1
|
Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci 2023; 24:12716. [PMID: 37628897 PMCID: PMC10454025 DOI: 10.3390/ijms241612716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear. At first glance, such issues are huge hurdles in the way of immortalized cells translation into medicine. However, there are certain ways to overcome such barriers that we describe in this review. We determined four major areas of usage of immortalized cells for practical medicinal purposes, and each has its own means to negate the drawbacks associated with immortalization. Moreover, here we describe specific fields of application of immortalized cells in which these problems are of much lesser concern, for example, in some cases where the possibility of malignant growth is not there at all. In general, we can conclude that immortalized cells have their niches in certain areas of practical medicine where they can successfully compete with other therapeutic approaches, and more preclinical and clinical trials with them should be expected.
Collapse
Affiliation(s)
- Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
2
|
Lu J, Zhu D, Li L. Evaluation of hydromechanical and functional properties of diversion-type microcapsule-suspension bioreactor for bioartificial liver. Int J Artif Organs 2022; 45:309-321. [PMID: 35034506 DOI: 10.1177/03913988211066502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM To evaluate the performance of a diversion-type microcapsulesuspension fluidized bed bioreactor and a choanoid fluidized bed bioreactor as bioartificial liver support systems. MATERIALS AND METHODS We evaluated the performance between the modified fluidized bed bioreactor based on diversion-type microcapsule suspension (DMFBB) and choanoid fluidized bed bioreactor (CFBB). The fluidization performance, fluidized height, bed expansion, and the mechanical stability and strength of microcapsule were determined. The viability, synthetic, metabolism, and apoptosis of microcapsulated HepLi5 cells were evaluated. Finally, samples were collected for measurement of alanine aminotransferase, total bilirubin, direct bilirubin, and albumin concentrations. RESULTS Uniform fluidization was established in both DMFBB and CFBB. The bed expansion, shear force, retention rate, swelling rate, and breakage rate of microcapsules differed significantly between two bioreactors over 3 days. The viability of microencapsulated HepLi5 cells and the activities of cytochrome P450 1A2 and 3A4 increased on each day in DMFBB compared to the control. The albumin and urea concentrations in the DMFBB displayed obvious improvements compared to the control. Caspase3/7 activities in the DMFBB decreased compared to those in the CFBB. At 24 h, the alanine aminotransferase concentration in the DMFBB declined significantly compared to the control. The total and direct bilirubin concentrations within plasma perfusion were decreased and albumin was increased in the DMFBB at 24 h than in the CFBB. CONCLUSION The DMFBB shows a promising alternative bioreactor for use in bioartificial liver support systems for application of clinical practice.
Collapse
Affiliation(s)
- Juan Lu
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Danhua Zhu
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wang Q, Zhang X, Wang B, Bai G, Pan D, Yang P, Tao K, Li X, Dou K. Immortalization of porcine hepatocytes with a α-1,3-galactosyltransferase knockout background. Xenotransplantation 2019; 27:e12550. [PMID: 31435990 DOI: 10.1111/xen.12550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND In vivo pig liver xenotransplantation preclinical trials appear to have poor efficiency compared to heart or kidney xenotransplantation because of xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia. In contrast, ex vivo pig liver (wild type) perfusion systems have been proven to be effective in "bridging" liver failure patients until subsequent liver allotransplantation, and transgenic (human CD55/CD59) modifications have even prolonged the duration of pig liver perfusion. Despite the fact that hepatocyte cell lines have also been proposed for extracorporeal blood circulation in conditions of acute liver failure, porcine hepatocyte cell lines, and the GalT-KO background in particular, have not been developed and applied in this field. Herein, we established immortalized wild-type and GalT-KO porcine hepatocyte cell lines, which can be used for artificial liver support systems, cell transplantation, and even in vitro studies of xenotransplantation. METHODS Primary hepatocytes extracted from GalT-KO and wild-type pigs were transfected with SV40 LT lentivirus to establish immortalized GalT-KO porcine hepatocytes (GalT-KO-hep) and wild-type porcine hepatocytes (WT). Hepatocyte biomarkers and function-related genes were assessed by immunofluorescence, periodic acid-Schiff staining, indocyanine green (ICG) uptake, biochemical analysis, ELISA, and RT-PCR. Furthermore, the tumorigenicity of immortalized cells was detected. In addition, a complement-dependent cytotoxicity (CDC) assay was performed with GalT-KO-hep and WT cells. Cell death and viability rates were assessed by flow cytometry and CCK-8 assay. RESULTS GalT-KO and wild-type porcine hepatocytes were successfully immortalized and maintained the characteristics of primary porcine hepatocytes, including albumin secretion, ICG uptake, urea and glycogen production, and expression of hepatocyte marker proteins and specific metabolic enzymes. GalT-KO-hep and WT cells were confirmed as having no tumorigenicity. In addition, GalT-KO-hep cells showed less apoptosis and more viability than WT cells when exposed to complement and xenogeneic serum. CONCLUSIONS Two types of immortalized cell lines of porcine hepatocytes with GalT-KO and wild-type backgrounds were successfully established. GalT-KO-hep cells exhibited higher viability and injury resistance against a xenogeneic immune response.
