1
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Ovchinnikova EV, Garbuz MM, Ovchinnikova AA, Kumeiko VV. Epidemiology of Wilson's Disease and Pathogenic Variants of the ATP7B Gene Leading to Diversified Protein Disfunctions. Int J Mol Sci 2024; 25:2402. [PMID: 38397079 PMCID: PMC10889319 DOI: 10.3390/ijms25042402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver, brain, and other organs. The disease is caused by pathogenic variants in the ATP7B gene, which encodes a P-type copper transport ATPase. Diagnosing WD is associated with numerous difficulties due to the wide range of clinical manifestations and its unknown dependence on the physiological characteristics of the patient. This leads to a delay in the start of therapy and the subsequent deterioration of the patient's condition. However, in recent years, molecular genetic testing of patients using next generation sequencing (NGS) has been gaining popularity. This immediately affected the detection speed of WD. If, previously, the frequency of this disease was estimated at 1:35,000-45,000 people, now, when conducting large molecular genetic studies, the frequency is calculated as 1:7026 people. This certainly points to the problem of identifying WD patients. This review provides an update on the performance of epidemiological studies of WD and describes normal physiological functions of the protein and diversified disfunctions depending on pathogenic variants of the ATP7B gene. Future prospects in the development of WD genetic diagnostics are also discussed.
Collapse
Affiliation(s)
- Elena Vasilievna Ovchinnikova
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Mikhail Maksimovich Garbuz
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Anna Aleksandrovna Ovchinnikova
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Vadim Vladimirovich Kumeiko
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Federal University, Vladivostok 690041, Russia
| |
Collapse
|
3
|
Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother 2023; 169:115839. [PMID: 37976889 DOI: 10.1016/j.biopha.2023.115839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging. On the other hand, vascular aging is also closely related to the occurrence of various cardiovascular diseases throughout the aging process. However, the specific causes of vascular aging are not clear, and different living environments and stress patterns can lead to individualized vascular aging. By exploring the correlations between copper-induced cell death and vascular aging, we can gain a novel perspective on the pathogenesis of vascular aging and enhance the prognosis of atherosclerosis. This article aims to provide a comprehensive review of the impacts of copper homeostasis on vascular aging, including their effects on endothelial cells, smooth muscle cells, oxidative stress, ferroptosis, intestinal flora, and other related factors. Furthermore, we intend to discuss potential strategies involving cuproptosis and provide new insights for copper-related vascular aging.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yuan-Yuan Li
- Department of Nursing, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
4
|
Roy S, Ghosh S, Ray J, Ray K, Sengupta M. Missing heritability of Wilson disease: a search for the uncharacterized mutations. Mamm Genome 2023; 34:1-11. [PMID: 36462057 DOI: 10.1007/s00335-022-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Wilson disease (WD), a copper metabolism disorder caused by mutations in ATP7B, manifests heterogeneous clinical features. Interestingly, in a fraction of clinically diagnosed WD patients, mutations in ATP7B appears to be missing. In this review we discuss the plausible explanations of this missing heritability and propose a workflow that can identify the hidden mutations. Mutation analyses of WD generally includes targeted sequencing of ATP7B exons, exon-intron boundaries, and rarely, the proximal promoter region. We propose that variants in the distal cis-regulatory elements and/or deep intronic variants that impact splicing might well represent the hidden mutations. Heterozygous del/ins that remain refractory to conventional PCR-sequencing method may also represent such mutations. In this review, we also hypothesize that mutations in the key copper metabolism genes, like, ATOX1, COMMD1, and SLC31A1, could possibly lead to a WD-like phenotype. In fact, WD does present overlapping symptoms with other rare genetic disorders; hence, the possibility of a misdiagnosis and thus adding to missing heritability cannot be excluded. In this regard, it seems that whole-genome analysis will provide a comprehensive and rapid molecular diagnosis of WD. However, considering the associated cost for such a strategy, we propose an alternative customized screening schema of WD which include targeted sequencing of ATP7B locus as well as other key copper metabolism genes. Success of such a schema has been tested in a pilot study.
Collapse
Affiliation(s)
- Shubhrajit Roy
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
- Post-doctoral Fellow, Physiology Department, Johns Hopkins University, Baltimore, USA
| | - Sampurna Ghosh
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Kunal Ray
- Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700 103, India.
