1
|
Dong J, Wang Z, Wang SR, Zhao H, Li J, Ma T. Application value of different imaging methods in the early diagnosis of small hepatocellular carcinoma: a network meta-analysis. Front Oncol 2025; 14:1510296. [PMID: 39876892 PMCID: PMC11772129 DOI: 10.3389/fonc.2024.1510296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025] Open
Abstract
Objective To determine the diagnostic value of ultrasound, multi-phase enhanced computed tomography, and magnetic resonance imaging of small hepatocellular carcinoma. Methods Experimental studies on diagnosing small hepatocellular carcinoma in four databases: PubMed, Cochrane Library, Web of Science, and Embase, were comprehensively searched from October 2007 to October 2024. Relevant diagnostic accuracy data were extracted and a Bayesian model that combined direct and indirect evidence was used for analysis. Results 16 original studies were included and data from 2,447 patients were collated to assess the diagnostic value of 10 different methods. The methodological quality of the included studies was good and there was no obvious publication bias. The pooled DOR of all diagnostic methods was 19.61, which was statistically significant (I2 = 76.0%, P < 0.01, 95% CI:13.30 - 28.92). Normal US + CEUS + ultrasonic elastic imaging had the highest specificity (92.9), accuracy (93.6), and positive predictive value (94.4). Unenhanced MRI + Contrast-enhanced MRI had the highest sensitivity (96.6) and negative predictive value (96.6), but specificity (12.5) and positive predictive value (34.4) were extremely poor. Contrast-enhanced MRI had the highest diagnostic value in individual imaging methods (sensitivity: 66, specificity: 55.5, accuracy: 67.9, positive predictive value: 64.4, negative predictive value: 66.5). There was significant inconsistency and high heterogeneity in this study. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024507883.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- Department of Ultrasound Medicine, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Ting Ma
- Department of Ultrasound Medicine, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
2
|
Chandel SS, Mishra A, Dubey G, Singh RP, Singh M, Agarwal M, Chawra HS, Kukreti N. Unravelling the role of long non-coding RNAs in modulating the Hedgehog pathway in cancer. Pathol Res Pract 2024; 254:155156. [PMID: 38309021 DOI: 10.1016/j.prp.2024.155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Cancer is a multifactorial pathological condition characterized by uncontrolled cellular proliferation, genomic instability, and evasion of regulatory mechanisms. It arises from the accumulation of genetic mutations confer selective growth advantages, leading to malignant transformation and tumor formation. The intricate interplay between LncRNAs and the Hedgehog pathway has emerged as a captivating frontier in cancer research. The Hedgehog pathway, known for its fundamental roles in embryonic development and tissue homeostasis, is frequently dysregulated in various cancers, contributing to aberrant cellular proliferation, survival, and differentiation. The Hh pathway is crucial in organizing growth and maturation processes in multicellular organisms. It plays a pivotal role in the initiation of tumors as well as in conferring resistance to conventional therapeutic approaches. The crosstalk among the Hh pathway and lncRNAs affects the expression of Hh signaling components through various transcriptional and post-transcriptional processes. Numerous pathogenic processes, including both non-malignant and malignant illnesses, have been identified to be induced by this interaction. The dysregulation of lncRNAs has been associated with the activation or inhibition of the Hh pathway, making it a potential therapeutic target against tumorigenesis. Insights into the functional significance of LncRNAs in Hedgehog pathway modulation provide promising avenues for diagnostic and therapeutic interventions. The dysregulation of LncRNAs in various cancer types underscores their potential as biomarkers for early detection and prognostication. Additionally, targeting LncRNAs associated with the Hedgehog pathway presents an innovative strategy for developing precision therapeutics to restore pathway homeostasis and impede cancer progression. This review aims to elucidate the complex regulatory network orchestrated by LncRNAs, unravelling their pivotal roles in modulating the Hedgehog pathway and influencing cancer progression.
