and ion and transient receptor potential channels. Interestingly, alterations in these areas showed great variation in each of the conditions of the OAB, suggesting that the pathophysiology of the OAB might be different in each condition of the disease. It is anticipated that this review will be helpful for further research on new and specific drug development against OAB.
Collapse
Affiliation(s)
- Phani B. Patra
- King of Prussia, Drexel University College of Medicine, Philadelphia, Pa., USA
| | - Sayani Patra
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pa., USA
| |
Collapse
|
4
|
Liu M, Shen S, Kendig DM, Mahavadi S, Murthy KS, Grider JR, Qiao LY. Inhibition of NMDAR reduces bladder hypertrophy and improves bladder function in cyclophosphamide induced cystitis. J Urol 2015; 193:1676-83. [PMID: 25572034 DOI: 10.1016/j.juro.2014.12.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 01/28/2023]
Abstract
PURPOSE We examined the role of NMDAR in the regulation of bladder hypertrophy and function in a rat model of cyclophosphamide induced cystitis. MATERIALS AND METHODS Cystitis was induced by intraperitoneal injection of cyclophosphamide (150 mg/kg body weight). NMDAR phosphorylation (activity) and signal transduction pathways were examined by direct measurement and by specific inhibitors in vivo. Bladder hypertrophy was measured by bladder weight/body weight and type I collagen expression. Bladder function was examined by metabolic recording, conscious cystometry and detrusor muscle strip contractility in response to carbachol. RESULTS NMDAR activity measured by the phosphorylation level of the NMDAR1 (NR1) subunit was expressed in the spinal cord but not in the bladder at 48 hours of cystitis. NMDAR inhibition with dizocilpine (MK-801) reduced the cystitis induced increment of bladder weight and type I collagen up-regulation in the bladder. NMDAR regulated type I collagen up-regulation was mediated by the PI3K/Akt pathway. NMDAR inhibition also attenuated cystitis induced urinary frequency measured by metabolic cage and cystometry. Cystitis decreased the responsiveness of detrusor muscle strips to carbachol, which was reversed by MK-801 in vivo. Unlike MK-801 the NMDAR antagonist D-AP5, which could not block central NMDAR activity, had no effect on bladder hypertrophy, type I collagen up-regulation or Akt activation caused by cystitis in the bladder. CONCLUSIONS Findings suggest that NMDAR activity has a role in cystitis induced bladder hypertrophy and overactivity. NMDAR mediated Akt activation may underlie the mechanism of bladder dysfunction.
Collapse
Affiliation(s)
- Miao Liu
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Shanwei Shen
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Derek M Kendig
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Li-Ya Qiao
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
5
|
Andersson KE, Soler R, Füllhase C. Rodent models for urodynamic investigation. Neurourol Urodyn 2011; 30:636-46. [PMID: 21661007 DOI: 10.1002/nau.21108] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rodents, most commonly rats, mice, and guinea pigs are widely used to investigate urinary storage and voiding functions, both in normal animals and in models of disease. An often used methodology is cystometry. Micturitions in rodents and humans differ significantly and this must be considered when cystometry is used to interpret voiding in rodent models. Cystometry in humans requires active participation of the investigated patient (subject), and this can for obvious reasons not be achieved in the animals. Cystometric parameters in rodents are often poorly defined and do not correspond to those used in humans. This means that it is important that the terminology used for description of what is measured should be defined, and that the specific terminology used in human cystometry should be avoided. Available disease models in rodents have limited translational value, but despite many limitations, rodent cystometry may give important information on bladder physiology and pharmacology. The present review discusses the principles of urodynamics in rodents, techniques, and terminology, as well as some commonly used disease models, and their translational value.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.
| | | | | |
Collapse
|
6
|
YAMAMOTO G, SOEDA F, SHIRASAKI T, TAKAHAMA K. Is the GIRK Channel a Possible Target in the Development of a Novel Therapeutic Drug of Urinary Disturbance? YAKUGAKU ZASSHI 2011; 131:523-32. [DOI: 10.1248/yakushi.131.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gen YAMAMOTO
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Fumio SOEDA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Tetsuya SHIRASAKI
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kazuo TAKAHAMA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
7
|
Yokoyama O. Pharmacological and genetic analysis of mechanisms underlying detrusor overactivity in rats. Neurourol Urodyn 2010; 29:107-11. [DOI: 10.1002/nau.20746] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Yusup A, Akino H, Miwa Y, Oyama N, Aoki Y, Ito H, Tanase K, Matsuta Y, Nakai M, Yokoyama O. Effects of antimuscarinics on voiding function after cerebral infarction in a rat model of overactive bladder. Eur J Pharmacol 2007; 577:143-9. [PMID: 17904547 DOI: 10.1016/j.ejphar.2007.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 08/23/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
Abstract
Muscarinic receptor antagonists are used clinically for their therapeutic peripheral effects on bladder function. However, these agents may also act on central muscarinic receptors, especially in individuals with compromised blood-brain barrier function. We compared the effects of atropine and tolterodine, agents that do and do not readily cross the blood-brain barrier, respectively, administered peripherally (intravenous [i.v.]) and centrally (intracerebroventricular [i.c.v.]) on cystometrography in conscious rats after cerebral infarction induced by middle cerebral artery occlusion or sham surgery. We hypothesized that tolterodine would produce greater improvement in bladder capacity and less impairment in bladder contractility and that the effects of both agents would be greater in rats with cerebral infarction and sham-operated rats after peripheral administration, but that tolterodine and atropine would exert similar effects after central administration. Bladder capacity was markedly reduced following cerebral infarction. Low-dose i.v. tolterodine (<or=20 nmol/kg) significantly reversed this effect without altering residual volume or bladder contraction pressure. Low-dose i.v. atropine (2 nmol/kg) had no effect on bladder capacity but significantly decreased bladder contraction pressure. Higher doses of i.v. atropine (>or=20 nmol/kg) significantly increased bladder capacity but also significantly increased residual volume and decreased bladder contraction pressure. Tolterodine was significantly more efficacious than atropine in increasing bladder capacity, whereas atropine produced significantly greater increases in residual volume and reductions in bladder contraction pressure; these treatment group differences were also observed in sham-operated animals. Tolterodine and atropine administered i.c.v. significantly increased bladder capacity following cerebral infarction or sham surgery; however, this was accompanied by significantly increased residual volume and decreased bladder contraction time. The decrease in bladder contraction time was significantly smaller after tolterodine vs atropine. Peripherally acting muscarinic receptor antagonists may be preferable to centrally acting agents for minimizing adverse events, such as incomplete bladder emptying, even in individuals with compromised blood-brain barrier function.
Collapse
Affiliation(s)
- Anwar Yusup
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pruthi RS, Kouba E, Carson CC, Wallen EM. Cyclooxygenase-2 inhibitors and other NSAIDs in urology: Current peril or future promise? Urology 2006; 68:917-23. [PMID: 17113880 DOI: 10.1016/j.urology.2006.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 04/19/2006] [Accepted: 06/05/2006] [Indexed: 02/02/2023]
Affiliation(s)
- Raj S Pruthi
- Division of Urologic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|