Collapse
Affiliation(s)
- Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ge Bai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dengke Pan
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
5
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- 3Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- 2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,4WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
6
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
7
|
Hang HL, Liu XY, Wang HT, Xu N, Bian JM, Zhang JJ, Xia L, Xia Q. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival. Exp Cell Res 2017; 360:81-93. [PMID: 28870599 DOI: 10.1016/j.yexcr.2017.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/22/2022]
Abstract
Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF.
Collapse
Affiliation(s)
- Hua-Lian Hang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xin-Yu Liu
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Hai-Tian Wang
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Ning Xu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian-Min Bian
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Jian-Jun Zhang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
8
|
Gleich A, Kaiser B, Schumann J, Fuhrmann H. Establishment and characterisation of a novel bovine SV40 large T-antigen-transduced foetal hepatocyte-derived cell line. In Vitro Cell Dev Biol Anim 2016; 52:662-72. [DOI: 10.1007/s11626-016-0018-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
|
9
|
Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 2015; 8:36-47. [PMID: 26019753 PMCID: PMC4445708 DOI: 10.15283/ijsc.2015.8.1.36] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
The liver is the largest organ in the body; it has a complex architecture, wide range of functions and unique regenerative capacity. The growing incidence of liver diseases worldwide requires increased numbers of liver transplant and leads to an ongoing shortage of donor livers. To meet the huge demand, various alternative approaches are being investigated including, hepatic cell transplantation, artificial devices and bioprinting of the organ itself. Adult hepatocytes are the preferred cell sources, but they have limited availability, are difficult to isolate, propagate poor and undergo rapid functional deterioration in vitro. There have been efforts to overcome these drawbacks; by improving culture condition for hepatocytes, providing adequate extracellular matrix, co-culturing with extra-parenchymal cells and identifying other cell sources. Differentiation of human stem cells to hepatocytes has become a major interest in the field of stem cell research and has progressed greatly. At the same time, use of decellularized organ matrices and 3 D printing are emerging cutting-edge technologies for tissue engineering, opening up new paths for liver regenerative medicine. This review provides a compact summary of the issues, and the locations of liver support systems and tissue engineering, with an emphasis on reproducible and useful sources of hepatocytes including various candidates formed by differentiation from stem cells.
Collapse
Affiliation(s)
- Soo Young Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Han Joon Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Chen Y, Yu C, Lv G, Cao H, Yang S, Zhang Y, Yu J, Pan X, Li L. Rapid large-scale culturing of microencapsulated hepatocytes: a promising approach for cell-based hepatic support. Transplant Proc 2015; 46:1649-57. [PMID: 24935342 DOI: 10.1016/j.transproceed.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/13/2014] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The efficacy of any bioartificial liver device requires both rapid production and proper bioactivity of the cells for the bioreactor. The goal of this study was to observe the effect of spinner speed and cell density on the proliferation of microencapsulated immortalized human hepatocytes (HepLL) and human hepatoma (HepG2) cells. MATERIALS AND METHODS Alginate-chitosan microcapsulated HepG2 and HepLL cells were randomly divided into 2 groups, and each group was further divided into 8 subgroups according to embedded cell density and spinner speed. The growth, metabolism, and functions of the encapsulated cells in each group were evaluated. RESULTS In each group, the cell number, ammonium removal, albumin synthesis, and diazepam clearance increased significantly with the spinner speed, whereas embedded cell density had no impact. Albumin synthesis, removal of ammonium, and diazepam clearance were significantly higher in the microencapsulated HepLL groups than in HepG2 cells at any time point, without any significant difference in cell numbers. CONCLUSIONS Spinner culture significantly promoted microencapsulated HepLL and HepG2 cell bioactivity. Wrapped cells had optimal function on day 10 in rolling culture groups. These data show that HepLL cells would be a promising candidate for cell-based liver support therapy.