Collapse
Affiliation(s)
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
3
|
Luo J, Zhu WC, Chen QX, Yang CF, Huang BJ, Zhang SJ. A prognostic model based on DNA methylation-related gene expression for predicting overall survival in hepatocellular carcinoma. Front Oncol 2024; 13:1171932. [PMID: 38304027 PMCID: PMC10830715 DOI: 10.3389/fonc.2023.1171932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) continues to increase in morbidity and mortality among all types of cancer. DNA methylation, an important epigenetic modification, is associated with cancer occurrence and progression. The objective of this study was to establish a model based on DNA methylation risk scores for identifying new potential therapeutic targets in HCC and preventing cancer progression. Methods Transcriptomic, clinical, and DNA methylation data on 374 tumor tissues and 50 adjacent normal tissues were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma database. The gene expression profiles of the GSE54236 liver cancer dataset, which contains data on 161 liver tissue samples, were obtained from the Gene Expression Omnibus database. We analyzed the relationship between DNA methylation and gene expression levels after identifying the differentially methylated and expressed genes. Then, we developed and validated a risk score model based on the DNA methylation-driven genes. A tissue array consisting of 30 human hepatocellular carcinoma samples and adjacent normal tissues was used to assess the protein and mRNA expression levels of the marker genes by immunohistochemistry and qRT-PCR, respectively. Results Three methylation-related differential genes were identified in our study: GLS, MEX3B, and GNA14. The results revealed that their DNA methylation levels were negatively correlated with local gene expression regulation. The gene methylation levels correlated strongly with the prognosis of patients with liver cancer. This was confirmed by qRT-PCR and immunohistochemical verification of the expression of these genes or proteins in tumors and adjacent tissues. These results revealed the relationship between the level of relevant gene methylation and the prognosis of patients with liver cancer as well as the underlying cellular and biological mechanisms. This allows our gene signature to provide more accurate and appropriate predictions for clinical applications. Conclusion Through bioinformatics analysis and experimental validation, we obtained three DNA methylation marker: GLS, MEX3B, and GNA14. This helps to predict the prognosis and may be a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jin Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Traditional Chinese Medicine, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Wan-Cui Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiu-Xia Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang-Fu Yang
- Department of Oncology, The People’s Hospital of Gaozhou, Gaozhou, China
| | - Bi-Jun Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Jun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Chen X, Mohammed AF, Li C. Assessment of the Clinical Value of Platelet-to-Lymphocyte Ratio in Patients with Hepatocellular Carcinoma. Clin Appl Thromb Hemost 2024; 30:10760296231221535. [PMID: 38591958 PMCID: PMC11005495 DOI: 10.1177/10760296231221535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 04/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with higher mortality as a result of poor prognosis and unavailability of effective treatment options. This study retrospectively analyzed the clinical value of platelet-to-lymphocyte ratio (PLR) to aid in differentiating early hepatocellular carcinoma from liver cirrhosis patients. Three hundred and nine (309) patients including 155 patients with hepatocellular carcinoma (HCC) and 154 patients with liver cirrhosis were enrolled in this study. General clinical characteristics and blood parameters of each patient were collected, calculated, and retrospectively analyzed. Mann-Whitney U test was calculated to compare the two groups. Receiver operating characteristics (ROC) curve was performed to investigate the diagnostic potential of PLR in the prediction of HCC at a cut-off with high accuracy (area under the curve [AUC]) > 0.80. Hemoglobin (HB) concentration, red blood cell (RBC) count, neutrophil (NEU) count, platelet count, platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR) were significantly higher in the HCC patients than in the liver cirrhosis patients (p < 0.05). ROC curve analysis showed that the AUC, optimal cut-off value, sensitivity, and specificity of PLR to predict HCC patients were 0.912, 98.7, 81.2%, and 80.6% respectively. The results suggest that PLR is a potential biomarker that can be used to predict early HCC.
Collapse
Affiliation(s)
- Xu Chen
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Abdul Fatawu Mohammed
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Chengbin Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Ma Y, Li Y, Wu T, Li Y, Wang Q. Astragaloside IV Attenuates Programmed Death-Ligand 1-Mediated Immunosuppression during Liver Cancer Development via the miR-135b-5p/CNDP1 Axis. Cancers (Basel) 2023; 15:5048. [PMID: 37894415 PMCID: PMC10605108 DOI: 10.3390/cancers15205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is a pivotal contributor to anti-tumour effects and has garnered extensive attention in research. Tumour cell immune suppression is closely related to the increase in Programmed Death-Ligand 1 (PD-L1). Hepatocellular carcinoma (HCC) is a malignant tumour originating from hepatic epithelial tissue, and the role of AS-IV in regulating PD-L1 in anti-HCC activity remains unclear. METHODS Various concentrations of AS-IV were administered to both human liver immortalised cells (THEL2) and HCC (Huh-7 and SMMC-7721), and cell growth was assessed using the CCK-8 assay. HCC levels and cell apoptosis were examined using flow cytometry. Mice were orally administered AS-IV at different concentrations to study its effects on HCC in vivo. Immunohistochemistry was employed to evaluate PD-L1 levels. Western blotting was employed to determine PD-L1 and CNDP1 protein levels. We carried out a qRT-PCR to quantify the levels of miR-135b-3p and CNDP1. Finally, a dual-luciferase reporter assay was employed to validate the direct interaction between miR-135b-3p and the 3'UTR of CNDP1. RESULTS AS-IV exhibited a dose-dependent inhibition of proliferation in Huh-7 and SMMC-7721 while inhibiting PD-L1 expression induced by interferon-γ (IFN-γ), thus attenuating PD-L1-mediated immune suppression. MiR-135b-5p showed significant amplification in HCC tissues and cells. AS-IV mitigated PD-L1-mediated immune suppression through miR-135b-5p. MiR-135b-5p targeted CNDP1, and AS-IV mitigated PD-L1-induced immunosuppression by modulating the miR-135b-5p/CNDP1 pathway. CONCLUSION AS-IV decreases cell surface PD-L1 levels and alleviates PD-L1-associated immune suppression via the miR-135b-5p/CNDP1 pathway. AS-IV may be a novel component for treating HCC.