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
5
|
Mutational analysis of exon 8 and exon 14 of ATP7B gene in Bangladeshi children with Wilson disease. Indian J Gastroenterol 2022; 41:456-464. [PMID: 36308701 DOI: 10.1007/s12664-022-01276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/25/2022] [Indexed: 02/04/2023]
Abstract
UNLABELLED BACKGROUND : Wilson disease (WD) is an autosomal recessive disorder caused by mutation in the Adenosine Triphosphate 7B (ATP7B) gene. The spectrum of ATP7B mutation varies in different populations. The objective of this study was to identify the mutation in exon 8 and exon 14 of ATP7B gene in Bangladeshi children clinically diagnosed as WD. We also aimed to explore the phenotypic presentation. METHODS It was a cross sectional observational study. The study was conducted at the Department of Paediatric Gastroenterology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh from January 2017 to June 2018. A total of 37 patients diagnosed with WD were enrolled for the study. Venous blood (about 3 mL) was drawn aseptically from each patient into tube containing ethyline diamine tetraacetic acid (EDTA) and preserved at -30°C for long-term preservation. The peripheral blood leukocytes of the patients and genomic DNAs were extracted. Exons 14 and 8 of ATP7B and their associated splice-site junctions were amplified by the polymerase chain reaction (PCR). The size and quantity of PCR products were verified by electrophoresis in 1.5% (w/v) agarose gel. 74 (37 × 2) PCR products were sent for Sanger Sequencing. The sequences were analyzed by Chromas version 2.6.6 software and the nucleotide blast was done by National Center for Biotechnology Information (NCBI) nucleoblast. Finally, the sequences were analyzed using AB Applied Bio systems and were matched with the reference sequences using MEGA software. RESULTS In this study, a single novel homozygous mutation pLeu.1071Val in the exon 14 was found in every (100%) studied child clinically diagnosed with WD. Heterozygous mutation p.Gly1061Glu in exon14 was also found in 6 patients (11%) with WD, which is one of the common mutations in this disease. In exon 8, p.Arg778Leu mutation was detected in one patient (2.7%), which is common in the Chinese and the South Asian populations and was heterozygous. Two novel heterozygous missense mutations p.K785R (2.7%) and p.S744F (2.7%) were also found in two other children in the exon 8. CONCLUSION We found three novel mutations in Bangladeshi children with WD, one of which may be tagged as founder mutation for Bangladeshi population. This finding indicates the necessity to study the mutation profiles of the whole ATP7B gene in our population for risk prediction. A further large-scale study will help in the development of a Mutational Data Base of Bangladeshi population with WD.
Collapse
|
6
|
Zhou J, Zhang Q, Zhao Y, Chen M, Zhou S, Cheng Y. Early Diagnosis of Wilson’s Disease in Children in Southern China by Using Common Parameters. Front Genet 2022; 13:788658. [PMID: 35222532 PMCID: PMC8867696 DOI: 10.3389/fgene.2022.788658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the study was to develop the early diagnostic criteria for Wilson’s disease (WD) in young children in southern China by using alanine aminotransferase (ALT) elevation as the first manifestation.Methods: A cross-sectional retrospective analysis of the clinical data and genetic test results of children with WD in southern China in the past 4 years and the follow-up of their short-term prognosis were performed in this study.Results: A total of 30 children (5.08 ± 2.06 years old) with elevated ALT as the first manifestation of WD in southern China were enrolled in this study, including 14 females and 16 males. Specifically, in all of the 30 cases (100%), the serum ceruloplasmin (CP) level was decreased, whereas the 24-h urinary copper level was increased. The genetic mutation test of the ATP7B gene was used to confirm the diagnosis. In particular, the two mutation sites, including p.R778L and p.I1148T, had the highest mutation frequencies, approximately 23.0 and 10.7%, respectively. Through follow-up, most of the children had good recovery.Conclusion: Early diagnosis and treatment of WD would substantially increase the survival rate and have a better prognosis. In addition, in 5-year-old children from southern China, early diagnosis could be performed quickly by referring to the following three parameters: elevated ALT, decreased ceruloplasmin level, and increased 24-h urinary copper level. It lays a foundation for further studies with a larger sample size.
Collapse
Affiliation(s)
- Jianli Zhou
- Department of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Qiao Zhang
- Department of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuzhen Zhao
- Department of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoming Zhou
- Department of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Shaoming Zhou, ; Yongwei Cheng,
| | - Yongwei Cheng
- Department of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Shaoming Zhou, ; Yongwei Cheng,
| |
Collapse
|
7
|
Hermann W. Classification and differential diagnosis of Wilson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S63. [PMID: 31179300 PMCID: PMC6531651 DOI: 10.21037/atm.2019.02.07] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Wilson's disease is characterized by hepatic and extrapyramidal movement disorders (EPS) with variable manifestation primarily between age 5 and 45. This variability often makes an early diagnosis difficult. A classification defines different clinical variants of Wilson's disease, which enables classifying the current clinical findings and making an early tentative diagnosis. Until the unequivocal proof or an autosomal recessive disorder of the hepatic copper transporter ATP7B has been ruled out, differential diagnoses have to be examined. Laboratory-chemical parameters of copper metabolism can both be deviations from the norm not related to the disease as well as other copper metabolism disorders besides Wilson's disease. In addition to known diseases such as Menkes disease, occipital horn syndrome (OHS), Indian childhood cirrhosis (ICC) and ceruloplasmin deficiency, recently discovered disorders are taken into account. These include MEDNIK syndrome, Huppke-Brendel syndrome and CCS chaperone deficiency. Another main focus is on differential diagnoses of childhood icterus correlated with age and anaemia as well as disorders of the extrapyramidal motor system. The Kayser-Fleischer ring (KFR) is qualified as classical ophthalmologic manifestation. The recently described manganese storage disease presents another rare metabolic disorder with symptoms similar to Wilson's disease. As this overview shows, Wilson's disease fits into a broad spectrum of internal and neurological disease patterns with icterus, anaemia and EPS.
