1
|
Zhong Z, Wu H, Zhang Q, Zhong W, Zhao P. Characteristics of T cell receptor repertoires of patients with acute myocardial infarction through high-throughput sequencing. J Transl Med 2019; 17:21. [PMID: 30634977 PMCID: PMC6330436 DOI: 10.1186/s12967-019-1768-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/02/2019] [Indexed: 01/19/2023] Open
Abstract
Background T cells are key regulators of immunity and one of the cells recruited in atherosclerosis and participated in various stages of the development of atherosclerosis. Characterizing T-cell receptor (TCR) repertoires is a priority of great scientific interest and potential clinical utility for the early diagnosis, risk stratification and prognostic evaluation of acute myocardial infarction (AMI). Methods The TCR repertoires in 21 subjects including 7 patients with non-ST-segment elevation myocardial infarction (NSTEMI), 6 patients with ST-segment elevation myocardial infarction (STEMI) and 8 subjects with normal coronary artery (NCA) as control were characterized by using high-throughput sequencing. Bioinformatics analysis were performed. Results Patients with NSTEMI displayed more diverse TCR sequences than NCA controls, but they had lower percentage of top 200 TCR sequences. However, no significant differences were observed between the patients with STEMI and NCA controls, but STEMI group had lower percentage of top 200 TCR sequences. T cells from patients with AMI and NCA controls showed a differential V and J gene usage, especially, significant difference was observed in frequencies of V gene (TRBV2, TRBV29-1, TRBV30 and TRBV12-3) and J gene (TRBJ2-1) usage. Furthermore, significantly differences in average overlap was observed in groups of AMI and NCA control. The results showed that patients with AMI had distinct TCR repertoires which revealed the association between cardiovascular condition and T-cell clonotypes. Conclusions Our findings revealed the differences of TCR repertoires between patients with AMI and NCA controls, which might be potential biomarkers for evaluating risk stratification or diagnosis of acute coronary syndrome. Electronic supplementary material The online version of this article (10.1186/s12967-019-1768-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Heming Wu
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Qifeng Zhang
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China
| | - Pingsen Zhao
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China. .,Clinical Core Laboratory, Center for Precision Medicine, Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China. .,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, 514031, People's Republic of China. .,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, 514031, People's Republic of China. .,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, 514031, People's Republic of China.
| |
Collapse
|
2
|
van der Torren CR, Verrijn Stuart AA, Lee D, Meerding J, van de Velde U, Pipeleers D, Gillard P, Keymeulen B, de Jager W, Roep BO. Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes. PLoS One 2016; 11:e0146649. [PMID: 26751709 PMCID: PMC4713434 DOI: 10.1371/journal.pone.0146649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Islet cell transplantation holds a potential cure for type 1 diabetes, but many islet recipients do not reach long-lasting insulin independence. In this exploratory study, we investigated whether serum cytokines, chemokines and adipokines are associated with the clinical outcome of islet transplantation. Methods Thirteen islet transplant patients were selected on basis of good graft function (reaching insulin independence) or insufficient engraftment (insulin requiring) from our cohort receiving standardized grafts and immune suppressive therapy. Patients reaching insulin independence were divided in those with continued (>12 months) versus transient (<6 months) insulin independence. A panel of 94 proteins including cytokines and adipokines was measured in sera taken before and at one year after transplantation using a validated multiplex immunoassay platform. Results Ninety serum proteins were detectable in concentrations varying markedly among patients at either time point. Thirteen markers changed after transplantation, while another seven markers changed in a clinical subpopulation. All other markers remained unaffected after transplantation under generalized immunosuppression. Patterns of cytokines could distinguish good graft function from insufficient function including IFN-α, LIF, SCF and IL-1RII before and after transplantation, by IL-16, CCL3, BDNF and M-CSF only before and by IL-22, IL-33, KIM-1, S100A12 and sCD14 after transplantation. Three other proteins (Leptin, Cathepsin L and S100A12) associated with loss of temporary graft function before or after transplantation. Conclusions Distinct cytokine signatures could be identified in serum that predict or associate with clinical outcome. These serum markers may help guiding patient selection and choice of immunotherapy, or act as novel drug targets in islet transplantation.