Collapse
Affiliation(s)
- Yang Ma
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| | - Yan Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Taotao Wu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingshuai Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| |
Collapse
|
6
|
HMOX1 Attenuates the Sensitivity of Hepatocellular Carcinoma Cells to Sorafenib via Modulating the Expression of ABC Transporters. Int J Genomics 2022; 2022:9451557. [PMID: 35800617 PMCID: PMC9253870 DOI: 10.1155/2022/9451557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a common malignancy, and mechanisms of acquired sorafenib resistance during the treatment of HCC patients remain elusive. The present study performed integrated bioinformatics analysis and explored the potential action of heme oxygenase 1 (HMOX1) in sorafenib-resistant HCC cells. Differentially expressed genes (DEGs) of the sorafenib-resistant group as compared to the sorafenib-sensitive group from GSE140202 and GSE143233 were extracted. Fifty common DEGs between GSE140202 and GSE143233 were extracted. Ten hub genes were identified from the protein-protein interaction network based on common DEGs. Experimental results revealed the upregulation of HMOX1 in sorafenib-resistant HCC cells. HMOX1 silence promoted the sensitivity to sorafenib in sorafenib-resistant HCC cells; overexpression of HMOX1 attenuated the sensitivity. In addition, HMOX1 silence downregulated the mRNA expression of ABC transporters in sorafenib-resistant HCC cells, while HMOX1 overexpression upregulated mRNA expression of ABC transporter expression in HCC cells. Further analysis also revealed that high expression of HMOX1 was associated with shorter OS and DSS in HCC patients. In conclusion, our analysis identified ten hub genes associated with sorafenib resistance in HCC. Further validation studies demonstrated that HMOX1 promoted sorafenib resistance of HCC cells via modulating ABC transporter expression.
Collapse
|
7
|
Yang D, Su Y, Zhao F, Chen C, Zhao K, Xiong X, Ding Y. A Practical Nomogram and Risk Stratification System Predicting Cancer-Specific Survival for Hepatocellular Carcinoma Patients With Severe Liver Fibrosis. Front Surg 2022; 9:920589. [PMID: 35784933 PMCID: PMC9243509 DOI: 10.3389/fsurg.2022.920589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. This study aims to construct a novel practical nomogram and risk stratification system to predict cancer-specific survival (CSS) in HCC patients with severe liver fibrosis. Methods Data on 1,878 HCC patients with severe liver fibrosis in the period 1975 to 2017 were extracted from the Surveillance, Epidemiology, and End Results database (SEER). Patients were block-randomized (1,316 training cohort, 562 validation cohort) by setting random seed. Univariate and multivariate COX regression analyses were employed to select variables for the nomogram. The consistency index (C-index), the area under time-dependent receiver operating characteristic curve (time-dependent AUC), and calibration curves were used to evaluate the performance of the nomogram. Decision curve analysis (DCA), the C-index, the net reclassification index (NRI), and integrated discrimination improvement (IDI) were used to compare the nomogram with the AJCC tumor staging system. We also compared the risk stratification of the nomogram with the American Joint Committee on Cancer (AJCC) staging system. Results Seven variables were selected to establish the nomogram. The C-index (training cohort: 0.781, 95%CI: 0.767–0.793; validation cohort: 0.793, 95%CI = 95%CI: 0.779–0.798) and the time-dependent AUCs (the training cohort: the values of 1-, 3-, and 5 years were 0.845, 0.835, and 0.842, respectively; the validation cohort: the values of 1-, 3-, and 5 years were 0.861, 0.870, and 0.876, respectively) showed satisfactory discrimination. The calibration plots also revealed that the nomogram was consistent with the actual observations. NRI (training cohort: 1-, 2-, and 3-year CSS: 0.42, 0.61, and 0.67; validation cohort: 1-, 2-, and 3-year CSS: 0.26, 0.52, and 0.72) and IDI (training cohort: 1-, 3-, and 5-year CSS:0.16, 0.20, and 0.22; validation cohort: 1-, 3-, and 5-year CSS: 0.17, 0.26, and 0.30) indicated that the established nomogram significantly outperformed the AJCC staging system (P < 0.001). Moreover, DCA also showed that the nomogram was more practical and had better recognition. Conclusion A nomogram for predicting CSS for HCC patients with severe liver fibrosis was established and validated, which provided a new system of risk stratification as a practical tool for individualized treatment and management.