Collapse
Affiliation(s)
- Wieland Hermann
- Department of Neurology, SRO AG Spital Langenthal, Langenthal, Switzerland
| |
Collapse
|
8
|
Barada K, El Haddad A, Katerji M, Jomaa M, Usta J. Wilson's disease in Lebanon and regional countries: Homozygosity and hepatic phenotype predominance. World J Gastroenterol 2017; 23:6715-6725. [PMID: 29085216 PMCID: PMC5643292 DOI: 10.3748/wjg.v23.i36.6715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the phenotypes and predominant disease-causing mutations in Lebanese patients with Wilson's disease, as compared to regional non-European data. METHODS The clinical profile of 36 patients diagnosed in Lebanon was studied and their mutations were determined by molecular testing. All patients underwent full physical exam, including ophthalmologic slit-lamp examination ultrasound imaging of the liver, as well as measurement of serum ceruloplasmin and 24-h urinary-Cu levels. In addition, genetic screening using PCR followed by sequencing to determine disease-causing mutations and polymorphisms in the ATP7B gene was carried on extracted DNA from patients and immediate family members. Our phenotypic-genotypic findings were then compared to reported mutations in Wilson's disease patients from regional Arab and non-European countries. RESULTS Patients belonged to extended consanguineous families. The majority were homozygous for the disease-causing mutation, with no predominant mutation identified. The most common mutation, detected in 4 out of 13 families, involved the ATP hinge region and was present in patients from Lebanon, Egypt, Iran and Turkey. Otherwise, mutations in Lebanese patients and those of the region were scattered over 17 exons of ATP7B. While the homozygous exon 12 mutation Trp939Cys was only detected in patients from Lebanon but none from the regional countries, the worldwide common mutation H1069Q was not present in the Lebanese and was rare in the region. Pure hepatic phenotype was predominant in patients from both Lebanon and the region (25%-65%). Furthermore, the majority of patients, including those who were asymptomatic, had evidence of some hepatic dysfunction. Pure neurologic phenotype was rare. CONCLUSION Findings do not support presence of a founder effect. Clinical and genetic screening is recommended for family members with index patients and unexplained hepatic dysfunction.
Collapse
Affiliation(s)
- Kassem Barada
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Aline El Haddad
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 110236, Lebanon
| | - Meghri Katerji
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 110236, Lebanon
| | - Mustapha Jomaa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 110236, Lebanon
| | - Julnar Usta
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 110236, Lebanon
| |
Collapse
|
9
|
Abstract
Wilson disease (WD) is an autosomal-recessive disorder of hepatocellular copper deposition caused by pathogenic variants in the copper-transporting gene, ATP7B. Early detection and treatment are critical to prevent lifelong neuropsychiatric, hepatic, and systemic disabilities. Due to the marked heterogeneity in age of onset and clinical presentation, the diagnosis of Wilson disease remains challenging to physicians today. Direct sequencing of the ATP7B gene is the most sensitive and widely used confirmatory testing method, and concurrent biochemical testing improves diagnostic accuracy. More than 600 pathogenic variants in ATP7B have been identified, with single-nucleotide missense and nonsense mutations being the most common, followed by insertions/deletions, and, rarely, splice site mutations. The prevalence of Wilson disease varies by geographic region, with higher frequency of certain mutations occurring in specific ethnic groups. Wilson disease has poor genotype-phenotype correlation, although a few possible modifiers have been proposed. Improving molecular genetic studies continue to advance our understanding of the pathogenesis, diagnosis, and screening for Wilson disease.
Collapse
Affiliation(s)
- Irene J Chang
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Si Houn Hahn
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
10
|
Clinical Use of Next-Generation Sequencing in the Diagnosis of Wilson's Disease. Gastroenterol Res Pract 2015; 2016:4548039. [PMID: 26819605 PMCID: PMC4706913 DOI: 10.1155/2016/4548039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 01/24/2023] Open
Abstract
Objective. Wilson's disease is a disorder of copper metabolism which is fatal without treatment. The great number of disease-causing ATP7B gene mutations and the variable clinical presentation of WD may cause a real diagnostic challenge. The emergence of next-generation sequencing provides a time-saving, cost-effective method for full sequencing of the whole ATP7B gene compared to the traditional Sanger sequencing. This is the first report on the clinical use of NGS to examine ATP7B gene. Materials and Methods. We used Ion Torrent Personal Genome Machine in four heterozygous patients for the identification of the other mutations and also in two patients with no known mutation. One patient with acute on chronic liver failure was a candidate for acute liver transplantation. The results were validated by Sanger sequencing. Results. In each case, the diagnosis of Wilson's disease was confirmed by identifying the mutations in both alleles within 48 hours. One novel mutation (p.Ala1270Ile) was found beyond the eight other known ones. The rapid detection of the mutations made possible the prompt diagnosis of WD in a patient with acute liver failure. Conclusions. According to our results we found next-generation sequencing a very useful, reliable, time-saving, and cost-effective method for diagnosing Wilson's disease in selected cases.