Collapse
Affiliation(s)
- Cornelis R. van der Torren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Juvenile Diabetes Research Foundation Center for Beta Cell Therapy in Diabetes
| | - Annemarie A. Verrijn Stuart
- Department of Pediatric Immunology, Department of Pediatric Endocrinology and Laboratory of Translational Immunology and Multiplex Core Facility, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - DaHae Lee
- Dept. of Endocrinology, University Hospital, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
- Juvenile Diabetes Research Foundation Center for Beta Cell Therapy in Diabetes
| | - Jenny Meerding
- Department of Pediatric Immunology, Department of Pediatric Endocrinology and Laboratory of Translational Immunology and Multiplex Core Facility, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Ursule van de Velde
- Diabetes Research Center and Academic Hospital, Free University-Vrije Universiteit Brussel (VUB), 1090, Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for Beta Cell Therapy in Diabetes
| | - Daniel Pipeleers
- Diabetes Research Center and Academic Hospital, Free University-Vrije Universiteit Brussel (VUB), 1090, Brussels, Belgium
| | - Pieter Gillard
- Dept. of Endocrinology, University Hospital, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
- Juvenile Diabetes Research Foundation Center for Beta Cell Therapy in Diabetes
| | - Bart Keymeulen
- Diabetes Research Center and Academic Hospital, Free University-Vrije Universiteit Brussel (VUB), 1090, Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for Beta Cell Therapy in Diabetes
| | - Wilco de Jager
- Department of Pediatric Immunology, Department of Pediatric Endocrinology and Laboratory of Translational Immunology and Multiplex Core Facility, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Bart O. Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Juvenile Diabetes Research Foundation Center for Beta Cell Therapy in Diabetes
- * E-mail:
| |
Collapse
|
3
|
Fousteri G, Jofra T, Di Fonte R, Battaglia M. Combination of an Antigen-Specific Therapy and an Immunomodulatory Treatment to Simultaneous Block Recurrent Autoimmunity and Alloreactivity in Non-Obese Diabetic Mice. PLoS One 2015; 10:e0127631. [PMID: 26080071 PMCID: PMC4469694 DOI: 10.1371/journal.pone.0127631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/16/2015] [Indexed: 12/12/2022] Open
Abstract
Restoration of endogenous insulin production by islet transplantation is considered a curative option for patients with type 1 diabetes. However, recurrent autoimmunity and alloreactivity cause graft rejection hindering successful transplantation. Here we tested whether transplant tolerance to allogeneic islets could be achieved in non-obese diabetic (NOD) mice by simultaneously tackling autoimmunity via antigen-specific immunization, and alloreactivity via granulocyte colony stimulating factor (G-CSF) and rapamycin (RAPA) treatment. Immunization with insB9-23 peptide alone or in combination with two islet peptides (IGRP206-214 and GAD524-543) in incomplete Freund’s adjuvant (IFA) were tested for promoting syngeneic pancreatic islet engraftment in spontaneously diabetic NOD mice. Treatment with G-CSF/RAPA alone or in combination with insB9-23/IFA was examined for promoting allogeneic islet engraftment in the same mouse model. InsB9-23/IFA immunization significantly prolonged syngeneic pancreatic islet survival in NOD mice by a mechanism that necessitated the presence of CD4+CD25+ T regulatory (Treg) cells, while combination of three islet epitopes was less efficacious in controlling recurrent autoimmunity. G-CSF/RAPA treatment was unable to reverse T1D or control recurrent autoimmunity but significantly prolonged islet allograft survival in NOD mice. Blockade of interleukin-10 (IL-10) during G-CSF/RAPA treatment resulted in allograft rejection suggesting that IL-10-producing cells were fundamental to achieve transplant tolerance. G-CSF/RAPA treatment combined with insB9-23/IFA did not further increase the survival of allogeneic islets. Thus, insB9-23/IFA immunization controls recurrent autoimmunity and G-CSF/RAPA treatment limits alloreactivity, however their combination does not further promote allogeneic pancreatic islet engraftment in NOD mice.
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, Milan, Italy
- * E-mail: (GF); (MB)
| | - Tatiana Jofra
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, Milan, Italy
| | - Roberta Di Fonte
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, Milan, Italy
| | - Manuela Battaglia
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, Milan, Italy
- * E-mail: (GF); (MB)
| |
Collapse
|