Collapse
Affiliation(s)
- Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Su
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Correspondence: Youming Ding Chen Chen
| | - Kailiang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyun Xiong
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Correspondence: Youming Ding Chen Chen
| |
Collapse
|
8
|
Sun L, Chen L, Yang K, Dai WF, Yang Y, Cui X, Yang B, Wang C. A multiple functional supramolecular system for synergetic treatments of hepatocellular carcinoma. Int J Pharm 2022; 619:121716. [PMID: 35367586 DOI: 10.1016/j.ijpharm.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
In the current times, achieving specific targeted and controllable drug delivery remains one of the major challenges in the treatment of hepatocellular carcinoma (HCC). The present study reported the development of a multiple functional indocyanine green (ICG)-cyclodextrin (CD) system, wherein loaded etoposide (EPS) was used as the model chemotherapeutic drug. In the developed system, ICG segment served as a photosensitizer for photothermal therapy (PTT) and the targeting moiety, which was primarily attributed to the specific retention properties in HCC tissues. The Ex vivo evaluation showed that ICG-CD@EPS exhibited a laser-triggered release profile with the photothermal efficiency and cytotoxicity towards HepG2 cells. In vivo evaluation suggested that ICG could navigate the systems to HCC tissues and retained at the site for 48 h, producing a drug accumulation in HCC. Further, laser irradiation boosted EPS release and local hyperthermia effects in HCC. Thus, the present study explored a novel and specific HCC targeting mechanism, and provided a feasible and controllable strategy for synergistic PTT and chemotherapy treatments for HCC.
Collapse
Affiliation(s)
- Lijing Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyuan Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ke Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Wei Feng Dai
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Deng G, Luo Y, Zhang Y, Zhang J, He Z. Enabled homolog (ENAH) regulated by RNA binding protein splicing factor 3b subunit 4 (SF3B4) exacerbates the proliferation, invasion and migration of hepatocellular carcinoma cells via Notch signaling pathway. Bioengineered 2022; 13:2194-2206. [PMID: 35030977 PMCID: PMC8973836 DOI: 10.1080/21655979.2021.2023983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enabled homolog (ENAH) is an actin-binding protein that implicated in multiple malignant tumors. High ENAH expression has been verified to be associated with poor prognosis in hepatocellular carcinoma (HCC). We aimed to reveal the role of ENAH in HCC and the potential mechanism. ENAH expression in HCC tissues and the prognostic correlation were analyzed by GEPIA2 database. RT-qPCR and Western blot were used to test ENAH expression in HCC cells. Following ENAH silencing, cell proliferation was estimated by CCK-8 and colony formation assays. Transwell and wound healing assays were to assess cell invasion and migration. ENCORI database was to analyze the correlation between ENAH and splicing factor 3b subunit 4 (SF3B4) in HCC tissues, which was then verified by RIP and actinomycin D assay. Then, the expression of Notch signaling-related proteins was detected by Western blotting after ENAH knockdown. Afterward, Notch1 was overexpressed to validate whether ENAH impacted the biological events of HCC cells through mediating Notch signaling. Results revealed that ENAH expression was elevated in HCC tissues and cells and associated with poor prognosis. ENAH deficiency mitigated proliferation, invasion and migration of HCC cells. Mechanistically, ENAH was positively correlated with SF3B4 in HCC tissues. SF3B4 could bind to ENAH mRNA and stabilized ENAH. Besides, ENAH activated Notch signaling. Notch1 up-regulation reversed the influence of ENAH knockdown on biological events of HCC cells. Collectively, ENAH regulated by SF3B4 promoted the development of HCC through activating Notch signaling, which identified ENAH as a potent molecular target for HCC therapy and prognosis.
Collapse
Affiliation(s)
- Guoming Deng
- The 2nd Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Yufeng Luo
- The 2nd Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Yaoming Zhang
- The 2nd Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Jinfeng Zhang
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,The 3rd Department of Medical Oncology, Meizhou People's Hospital, Meizhou, China
| | - Zongyun He
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.,The Department of Hepatology, Meizhou People's Hospital, Meizhou, China
| |
Collapse
|
10
|
Gao L, Xue J, Liu X, Cao L, Wang R, Lei L. A scoring model based on ferroptosis genes for prognosis and immunotherapy response prediction and tumor microenvironment evaluation in liver hepatocellular carcinoma. Aging (Albany NY) 2021; 13:24866-24881. [PMID: 34839280 PMCID: PMC8660622 DOI: 10.18632/aging.203721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death. Ferroptosis inducers have been shown to have a great potential for cancer therapy. We aimed to generate a risk scoring model based on ferroptosis-related genes (FRGs) and validate its predictive performances in overall survival (OS) prediction and immunotherapy efficacy evaluation in liver hepatocellular carcinoma (LIHC). Differential and Univariate Cox regression analyses were applied to analyze RNA-seq data of LIHC samples from TCGA and GEO databases to identify prognosis-related ferroptosis genes. Patients were assigned to three clusters (Ferrclusters A, B, and C) based on the cluster analysis of prognostic ferroptosis genes. The principal component analysis (PCA) was performed to build a risk scoring model based on differentially expressed FRGs. Survival analysis revealed that Ferrcluster B LIHC patients had a lower OS rate alongside more severe immune cell infiltration versus Ferrcluster A and C patients; moreover, the LIHC patients in high-ferrscore group had significantly lower survival than the low-ferrscore group. Compared to low-ferrscore patients, Programmed cell death 1 (PD-1) mRNA expression significantly increased, and either PD-1 or PD-1 plus CTLA4 (cytotoxic T-lymphocyte associated protein 4) inhibitors showed unsatisfactory efficacy in high-ferrscore patients. Our study demonstrates the implication of FRGs in prognosis prediction and evaluation of immunotherapy efficacy in LIHC patients.