Collapse
Affiliation(s)
- Y Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Infectious Disease Department, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - C Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - G Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - S Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Y Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - J Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - X Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
12
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
13
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
15
|
|
16
|
Sankavaram K, Freake HC. The effects of transformation and ZnT-1 silencing on zinc homeostasis in cultured cells. J Nutr Biochem 2012; 23:629-34. [DOI: 10.1016/j.jnutbio.2011.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/21/2010] [Accepted: 03/03/2011] [Indexed: 01/08/2023]
|
17
|
Lv G, Zhao L, Zhang A, Du W, Chen Y, Yu C, Pan X, Zhang Y, Song T, Xu J, Chen Y, Li L. Bioartificial liver system based on choanoid fluidized bed bioreactor improve the survival time of fulminant hepatic failure pigs. Biotechnol Bioeng 2011; 108:2229-36. [PMID: 21455934 DOI: 10.1002/bit.23150] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/23/2011] [Accepted: 03/21/2011] [Indexed: 12/15/2022]
Abstract
Bioartificial liver (BAL) support system has been proposed as potential treatment method for end-stage liver diseases. We described an improved BAL system based on a choanoid fluidized bed bioreactor containing alginate-chitosan encapsulated primary porcine hepatocytes. The feasibility, safety, and efficiency of this device were estimated using an allogeneic fulminant hepatic failure (FHF) model. FHF was induced with intravenous administration of D-galactosamine. Thirty FHF pigs were divided into three groups: (1) an FHF group which was only given intensive care; (2) a sham BAL group which was treated with the BAL system with empty encapsulation, and (3) a BAL group which was treated with the BAL system containing encapsulated freshly isolated primary porcine hepatocytes. The survival times and biochemical parameters of these animals were measured, and properties of the encapsulations and hepatocytes before and after perfusion were also evaluated. Compared to the two control groups, the BAL-treated group had prolonged the survival time and decreased the blood lactate levels, blood glucose, and amino acids remained stable. No obvious ruptured beads or statistical decline in viability or function of encapsulated hepatocytes were observed. This new fluidized bed BAL system is safe and efficient. It may represent a feasible alternative in the treatment of liver failure.
Collapse
Affiliation(s)
- Guoliang Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Wu W, Xin J, Guo J, Jiang L, Tao R, Cao H, Hong X, Li L. Acute hepatic failure-derived bone marrow mesenchymal stem cells express hepatic progenitor cell genes. Cells Tissues Organs 2011; 194:371-81. [PMID: 21293100 DOI: 10.1159/000322604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 12/26/2022] Open
Abstract
Hepatic progenitor cell (HPC) transplantation is a promising alternative to liver transplantation for patients with end-stage liver disease. However, the precise origin of HPCs is unclear. This study aimed to determine whether bone marrow mesenchymal stem cells (BMSCs) isolated from rats in acute hepatic failure (AHF) possess hepatic potential and/or characteristics. BMSCs were isolated from normal rats as well as rats in which AHF was induced by D-galactosamine. HPCs and primary hepatocytes were isolated from normal rats for comparison. The Affymetrix GeneChip Rat Genome 230 2.0 Array was used to perform transcriptome profiling of the AHF-derived BMSCs and HPCs. The results showed that AHF-derived BMSCs had a gene expression profile significantly different from that of control BMSCs. More than 87.7% of the genes/probe sets that were upregulated more than 2-fold in AHF-derived BMSCs were expressed by HPCs, including 12 genes involved in liver development, early hepatocyte differentiation and hepatocyte metabolism. Confirmatory quantitative RT-PCR analysis yielded similar results. In addition, 940 probe sets/genes were expressed in both AHF-derived BMSCs and HPCs but were absent in control cells. Compared to the control cells, AHF-derived BMSCs shared more commonly expressed genes with HPCs. AHF-derived BMSCs have a hepatic transcriptional profile and express many of the same genes expressed by HPCs, strongly suggesting that BMSCs may be a resource for hepatocyte regeneration, and further confirming their potential as a strong source of hepatocyte regeneration during severe hepatic damage.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li J, Tao R, Wu W, Cao H, Xin J, Li J, Guo J, Jiang L, Gao C, Demetriou AA, Farkas DL, Li L. 