Collapse
|
11
|
Kerkhof M, Honkoop P. Never forget aceruloplasminemia in case of highly suggestive Wilson's disease score. Hepatology 2014; 59:1645-7. [PMID: 24002824 DOI: 10.1002/hep.26719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/25/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Marjon Kerkhof
- Department of Gastroenterology and Hepatology, Albert Schweitzer hospital, Dordrecht, the Netherlands
| | | |
Collapse
|
12
|
Medici V, Shibata NM, Kharbanda KK, Islam MS, Keen CL, Kim K, Tillman B, French SW, Halsted CH, LaSalle JM. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease. Epigenetics 2013; 9:286-96. [PMID: 24220304 DOI: 10.4161/epi.27110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P<0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine; Division of Gastroenterology and Hepatology; University of California Davis; Davis, CA USA
| | - Noreene M Shibata
- Department of Internal Medicine; Division of Gastroenterology and Hepatology; University of California Davis; Davis, CA USA
| | - Kusum K Kharbanda
- Research Service; Veterans Affairs Nebraska-Western Iowa Health Care System; Omaha, NE USA
| | - Mohammad S Islam
- Department of Medical Microbiology and Immunology; Genome Center; MIND Institute; University of California Davis; Davis, CA USA
| | - Carl L Keen
- Department of Nutrition; University of California Davis; Davis, CA USA
| | - Kyoungmi Kim
- Department of Public Health Sciences; Division of Biostatistics; University of California Davis; Davis, CA USA
| | - Brittany Tillman
- Department of Pathology; UCLA/Harbor Medical Center; Torrance, CA USA
| | - Samuel W French
- Department of Pathology; UCLA/Harbor Medical Center; Torrance, CA USA
| | - Charles H Halsted
- Department of Internal Medicine; Division of Gastroenterology and Hepatology; University of California Davis; Davis, CA USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology; Genome Center; MIND Institute; University of California Davis; Davis, CA USA
| |
Collapse
|
13
|
Alagille syndrome and Wilson disease in siblings: a diagnostic conundrum. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012; 26:330-2. [PMID: 22720273 DOI: 10.1155/2012/176543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors describe two siblings, each with a different, rare genetic condition that affects liver function. The index case, the 18-year-old asymptomatic brother of a young man recently diagnosed with Wilson disease, presented for Wilson disease screening and was also found to have abnormal liver function suggestive of cholestasis. However, ceruloplasmin level, 24 h urine copper concentration and liver synthetic function were normal. Further hepatic investigations and genetic mutation analysis were performed, ultimately leading to a diagnosis of Alagille syndrome. He was treated with ursodiol, which resulted in normalization of his liver function tests. Subsequently, he was found to be a carrier for a mutation in the Wilson disease gene, ATP7B. In the present report, the potential implications of being a heterozygote for Wilson disease in the context of Alagille syndrome are discussed. Also stressed is that care must be exercised by the clinician when diagnosing family members who may present with two different disorders closely mimicking one another.
Collapse
|
14
|
Bost M, Piguet-Lacroix G, Parant F, Wilson CMR. Molecular analysis of Wilson patients: direct sequencing and MLPA analysis in the ATP7B gene and Atox1 and COMMD1 gene analysis. J Trace Elem Med Biol 2012; 26:97-101. [PMID: 22677543 DOI: 10.1016/j.jtemb.2012.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
ATP7B mutations result in Cu storage in the liver and brain in Wilson disease (WD). Atox1 and COMMD1 were found to interact with ATP7B and involved in copper transport in the hepatocyte. To understand the molecular etiology of WD, we analyzed ATP7B, Atox1 and COMMD1 genes. Direct sequencing of (i) ATP7B gene was performed in 112 WD patients to identify the spectrum of disease-causing mutations in the French population, (ii) Atox1 gene was performed to study the known polymorphism 5'UTR-99T>C in 78 WD patients with two ATP7B mutations and (iii) COMMD1 gene was performed to detect the nucleotide change c.492GAT>GAC. MLPA (Multiplex Ligation-dependent Probe Amplification) analysis was performed in WD patients presenting only one ATP7B mutation. Among our 112 WD unrelated patients, 83 different ATP7B gene mutations were identified, 27 of which were novel. Two ATP7B mutations were identified in 98 WD cases, and one mutation was identified in 14 cases. In two of these 14 WD patients, we identified the deletion of exon 4 of the ATP7B gene by MLPA technique. In 78 selected patients of the cohort with two mutations in ATP7B, we have examined genotype-phenotype correlation between the detected changes in Atox1 and COMMD1 genes, and the presentation of the WD patients. Based on the data of this study, no major role can be attributed to Atox1 and COMMD in the pathophysiology or clinical variation of WD.