Collapse
Affiliation(s)
- Lei Gao
- Department of Gastroenterology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaomin Liu
- Department of Gastroenterology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lei Cao
- Department of Gastroenterology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ruifang Wang
- Department of Gastroenterology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Liangliang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
11
|
Wu J, Wang P, Han Z, Li T, Yi C, Qiu C, Yang Q, Sun G, Dai L, Shi J, Wang K, Ye H. A novel immunodiagnosis panel for hepatocellular carcinoma based on bioinformatics and the autoantibody-antigen system. Cancer Sci 2021; 113:411-422. [PMID: 34821436 PMCID: PMC8819288 DOI: 10.1111/cas.15217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a dismal survival rate. The novel autoantibodies panel may provide new insights for the diagnosis of HCC. Biomarkers screened by two methods (bioinformatics and the antigen‐antibody system) were taken as candidate tumor‐associated antigens (TAAs). Enzyme‐linked immunosorbent assay was used to detect the corresponding autoantibodies in 888 samples of verification and validation cohorts. The verification cohort was used to verify the autoantibodies. Samples in the validation cohort were randomly divided into a train set and a test set with the ratio of 6:4. A diagnostic model was established by support vector machines within the train set. The test set further verified the model. Eleven TAAs were selected (AAGAB, C17orf75, CDC37L1, DUSP6, EID3, PDIA2, RGS20, PCNA, TAF7L, TBC1D13, and ZIC2). The titer of six autoantibodies (PCNA, AAGAB, CDC37L1, TAF7L, DUSP6, and ZIC2) had a significant difference in any of the pairwise comparisons among the HCC, liver cirrhosis, and normal control groups. The titer of these autoantibodies had an increasing tendency. Finally, an optimum diagnostic model was constructed with the six autoantibodies. The AUCs were 0.826 in the train set and 0.773 in the test set. The area under the curve (AUC) of this panel for diagnosing early HCC was 0.889. The diagnostic ability of the panel reduced with the progress of HCC. The positive rate of the panel in diagnosing alpha‐fetoprotein (AFP)‐negative patients was 75.6%. For early HCC, the sensitivity of the combination of AFP with the panel was 90.9% and superior to 53.2% of AFP alone. The novel immunodiagnosis panel combining AFP may be a new approach for the diagnosis of HCC, especially for early‐HCC cases.
Collapse
Affiliation(s)
- Jinyu Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Zhuo Han
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Chuncheng Yi
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Cuipeng Qiu
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Huang C, Yu W, Wang Q, Huang T, Ding Y. CircANTXR1 Contributes to the Malignant Progression of Hepatocellular Carcinoma by Promoting Proliferation and Metastasis. J Hepatocell Carcinoma 2021; 8:1339-1353. [PMID: 34786378 PMCID: PMC8590609 DOI: 10.2147/jhc.s317256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Circular RNA (circRNA) is a key regulator for the malignant progression of cancer. However, the role of circRNA anthrax toxin receptor 1 (circANTXR1) in hepatocellular carcinoma (HCC) is still unclear. Methods Quantitative real-time PCR was performed to detect RNA expression. Cell proliferation, migration and invasion were determined using MTT assay, EdU staining, colony formation assay, wound healing assay and transwell assay. The protein levels of metastasis markers, x-ray repair cross complementing 5 (XRCC5) and exosome markers were examined using Western blot analysis. Xenograft tumor models were built to investigate the role of circANTXR1 in HCC tumorigenesis. The relationship between microRNA (miR)-532-5p and circANTXR1 or XRCC5 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. The identification of exosomes were performed using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Results CircANTXR1 was a stable and highly expressed circRNA in HCC. Silenced circANTXR1 inhibited the proliferation, migration and invasion of HCC cells in vitro, and suppressed HCC tumor growth in vivo. MiR-532-5p could be sponged by circANTXR1, and its inhibitor could reverse the inhibition of circANTXR1 silencing on HCC cells progression. In addition, we discovered that XRCC5 was a target of miR-532-5p. Furthermore, XRCC5 overexpression could reverse the suppressive effect of miR-532-5p overexpression on HCC cell proliferation, migration and invasion. Exosome was involved in the transport of circANTXR1 in HCC cells. Exosome circANTXR1 might be a potential serum biomarker for HCC patients. Conclusion CircANTXR1 promotes the progression of HCC through the miR-532-5p/XRCC5 axis, which might be a potential serum biomarker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Changshan Huang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Wei Yu
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Qian Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Tao Huang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yuechao Ding
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
13
|
Zhang H, Liu S, Chen L, Sheng Y, Luo W, Zhao G. MicroRNA miR-509-3p inhibit metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma. Bioengineered 2021; 12:2263-2273. [PMID: 34115554 PMCID: PMC8806452 DOI: 10.1080/21655979.2021.1932210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our study seeks to obtain data which help to assess the impacts and related mechanisms of microRNA miR-509-3p in hepatocellular carcinoma (HCC). We found that the expression of miR-509-3p was down-regulated and Twist was up-regulated in HCC tissues and cell lines (HepG2, HCCLM3, Bel7402, and SMMC7721) compared with the adjacent normal tissues and normal human hepatocyte (L02). Moreover, cell proliferation, invasion, migration and epithelial–mesenchymal transition (EMT) in HepG2 and HCCLM3 cells were appeared to be markedly suppressed by overexpressed miR-509-3p. Overexpression of miR-509-3p also performed inhibition of the growth and metastasis in vivo. In addition, miR-509-3p could target and inhibit Twist expression, and it could further reverse the tumor promotion by Twist in HCC. All in all, miR-509-3p overexpression causes inhibition of the proliferation, migration, invasion and EMT of HCC cells by negatively regulating Twist, thereby suppressing HCC development and metastasis.