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev 2011; 19:1427-36. [PMID: 20055663 DOI: 10.1089/scd.2009.0415] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Liver tissue engineering with hepatic stem cells provides a promising alternative to liver transplantation in patients with acute and chronic hepatic failure. In this study, a three-dimensional (3D) bioscaffold was introduced for differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into hepatocytes. For hepatocyte differentiation, third passage BMSCs isolated from normal adult F344 rats were seeded into collagen-coated poly(lactic-co-glycolic acid) (C-PLGA) 3D scaffolds with hepatocyte differentiation medium for 3 weeks. Hepatogenesis in scaffolds was characterized by reverse transcript PCR, western blot, confocal laser scanning microscopy (CLSM), periodic acid-Schiff staining, histochemistry, and biochemical assays with hepatic-specific genes and markers. A monolayer culture system was used as a control differentiation group. The results showed that isolated cells possessed the basic features of BMSCs. Differentiated hepatocyte-like cells in C-PLGA scaffolds expressed hepatocyte-specific markers [eg, albumin (ALB), alpha-fetoprotein, cytokeratin 18, hepatocyte nuclear factor 4alpha, and cytochrome P450] at mRNA and protein levels. Most markers were expressed in C-PLGA group 1 week earlier than in the control group. Results of biocompatibility indicated that the differentiated hepatocyte-like cells grew more stably in C-PLGA scaffolds than that in controls during a 3-week differentiation period. The significantly higher metabolic functions in hepatocyte-like cells in the C-PLGA scaffold group further demonstrated the important role of the scaffold. CONCLUSION As the phenomenon of transdifferentiation is uncommon, our successful transdifferentiation rates of BMSCs to mature hepatocytes prove the superiority of the C-PLGA scaffold in providing a suitable environment for such a differentiation. This material can possibly be used as a bioscaffold for liver tissue engineering in future clinical therapeutic applications.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hepatoprotective Effect of an Immortal Human Fetal Hepatic Cell Transplantation on CCL4-Induced Acute Liver Injury in Mice. Transplant Proc 2010; 42:2782-5. [DOI: 10.1016/j.transproceed.2010.04.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/16/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022]
|
21
|
Pan X, Du W, Yu X, Sheng G, Cao H, Yu C, Lv G, Huang H, Chen Y, Li J, Li L. Establishment and Characterization of Immortalized Porcine Hepatocytes for the Study of Hepatocyte Xenotransplantation. Transplant Proc 2010; 42:1899-906. [DOI: 10.1016/j.transproceed.2009.11.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 11/23/2009] [Indexed: 10/19/2022]
|
22
|
Transcriptional profiling and hepatogenic potential of acute hepatic failure-derived bone marrow mesenchymal stem cells. Differentiation 2010; 80:166-74. [PMID: 20427118 DOI: 10.1016/j.diff.2010.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/17/2010] [Accepted: 04/08/2010] [Indexed: 01/14/2023]
Abstract
UNLABELLED Liver stem cell (LSC) transplantation is a promising alternate approach to liver transplantation for patients with end-stage liver disease. However, the precise origin of LSCs remains unclear. Herein we determine if bone marrow mesenchymal stem cells (BMSCs) isolated from rats in acute hepatic failure (AHF) possess hepatic characteristics and have differentiation potential. BMSCs were isolated from AHF and sham-operated rats, and primary hepatocytes were isolated from normal rats for comparison. The transcriptomic profile of BMSCs and primary hepatocytes was analyzed using the Affymetrix GeneChip Rat Genome 230 2.0 Array. BMSCs isolated from AHF and normal rats were induced to differentiate into hepatocytes in vitro and the degree of hepatic differentiation was assessed using quantitative real time RT-PCR, immunohistochemistry, and biochemical assays. AHF-derived BMSCs had a significantly different gene expression profile compared to control BMSCs. Thirty-four gene/probe sets were expressed in both AHF-derived BMSCs and primary hepatocytes, but were absent in control-derived BMSCs, including 3 hepatocyte-specific genes. Forty-four genes were up-regulated more than 2-fold in AHF-derived BMSCs compared to controls, including 3 genes involved in hepatocyte metabolism and development. Furthermore, AHF-derived BMSCs expressed more hepatocyte related genes than control BMSCs. Additional experiments to validate the differentiation of AHF-derived BMSCs, compared to control-derived BMSCs, showed that several hepatocyte-specific genes and proteins [such as albumin (ALB) and alpha fetoprotein (AFP)] were expressed earlier, and at higher levels, after 1 week of differentiation. Hepatocyte-specific metabolic functions were also significantly higher in the AHF group compared to control cells. CONCLUSION AHF-derived BMSCs had a hepatic transcriptional profile and expressed hepatocyte specific genes early during differentiation, and possessed greater hepatogenic potency in vitro compared to cells isolated from control animals, further confirming their potential as a stem cell-based therapy for end-stage liver disease.