Collapse
Affiliation(s)
- Muriel Bost
- Centre de Biologie et Pathologie Est, Laboratoire des Maladies Héréditaires du Métabolisme, 59 Boulevard Pinel, 69677 Bron cedex, France.
| | | | | | | |
Collapse
|
15
|
Usta J, Abu Daya H, Halawi H, Al-Shareef I, El-Rifai O, Malli AH, Sharara AI, Habib RH, Barada K. Homozygosity for Non-H1069Q Missense Mutations in ATP7B Gene and Early Severe Liver Disease: Report of Two Families and a Meta-analysis. JIMD Rep 2011; 4:129-37. [PMID: 23430908 DOI: 10.1007/8904_2011_91] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/24/2011] [Accepted: 09/07/2011] [Indexed: 02/06/2023] Open
Abstract
Most patients with Wilson's disease (WD) are compound heterozygote, which complicates establishing genotype-phenotype correlations. We identified five patients who presented with early and/or severe hepatic disease who are homozygous for W939C missense mutation on exon 12 of ATP7B. We therefore conducted a meta-analysis to determine the phenotype of patients homozygous for missense or nonsense mutations in all ATP7B exons.The meta-analysis showed that 69% and 31% of patients are homozygous for H1069Q and non-H1069Q mutations, respectively. Compared to patients with H1069Q, those with non-H1069Q mutations were significantly more likely to have a hepatic phenotype, severe liver disease, a mixed phenotype, and less likely to have a neurologic phenotype. Compared to patients with nonsense mutations, those with non-H1069Q ones were equally likely to present with a hepatic phenotype and to have severe liver disease. Mean age at symptom onset in the non-H1069Q versus the H1069Q group was 15.5 versus 20.5years (p<0.001).Our data suggest that mutation W939C and other non-H1069Q missense mutations are associated with early disease onset, a hepatic phenotype, and a high risk of hepatic failure in homozygous patients. Early identification of such patients by genetic screening is important for timely initiation of treatment and prevention of complications.
Collapse
Affiliation(s)
- Julnar Usta
- Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang LH, Huang YQ, Shang X, Su QX, Xiong F, Yu QY, Lin HP, Wei ZS, Hong MF, Xu XM. Mutation analysis of 73 southern Chinese Wilson's disease patients: identification of 10 novel mutations and its clinical correlation. J Hum Genet 2011; 56:660-5. [PMID: 21796144 DOI: 10.1038/jhg.2011.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was designed to investigate the molecular basis and the correlation between genotype and phenotype in the southern Chinese patients with Wilson's disease (WD). Genotypes of the ATP7B gene in 73 WD patients were examined by denaturing high-performance liquid chromatography (DHPLC) and DNA sequencing. A total of 38 different disease-causing mutations were identified, including 10 novel mutations: missense mutations (p.Gln707Arg, p.Cys1079Phe, p.Gly1149Glu, p.Ser855Tyr, p.Ala874Pro and p.Ser921Arg), nonsense mutation (p.Arg1228Stop), splice-site mutations (2121+3A>T and 3244-2A>G) and frameshift mutation (1875_1876insAATT). We found that a pair of siblings carried the same genotype but different clinical type, and two patients were found to have three mutations. In addition, we compared the clinical data for p.Arg778Leu homozygotes and compound heterozygotes. Our research has enriched the mutation spectrum of the ATP7B gene in the Chinese population and can serve as the basis for genetic counseling and clinical/prenatal diagnosis to prevent WD in China.
Collapse
Affiliation(s)
- Li-Hua Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In the almost 100 years since Wilson's description of the illness that now bears his name, tremendous advances have been made in our understanding of this disorder. The genetic basis for Wilson's disease - mutation within the ATP7B gene - has been identified. The pathophysiologic basis for the damage resulting from the inability to excrete copper via the biliary system with its consequent gradual accumulation, first in the liver and ultimately in the brain and other organs and tissues, is now known. This has led to the development of effective diagnostic and treatment modalities that, although they may not eliminate the disorder, do provide the means for efficient diagnosis and effective amelioration if carried out in a dedicated and persistent fashion. Nevertheless, Wilson's disease remains both a diagnostic and treatment challenge for physician and patient. Its protean clinical manifestations make diagnosis difficult. Appropriate diagnostic evaluations to confirm the diagnosis and institute treatment can be confusing. In this chapter, the clinical manifestations, diagnostic evaluation, and treatment approaches for Wilson's disease are discussed.