Collapse
Affiliation(s)
- Huiming Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Liqiang Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yanliang Sheng
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Wenzhe Luo
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Gang Zhao
- School of Stomatology, Jiamusi University, Jiamusi, China
| |
Collapse
|
14
|
Yang W, Feng Q, Li M, Su J, Wang P, Wang X, Yin Y, Wang X, Zhao M. Sinomenine Suppresses Development of Hepatocellular Carcinoma Cells via Inhibiting MARCH1 and AMPK/STAT3 Signaling Pathway. Front Mol Biosci 2021; 8:684262. [PMID: 34179090 PMCID: PMC8222788 DOI: 10.3389/fmolb.2021.684262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Promotion of apoptosis and suppression of proliferation in tumor cells are popular strategies for developing anticancer drugs. Sinomenine (SIN), a plant-derived alkaloid, displays antitumor activity. However, the mechanism of action of SIN against hepatocellular carcinoma (HCC) is unclear. Herein, several molecular technologies, such as Western Blotting, qRT-PCR, flow cytometry, and gene knockdown were applied to explore the role and mechanism of action of SIN in the treatment of HCC. It was found that SIN arrests HCC cell cycle at G0/G1 phase, induces apoptosis, and suppresses proliferation of HCC cells via down-regulating the expression of membrane-associated RING-CH finger protein 1 (MARCH1). Moreover, SIN induces cell death and growth inhibition through AMPK/STAT3 signaling pathway. MARCH1 expression was silenced by siRNA to explore its involvement in the regulation of AMPK/STAT3 signaling pathway. Silencing MARCH1 caused down-regulation of phosphorylation of AMPK, STAT3 and decreased cell viability and function. Our results suggested that SIN inhibits proliferation and promotes apoptosis of HCC cells by MARCH1-mediated AMPK/STAT3 signaling pathway. This study provides new support for SIN as a clinical anticancer drug and illustrates that targeting MARCH1 could be a novel treatment strategy in developing anticancer therapeutics.
Collapse
Affiliation(s)
- Wei Yang
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qihua Feng
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Minjing Li
- Department of Chinese Medicine Prescription, Binzhou Medical University, Yantai, China
| | - Jiaqi Su
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Peiyuan Wang
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xu Wang
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yancun Yin
- Department of Human Anatomy, Binzhou Medical University, Yantai, China
| | - Xia Wang
- Department of Oral Pathology, Binzhou Medical University, Yantai, China
| | - Mingdong Zhao
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
15
|
Huang D, Yang B, Yao Y, Liao M, Zhang Y, Zeng Y, Zhang F, Wang N, Tong G. Autophagic Inhibition of Caveolin-1 by Compound Phyllanthus urinaria L. Activates Ubiquitination and Proteasome Degradation of β-catenin to Suppress Metastasis of Hepatitis B-Associated Hepatocellular Carcinoma. Front Pharmacol 2021; 12:659325. [PMID: 34168559 PMCID: PMC8217966 DOI: 10.3389/fphar.2021.659325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Compound Phyllanthus urinaria L. (CP) is a traditional Chinese medicine (TCM) formula for cancer treatment in the clinic, particularly during progression of hepatitis B-associated hepatocellular carcinoma (HBV-associated HCC). Nevertheless, its anti-metastatic action and mechanisms are not well elucidated. In this study, CP was found to exert remarkable inhibitory effects on the proliferation, migration and invasion of HBV-associated HCC cells. The following network and biological analyses predicted that CP mainly targeted Caveolin-1 (Cav-1) to induce anti-metastatic effects, and Wnt/β-catenin pathway was one of the core mechanisms of CP action against HBV-associated HCC. Further experimental validation implied that Cav-1 overexpression promoted metastasis of HBV-associated HCC by stabilizing β-catenin, while CP administration induced autophagic degradation of Cav-1, activated the Akt/GSK3β-mediated proteasome degradation of β-catenin via ubiquitination activation, and subsequently attenuated the metastasis-promoting effect of Cav-1. In addition, the anti-cancer and anti-metastatic action of CP was further confirmed by in vivo and ex vivo experiments. It was found that CP inhibited the tumor growth and metastasis of HBV-associated HCC in both mice liver cancer xenograft and zebrafish xenotransplantation models. Taken together, our study not only highlights the novel function of CP formula in suppressing metastasis of HBV-associated HCC, but it also addresses the critical role of Cav-1 in mediating Akt/GSK3β/β-catenin axis to control the late-phase of cancer progression.