Collapse
|
23
|
Abstract
A variety of bioartificial liver support systems were developed to replace some of the liver's function in case of liver failure. Those systems, in contrast to purely artificial systems, incorporate metabolically active cells to contribute synthetic and regulatory functions as well as detoxification. The selection of the ideal cell source and the design of more sophisticated bioreactors are the main issues in this field of research. Several systems were already introduced into clinical studies to prove their safety. This review briefly introduces a cross-section of experimental and clinically applied systems and tries to give an overview on the problems and limitations of bioartificial liver support.
Collapse
Affiliation(s)
- Gesine Pless
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
24
|
Deurholt T, van Til NP, Chhatta AA, ten Bloemendaal L, Schwartlander R, Payne C, Plevris JN, Sauer IM, Chamuleau RA, Elferink RPO, Seppen J, Hoekstra R. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009; 9:89. [PMID: 19845959 PMCID: PMC2770505 DOI: 10.1186/1472-6750-9-89] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 10/21/2009] [Indexed: 01/15/2023] Open
Abstract
Background A clonal cell line that combines both stable hepatic function and proliferation capacity is desirable for in vitro applications that depend on hepatic function, such as pharmacological or toxicological assays and bioartificial liver systems. Here we describe the generation and characterization of a clonal human cell line for in vitro hepatocyte applications. Results Cell clones derived from human fetal liver cells were immortalized by over-expression of telomerase reverse transcriptase. The resulting cell line, cBAL111, displayed hepatic functionality similar to the parental cells prior to immortalization, and did not grow in soft agar. Cell line cBAL111 expressed markers of immature hepatocytes, like glutathione S transferase and cytokeratin 19, as well as progenitor cell marker CD146 and was negative for lidocaine elimination. On the other hand, the cBAL111 cells produced urea, albumin and cytokeratin 18 and eliminated galactose. In contrast to hepatic cell lines NKNT-3 and HepG2, all hepatic functions were expressed in cBAL111, although there was considerable variation in their levels compared with primary mature hepatocytes. When transplanted in the spleen of immunodeficient mice, cBAL111 engrafted into the liver and partly differentiated into hepatocytes showing expression of human albumin and carbamoylphosphate synthetase without signs of cell fusion. Conclusion This novel liver cell line has the potential to differentiate into mature hepatocytes to be used for in vitro hepatocyte applications.
Collapse
Affiliation(s)
- Tanja Deurholt
- AMC Liver Center, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yu CB, Lv GL, Pan XP, Chen YS, Cao HC, Zhang YM, Du WB, Yang SG, Li LJ. In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs 2009; 32:272-81. [PMID: 19569036 DOI: 10.1177/039139880903200504] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Microencapsulated hepatocytes have been proposed as promising bioactive agents for packed-bed or fluidized-bed bioartificial liver assist devices (BLaDs) and for hepatocyte transplantation because of the potential advantages they offer of high mass transport rate and an optimal microenvironment for hepatocyte culture. We developed a large-scale and high-production alginate-chitosan (AC) microcapsule roller bottle culture system for the encapsulation of hepLL immortalized human hepatocytes. In this study, the efficacy of upscaling encapsulated hepLL cells production with roller bottle cultivation was evaluated in vitro. METHODS Microencapsulated hepLL cells were grown at high yield in large-scale roller bottles, with free cells cultured in roller bottle spinners serving as controls. The mechanical stability and the permeability of the AC microcapsules were investigated, and the growth, metabolism and functions of the encapsulated hepLL cells were evaluated as compared to free cells. RESULTS The microcapsules withstood well the shear stress induced by high agitation rates. The microcapsules were permeable to albumin, but prevented the release of immunoglobulins. Culture in roller bottles of immortalized human hepatocytes immobilized in the AC microcapsules improved cell growth, albumin synthesis, ammonia elimination and lidocaine clearance as compared with free cells cultured in roller bottles. CONCLUSIONS Encapsulated hepLL cells may be cultured on a large scale in roller bottles. This makes them possible candidates for use in cell-based liver assist therapies.