Collapse
Affiliation(s)
- Ronald F Pfeiffer
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Lee BH, Kim JH, Lee SY, Jin HY, Kim KJ, Lee JJ, Park JY, Kim GH, Choi JH, Kim KM, Yoo HW. Distinct clinical courses according to presenting phenotypes and their correlations to ATP7B mutations in a large Wilson's disease cohort. Liver Int 2011; 31:831-9. [PMID: 21645214 DOI: 10.1111/j.1478-3231.2011.02503.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION AND AIMS Wide phenotypic and genotypic heterogeneities in Wilson's disease (WD) have been reported, hampering the study of their correlations. The goal of this study was to identify the factors related to these diversities. METHODS Clinical courses and molecular genetic characteristics were analysed in 237 unrelated Korean WD families. The average follow-up period was 8.2 ± 5.8 years. RESULTS Presenting phenotypes were classified as H1 (12.2%), H2 (42.4%), N1 (21.6%), N2 (0.4%), NX (0.4%), presymptomatic (22.4%) and other (0.4%), modifying the guidelines by Ferenci and colleagues. Age at presentation was youngest and cirrhosis was rarest in the presymptomatic group. Decompensated cirrhosis was the highest in the H1 group. Favourable outcome was rarest in the N1 group. Forty-seven (11 novel) ATP7B mutations were identified in 85% of the 474 alleles. Multiplex ligation-dependent probe amplification assays in ATP7B and analyses of ATOX1 and COMMD1 genes identified no additional mutations. Yeast complementation assays demonstrated functional perturbation of the seven novel missense mutants. Five major mutations, p.Arg778Leu, p.Ala874Val, p.Asn1270Ser, p.Lys838SerfsX35 and p.Leu1083Phe, accounted for 63% of the alleles. H1 was more common, age at presentation was younger and N1+N2+NX tended to be less common in patients with nonsense, frame shifting or splicing mutations than in those with missense mutations alone. Patients with both mutations in the transduction (Td) or the ATP hinge domain showed presymptomatic or hepatic manifestations but no neurological manifestation. CONCLUSIONS The presenting phenotype strongly affects the clinical outcome of WD, and is related to the ATP7B mutation type and location, providing an evidence for genotype-phenotype correlations in WD.
Collapse
Affiliation(s)
- Beom H Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Burkhead JL, Gray LW, Lutsenko S. Systems biology approach to Wilson's disease. Biometals 2011; 24:455-66. [PMID: 21380607 PMCID: PMC3106420 DOI: 10.1007/s10534-011-9430-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/19/2011] [Indexed: 12/12/2022]
Abstract
Wilson's disease (WD) is a severe disorder of copper misbalance, which manifests with a wide spectrum of liver pathology and/or neurologic and psychiatric symptoms. WD is caused by mutations in a gene encoding a copper-transporting ATPase ATP7B and is accompanied by accumulation of copper in tissues, especially in the liver. Copper-chelation therapy is available for treatment of WD symptoms and is often successful, however, significant challenges remain with respect to timely diagnostics and treatment of the disease. The lack of genotype-phenotype correlation remains unexplained, the causes of fulminant liver failure are not known, and the treatment of neurologic symptoms is only partially successful, underscoring the need for better understanding of WD mechanisms and factors that influence disease manifestations. Recent gene and protein profiling studies in animal models of WD began to uncover cellular processes that are primarily affected by copper accumulation in the liver. The results of such studies, summarized in this review, revealed new molecular players and pathways (cell cycle and cholesterol metabolism, mRNA splicing and nuclear receptor signaling) linked to copper misbalance. A systems biology approach promises to generate a comprehensive view of WD onset and progression, thus helping with a more fine-tune treatment and monitoring of the disorder.
Collapse
|
20
|
Homozygous mutations in the conserved ATP hinge region of the Wilson disease gene: association with liver disease. J Clin Gastroenterol 2010; 44:432-9. [PMID: 20485189 DOI: 10.1097/mcg.0b013e3181ce5138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine whether any correlation exists between the phenotype and genotype of 2 Lebanese families with members affected with Wilson disease (WD). BACKGROUND WD is an autosomal-recessive disorder of copper transport with significant phenotypic diversity. Most patients are compound heterozygous making it difficult to establish a clear link between phenotype and genotype. STUDY We investigated 14 members from 2 Lebanese families (H and Z) with 5 members affected with WD. Mutation analysis of the ATP7B gene, and clinical assessments were carried out for both families. We also performed a literature search retrieving reported phenotypes of all patients homozygous to mutations in any of the 21 exons of the ATP7B. RESULTS Patients of the H and Z-families were found homozygous for the respective Asn1270Ser and Pro1273Leu mutations in the adenosine triphosphate (ATP) hinge region of exon 18. Of the healthy members, 6 were heterozygous and 3 had normal sequences. Clinically, 4 patients had liver cirrhosis and 1 had asymptomatic transaminitis. One of the patients also had neurologic symptoms. Screening the literature for patients homozygous for mutations in the ATP hinge region identified 25 patients including ours. The overall prevalence of the hepatic phenotype among patients homozygous for mutation in exon 18 was 80% and was significantly higher than those in exons 7, 14, and 21. CONCLUSIONS We hereby report the association of liver disease with homozygous mutations in the conserved ATP hinge region of exon 18 of the ATP7B gene.