Collapse
Affiliation(s)
- Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyao Yao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mianmian Liao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihao Zeng
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Guo C, Hou X, Liu Y, Zhang Y, Xu H, Zhao F, Chen D. Novel Chinese Angelica Polysaccharide Biomimetic Nanomedicine to Curcumin Delivery for Hepatocellular Carcinoma Treatment and Immunomodulatory Effect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153356. [PMID: 33039729 DOI: 10.1016/j.phymed.2020.153356] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Using natural polysaccharides from Traditional Chinese Medicine as nanodrug delivery systems have considerable potential for tumor diagnostics and therapeutics. PURPOSE On the basis of targeted therapy and combining the advantages of natural polysaccharides (angelica polysaccharide, APS) and natural Chinese medicine (curcumin, Cur) to design functionalized nanoparticles to improve the therapeutic through cell membrane encapsulation and immunotherapy. STUDY DESIGN AND METHODS Cur-loaded, glycyrrhetic acid (GA)-APS-disulfide bond (DTA)-Cur nanomicelle (GACS-Cur), which were prepared by the dialysis method. GACS-Cur was encapsulated with the membranes from red blood cells (RBCm) termed GACS-Cur@RBCm, which were prepared by the principle of extrusion using a miniature extruder. The developed formulations were subjected to various in vitro and in vivo evaluation tests. RESULTS The resulting APS nanocarriers supported a favorable drug-loading capacity, biocompatibility, and enhanced synergistic anti-hepatoma effects both in vitro and in vivo. After administration in mice, in vivo imaging results showed that the GACS-Cur and RBCm-coated groups had an obvious stronger tumor tissue targeting ability than the control treatment groups. Additionally, the immunomodulatory effect increased IL-12, TNF-α and IFN-γ expression and CD8+ T cell infiltration (1.9-fold) than that of the saline group. Notably, in comparison with hyaluronic acid (HA) nanocarriers, APS nanocarriers possess higher anti-hepatoma efficiency and targeting capabilities and, thus, should be further studied for a wide range of anti-cancer applications. CONCLUSION Our data demonstrated that APS nanocarriers encapsulated with erythrocyte membrane mighty be a promising clinical method in the development of efficacy, safety and targeting of liver cancer therapy.
Collapse
Affiliation(s)
- Chunjing Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xiaoya Hou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Yanhui Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University, Qingdao, Shandong, 266071, P.R. China
| | - Yanchun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230013, China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China; State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University, Qingdao, Shandong, 266071, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China.
| |
Collapse
|
17
|
Sun N, Teng A, Zhao Y, Liu H, Tu J, Jia Q, Wang Q. Immunological and anticancer activities of seleno-ovalbumin (Se-OVA) on H22-bearing mice. Int J Biol Macromol 2020; 163:657-665. [PMID: 32634513 DOI: 10.1016/j.ijbiomac.2020.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
Ovalbumin is the main protein component of egg white. Selenium is one of the essential trace elements. In our research, ovalbumin was modified into seleno-ovalbumin. After seleno-modification, the FTIR spectrum of seleno-ovalbumin appeared two new absorption peaks which belonged to the characteristic absorption peaks of Se-O and SeO. Seleno-ovalbumin could reduce the damage of cancer to immune organs, improve the proliferation capacities of T and B lymphocytes, enhance the NK cells cytotoxicity and increase the phagocytic activity of peritoneal macrophages of H22-bearing mice. Besides, Se-OVA could block the cell cycle of solid tumors cells in G0/G1 phase and accelerate the apoptosis of solid tumors cells through mitochondrial pathway.