Collapse
Affiliation(s)
- Cheng-Bo Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tsuruga Y, Kiyono T, Matsushita M, Takahashi T, Kasai H, Todo S. Establishment of Immortalized Human Hepatocytes by Introduction of HPV16 E6/E7 and hTERT as Cell Sources for Liver Cell-Based Therapy. Cell Transplant 2008; 17:1083-1094. [DOI: 10.3727/096368908786991542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For future cell-based therapies for liver diseases, the shortage of cell sources must be resolved. Immortalized human hepatocytes are expected to be among the new sources. In addition to telomerase activation by the introduction of human telomerase reverse transcriptase (hTERT), inactivation of the p16/RB pathway and/or p53 by E6/E7 of human papillomavirus type 16 (HPV16) has been shown to be useful for efficient immortalization of several human cell types. Here we report the immortalization of human hepatocytes by the introduction of HPV16 E6/E7 and hTERT. Human adult hepatocytes were lentivirally transduced with HPV16 E6/E7 and hTERT. Two human immortalized hepatocyte cell lines were established and were named HHE6E7T-1 and HHE6E7T-2. Those cells proliferated in culture beyond 200 population doublings (PDs). Albumin synthesis and expression of liver-enriched genes were confirmed, but gradually decreased as passages progressed. Karyotype analysis showed that HHE6E7T-1 cells remained near diploid but that HHE6E7T-2 cells showed severe aneuploidy at 150 PDs. Subcutaneous injection of these cells into severe combined immunodeficiency (SCID) mice did not induce tumor development. Intrasplenic transplantation of dedifferentiated HHE6E7T-1 cells over 200 PDs significantly improved the survival of acetaminophen-induced acute liver failure SCID mice. In conclusion, we successfully established immortalized human hepatocytes that retain the characteristics of differentiated hepatocytes. We also showed the reduction of hepatocyte-specific functions in long-term culture. However, the results of intrasplenic transplantation to SCID mice with acetaminophen-induced acute liver failure showed the possibility of HHE6E7T-1 serving as a cell source for hepatocyte transplantation.
Collapse
Affiliation(s)
- Yosuke Tsuruga
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tohru Kiyono
- Virology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Michiaki Matsushita
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tohru Takahashi
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Hironori Kasai
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Satoru Todo
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| |
Collapse
|
27
|
Yang Y, Zheng J, Zhou X, Yang Z, Tan Y, Liu A, Gao X, Chang Z, Sheng HZ. Potential treatment of liver-related disorders with in vitro expanded human liver precursors. Differentiation 2007; 75:928-38. [PMID: 17490413 DOI: 10.1111/j.1432-0436.2007.00184.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inherited deficiencies in critical components of metabolic pathways are the primary cause of many liver and lysosomal disorders, most of which are incurable. Stem cell transplantation may offer a new type of treatment for these diseases. We have isolated hepatocyte precursors from human fetal livers. These cells were highly proliferative in vitro in media with or without serum. Expanded hepatocyte precursors expressed endoderm and early hepatocyte markers. The precursors synthesized a large number of molecules related to human metabolic diseases and released some of them into the environment. In a homing test, these cells migrated preferentially into the liver. When transplanted into fetal sheep liver, they incorporated into the liver tissue and differentiated into hepatocytes. Transplantation of the liver precursors to alpha-l-iduronidase-deficient mice partially corrected the enzyme deficiency. Data from these studies suggest that in vitro expanded human liver precursor cells are a potential cell source for the treatment of liver- and lysosome-related disorders.