Collapse
|
21
|
Rew L, Mackert M, Bonevac D. A systematic review of literature about the genetic testing of adolescents. J SPEC PEDIATR NURS 2009; 14:284-94. [PMID: 19796327 DOI: 10.1111/j.1744-6155.2009.00210.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Mapping of the human genome raises interest in and concern about the genetic testing of adolescents. Our purpose was to determine the attitudes and knowledge adolescents and their parents have about genetic testing. DESIGN AND METHOD This paper is a report of a systematic review of the research literature (n = 56) about the attitudes and knowledge adolescents and their parents have about genetic testing. RESULTS The majority of studies, which were descriptive in design, focused on a specific heritable disorder, were conducted in the United States, and over-sampled well-educated White females. PRACTICE IMPLICATIONS Results suggest that adolescents and their families have relatively positive attitudes about genetic testing and may experience both harms and benefits from testing. Nurses may be in positions to assist adolescents and their families in making decisions about genetic testing, remaining sensitive to family dynamics and issues of privacy and autonomy.
Collapse
Affiliation(s)
- Lynn Rew
- The University of Texas at Austin, Austin, Texas, USA.
| | | | | |
Collapse
|
22
|
Zhou H, Fischer HP. [Hereditary hemochromatosis, alpha-1-antitrypsin deficiency and Wilson's disease. Pathogenesis, clinical findings and pathways to diagnosis]. DER PATHOLOGE 2009; 29:73-83. [PMID: 18210110 DOI: 10.1007/s00292-007-0954-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary hemochromatosis, alpha-1-antitrypsin (AAT) deficiency, and Wilson's disease are the most common hereditary causes of unclear hepatopathy. Classical primary hemochromatosis (type I) on the basis of a homozygous mutation of the HFE gene, usually presents in adults with increasing hepatocellular siderosis and chronic progressive necroinflammatory liver disease. Homozygous AAT deficiency type PiZZ becomes manifest in newborns as a giant cell hepatitis or findings similar to bile duct atresia, in adults as chronic hepatitis or "cryptogenic cirrhosis". The heterozygous PiZ mutation can lead to PAS-positive hepatocellular AAT deposits increasing over the life time. Immunohistochemical detection of AAT deposits by specific PiZ antibodies is a highly sensitive and specific supplementary method. Molecular analysis of AAT and HFE genes in paraffin-embedded tissue or blood can confirm the diagnosis and allows the zygosity status to be defined. Wilson's disease has to be considered in children and young adults with unexplained histologic findings of chronic hepatitis or steatohepatitis. Rhodanin staining is the most effective histochemical method to detect free copper deposits, but negative staining results do not exclude Wilson's disease. In cases suspected of Wilson's disease further clinical exploration must be initiated. The diagnosis is based on a combination of clinical and biochemical findings, which can be supplemented by mutation analysis of the ATP7B gene.
Collapse
Affiliation(s)
- H Zhou
- Pathologisches Institut der Universität Bonn.
| | | |
Collapse
|
23
|
|
24
|
Kucinskas L, Jeroch J, Vitkauskiene A, Sakalauskas R, Petrenkiene V, Kucinskas V, Naginiene R, Schmidt H, Kupcinskas L. High frequency of the c.3207C>A (p.H1069Q) mutation in ATP7B gene of Lithuanian patients with hepatic presentation of Wilson's disease. World J Gastroenterol 2008; 14:5876-9. [PMID: 18855987 PMCID: PMC2751898 DOI: 10.3748/wjg.14.5876] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the prevalence of the ATP7B gene mutation in patients with hepatic presentation of Wilson's disease (WD) in Lithuania. METHODS Eleven unrelated Lithuanian families, including 13 WD patients were tested. Clinically WD diagnosis was established in accordance to the Leipzig scoring system. Genomic DNA was extracted from whole venous blood using a salt precipitation method. Firstly, the semi-nested polymerase chain reaction (PCR) technique was used to detect the c.3207C>A (p.H1069Q) mutation. Patients not homozygous for the c.3207C>A (p.H1069Q) mutation were further analyzed. The 21 exons of the WD gene were amplified in a thermal cycler (Biometra T3 Thermocycler, Gottingen, Germany). Direct sequencing of the amplified PCR products was performed by cycle sequencing using fluorescent dye terminators in an automatic sequencer (Applied Biosystems, Darmstadt, Germany). RESULTS Total of 13 WD patients (mean age 26.4 years; range 17-40; male/female 3/10) presented with hepatic disorders and 16 their first degree relatives (including 12 siblings) were studied. Some of WD patients, in addition to hepatic symptoms, have had extrahepatic disorders (hemolytic anemia 3; Fanconi syndrome 1; neurophsychiatric and behavioural disorder 2). Liver biopsy specimens were available in all of 13 WD patients (8 had cirrhosis; 1-chronic hepatitis; 3-acute liver failure, 1-liver steatosis). Twelve of 13 (92.3%) WD patients had the c.3207C>A (p.H1069Q) mutation, 6 of them in both chromosomes, 6 were presented as compound heterozygotes with additional c.3472-82delGGTTTAACCAT, c.3402delC, c.3121C>T (p.R1041W) or unknown mutations. For one patient with liver cirrhosis and psychiatric disorder (Leipzig score 6), no mutations were found. Out of 16 first degree WD relatives, 11 (68.7%) were heterozygous for the c.3207C>A (p.H1069Q) mutation. Two patients with fulminant WD died from acute liver failure and 11 are in full remission under penicillamine or zinc acetate treatment. Three women with WD successfully delivered healthy babies. CONCLUSION The c.3207C>A (p.H1069Q) missense mutation is the most characteristic mutation for Lithuanian patients with WD. Even 92.3% of WD patients with hepatic presentation of the disease are homozygous or compound heterozygotes for the p.H1069Q mutation.