Collapse
Affiliation(s)
- Ying Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sheng J, Yu H, Li J, Sheng G, Zhou L, Lu Y. Cloning and expression of the human augmenter of liver regeneration at low temperature in Escherichia coli. ACTA ACUST UNITED AC 2007; 70:465-70. [PMID: 17210184 DOI: 10.1016/j.jbbm.2006.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
Acute and chronic hepatic failure is a devastating illness of varied causes with considerable mortality. Human augmenter of liver regeneration (hALR) is a hepatotrophic protein and the unique cytokine which can specially stimulate hepatic origin cells to grow regardless of genus. It has been proven that ALR can promote regeneration and avoid all kinds of injury in rat and canine models. In this study, the recombinant protein hALR was expressed successfully with recombinant prokaryotic expression vector pET28a(+) in Escherichia coli BL21 (DE3). We constructed the recombinant expression vector pET28a(+)/hALR with a full-length cDNA encoding hALR protein from normal human liver tissue by one-step reverse transcription-polymerase chain reaction and his-tag recognition sequence encoding polyhistidine (6 x His). Under IPTG (isopropyl-beta-d-thiogalactopyranoside) induction for 2 h at 37 degrees C, recombinant protein hALR was expressed. The expression of recombinant polyhistidine-tagged hALR was increased under low temperature and was confirmed that the temperature of 23 degrees C was the most suitable IPTG induction condition. Under low temperature induction of IPTG, recombinant protein can be expressed as a soluble protein. Recombinant protein hALR was also purified with His Bind Kits and characterized with SDS-PAGE and Western blotting. The results showed that recombinant hALR could be expressed as a soluble protein under low temperature induction of IPTG. The successful expression of ALR in E. coli makes it possible to further study its biological function and purified recombinant hALR could be developed into a new anti-hepatic damage product.
Collapse
Affiliation(s)
- Jifang Sheng
- Department of Infectious Disease, the First Affiliated Hospital, College of Medicine, Zhejiang University, Key Lab. of Infectious Disease of Ministry of Health, Qingchun Rd. 79, Hangzhou, 310003, China.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
AIM To evaluate the functions of a new bioartificial liver (BAL) system in vitro and in vitro. METHODS The BAL system was configured by inoculating porcine hepatocyte spheroids into the cell circuit of a hollow fiber bioreactor. In the experiments of BAL in vitro, the levels of alanine aminotransferase (ALT), total bilirubin (TB), and albumin (ALB) in the circulating hepatocyte suspension and RPMI-1640 medium were determined during 6 h of circulation in the BAL device. In the experiments of BAL in vitro, acute liver failure (ALF) model in canine was induced by an end-side portocaval shunt combined with common bile duct ligation and transaction. Blood ALT, TB and ammonia levels of ALF in canines were determined before and after BAL treatment. RESULTS During 6 h of circulation in vitro, there was no significant change of ALT, whereas the TB and ALB levels gradually increased with time both in the hepatocyte suspension and in RPMI-1640 medium. In the BAL treatment group, blood ALT, TB and ammonia levels of ALF in canines decreased significantly. CONCLUSION The new BAL system has the ability to perform liver functions and can be used to treat ALF.
Collapse
Affiliation(s)
- Zhong Chen
- Department of General Surgery, Affiliated Hospital, Nantong University, Nantong 226001, Jiangsu Province, China.
| | | |
Collapse
|
30
|
Abstract
AIM: To evaluate the functions of a new bioartificial liver (BAL) system in vitro and in vitro.
MEHTODS: The BAL system was configurated by inoculating porcine hepatocyte spheroids into the cell circuit of a hollow fiber bioreactor. In the experiments of BAL in vitro, the levels of alanine aminotransferase (ALT), total bilirubin (TB), and albumin (ALB) in the circulating hepatocyte suspension and RPMI-1640 medium were determined during 6 h of circulation in the BAL device. In the experiments of BAL in vitro, acute liver failure (ALF) model in canine was induced by an end-side portocaval shunt combined with common bile duct ligation and transaction. Blood ALT, TB and ammonia levels of ALF in canines were determined before and after BAL treatment.
RESULTS: During 6 h of circulation in vitro, there was no significant change of ALT, whereas the TB and ALB levels gradually increased with time both in the hepatocyte suspension and in RPMI-1640 medium. In the BAL treatment group, blood ALT, TB and ammonia levels of ALF in canines decreased significantly.
CONCLUSION: The new BAL system has the ability to perform liver functions and can be used to treat ALF.
Collapse
|