Collapse
Affiliation(s)
- Laimutis Kucinskas
- Department of Gastroenterology, Kaunas University of Medicine, Eiveniu 2, Kaunas LT-50009, Lithuania
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mak CM, Lam CW. Diagnosis of Wilson's disease: a comprehensive review. Crit Rev Clin Lab Sci 2008; 45:263-90. [PMID: 18568852 DOI: 10.1080/10408360801991055] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wilson's disease is an autosomal recessive disorder of copper metabolism. The culprit gene is ATP7B. The worldwide prevalence is about 1 in 30,000, which may vary by population. Higher prevalence rates were reported using more sensitive screening techniques and pilot population screening. Typical presentations include neuropsychiatric and hepatic dysfunction, whereas atypical presentations are protean. Diagnosis relies on a high clinical suspicion, typical neurological symptoms, presence of Kayser-Fleischer rings, and reduced serum ceruloplasmin concentration. The conventional value of < 0.20 g/l is not a universal diagnostic value. Age of the subjects and analytical variations should be considered when interpreting these levels. Patients with inconclusive findings require further investigations such as 24 h urinary free-copper excretion, penicillamine challenge test, liver copper measurement, and detection of gene mutations. Direct molecular diagnosis remains the most decisive tool. Other tests such as non-ceruloplasmin-bound copper are unreliable. Potential pitfalls and limitations of these diagnostic markers are critically reviewed in this paper. The mainstays of therapy are trientine, penicillamine, and/or zinc. Liver transplantation is lifesaving for those with advanced disease. Ceruloplasmin oxidase activity and serum free-copper concentration should be monitored in patients on long-term de-coppering therapy to prevent iatrogenic copper deficiency.
Collapse
Affiliation(s)
- Chloe M Mak
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | |
Collapse
|
26
|
Ye S, Gong L, Shui QX, Zhou LF. Wilson disease: Identification of two novel mutations and clinical correlation in Eastern Chinese patients. World J Gastroenterol 2007; 13:5147-50. [PMID: 17876883 PMCID: PMC4434647 DOI: 10.3748/wjg.v13.i38.5147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study mutations in the P-type ATPase (ATP7B) gene responsible for Wilson disease (WD) in the Eastern Chinese population, and the possible correlation of specific mutations with clinical characteristics.
METHODS: Mutations of the ATP7B gene were sought by means of direct sequencing in 50 Eastern Chinese WD patients of Han ethnic origin.
RESULTS: Two novel mutations, Asp96Gly and Asp196Glu, were first identified. We also compared the characterization of mutations in ATP7B with the clinical findings, and a significant correlation with hepatic manifestations between patients carrying the Arg778Leu mutation and those without was found.
CONCLUSION: Gene sequencing analysis was shown to have a high detection rate and accuracy. It may become the first priority in screening of WD patients.
Collapse
Affiliation(s)
- Sheng Ye
- Department of Pediatrics, Child Hospital, Zhejiang University, Hangzhou 310005, Zhejiang Province, China
| | | | | | | |
Collapse
|
27
|
Abstract
Wilson's disease is a rare condition characterized by a defect in biliary excretion of copper, due to a mutation of both alleles of "Wilson's disease" gene (ATP7b gene). Many different mutations have been identified in affected patients. Since the clinical presentation of the disease is highly heterogeneous, it has been suspected that this variability could be related to different phenotypes. In this paper, Folhoffer et al. report a series of 109 Hungarian patients with Wilson's disease. The authors identified 8 novel, previously unreported, mutations of ATP7b gene in their population. However, 17% of patients with an established diagnosis of Wilson's disease still did not have any identifiable mutation. Since not all exons were analyzed, more studies are needed to identify the corresponding mutations. Overall, the authors failed to document any genotype-phenotype correlation suggesting that non genetical factors are involved in the clinical variability of the disease.
Collapse
Affiliation(s)
- François Durand
- Service d'Hépatologie, Université Denis Diderot, Hospital Beaujon, Clichy, France.
| |
Collapse
|