Collapse
Affiliation(s)
- Naxin Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China
| | - Anguo Teng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yana Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jianqiu Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qi Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
18
|
Xu JB, Gao GC, Yuan MJ, Huang X, Zhou HY, Zhang Y, Zheng YX, Wu Z, Feng JM, Wu JM. Lignans from Schisandra chinensis ameliorate alcohol and CCl 4-induced long-term liver injury and reduce hepatocellular degeneration via blocking ETBR. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112813. [PMID: 32259665 DOI: 10.1016/j.jep.2020.112813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemical hepatotoxicity, especially alcoholic liver injury (ALI), commonly occurs in young and middle-aged people who drink heavily. ALI is extremely harmful and can induce severe disease states, such as hepatitis, liver fibrosis, cirrhosis, or liver cancer, which are similar to CCl4-induced liver disease states in animals. In recent studies, the pathological changes of hepatocytes and the hepatic stellate cell have shown a significant connection between endoplasmic reticulum (ER) stress and the development of liver pathology in patients. However, the detailed pathological mechanism needs to be further studied. Schisandra chinensis, (S. chinensis), a fruit-bearing vine used in Traditional Chinese Medicine (TCM), has been used to treat chronic or acute diseases, including liver disease. S. chinensis-derived lignans (SCDLs) in particular have been shown to alleviate liver pathological changes. AIM OF THE STUDY This study sought to elucidate the mechanisms underlying SCDL-mediated hepatoprotection. MATERIALS AND METHODS We first used in silico target prediction and computational simulation methods to identify putative lignan-binding targets relative to the hepatoprotective effect. A gene microarray analysis was performed to identify differently expressed genes that might have significance in the disease pathological process. We then used histological analyses in a mice hepatotoxicity model to test the effectiveness of SCDLs in vivo, and a hepatocellular toxicity model to analyze the candidate-compound-mediated hepatoprotection and expression states of the key targets in vitro. RESULTS The in silico analysis results indicated that endothelin receptor B (ETBR/EDNRB) is likely a significant node during the liver pathological change process and a promising key target for the SCDL compound schisantherin D on the hepatoprotective effect; experimental studies showed that schisantherin D alleviated the EtOH- and ET-1-induced HL-7702 cell (belongs to liver parenchymal cell lines) injury ratio, decreased the expression of ETBR, and inhibited ECMs and ET-1 secretion in LX-2 cells (one form of hepatic stellate cells). SCDLs ameliorated EtOH- and CCl4-induced fibrosis formation in mice liver tissue. Liver tissue western blots of SCDL-treated mice showed downregulated α-SMA, ETBR, PLCβ, CHOP, Bax, and the apoptotic factors of cleaved-caspase 12, cleaved-caspase 9, and cleaved-caspase 3 hinted at an anti-apoptosis and hepatoprotective effect. The SCDL treatment also elevated serum glutathione (GSH) and reduced the serum-transforming growth factor-β1 (TGF-β1) level. CONCLUSION The findings indicated that SCDLs prevent hepatotoxicity via their anti-fibrotic, anti-oxidant, and anti-apoptosis properties. ETBR may be the key factor in promoting chemical hepatotoxicity.
Collapse
Affiliation(s)
- Jin-Biao Xu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Guang-Chun Gao
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Ming-Jing Yuan
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Xuan Huang
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Hong-Yu Zhou
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Ya-Xin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, 610500, China
| | - Zhe Wu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Jun-Miao Feng
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Ji-Ming Wu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
19
|
Yao W, Wang K, Jiang Y, Huang Z, Huang Y, Yan H, Huang S, Chen M, Liao J. Serum profile of low molecular weight fucosylated glycoproteins for early diagnosis of hepatocellular carcinoma. Oncol Lett 2020; 20:1597-1606. [PMID: 32724401 PMCID: PMC7377157 DOI: 10.3892/ol.2020.11727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/27/2020] [Indexed: 11/30/2022] Open
Abstract
Our previous study reported a method of using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to analyze the association between abnormal fucosylation of serum glycoproteins and the progression of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). In the present study, the aforementioned method was improved by focusing on fucosylated glycoproteins <10 kD, classification models were established and blind tests were performed on an enlarged sample size (n=299). According to the present results, the classification models had a sensitivity and specificity of 74.31 and 76.32%, respectively, to identify HCC among all serum samples, 81.65 and 83.08%, respectively, to distinguish HCC from HBV-associated cirrhosis and chronic hepatitis Band 88.99 and 84.62%, respectively, to distinguish HCC from HBV-associated cirrhosis. When combined with α-fetoprotein (AFP) measurements (AFP >20 ng/ml), the sensitivity and specificity of the models were significantly elevated to 80.73 and 87.37%, 87.16 and 90.00%, and 92.66 and 93.84%, respectively. In addition, the HBV-HCC vs. HBV-cirrhosis classification model was used to analyze serum samples collected from 9 patients with cirrhosis 1 year before they were diagnosed with HCC, and from 6 patients who had cirrhosis but developed no signs of HCC for the following 3 years. The model identified 7 patients (77.78%) with no significant clinical symptoms of HCC, and gave no false positive results, demonstrating that the classification models established in the present study may be useful for the early diagnosis of HCC. After isolation and purification, two proteins with differential expression were identified as isoform 1 of inter-α-trypsin inhibitor heavy chain 4 precursor, and thymosin β-4-like protein 3. These may be used as candidate markers for HCC diagnosis. Additionally, the present study indicates that defucosylation of serum glycoproteins may occur during the development and progression of HCC.
Collapse
Affiliation(s)
- Weirong Yao
- Institute for Laboratory Medicine, The First Hospital of Longhai, Zhangzhou, Fujian 363199, P.R. China
| | - Kaiyu Wang
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command (The 900th Hospital of Joint Logistic Support Force People's Liberation Army), Fuzhou, Fujian 350003, P.R. China
| | - Yu Jiang
- Clinical Laboratory, Fuzhou Second Hospital (Fuzhou Integrated Traditional Chinese and Modern Medicine Hospital of Fujian Province, Fuzhou Second Hospital Affiliated to Xiamen University), Fuzhou, Fujian 350007, P.R. China
| | - Zhufeng Huang
- Institute for Laboratory Medicine, The First Hospital of Longhai, Zhangzhou, Fujian 363199, P.R. China
| | - Yiyun Huang
- Institute for Laboratory Medicine, The First Hospital of Longhai, Zhangzhou, Fujian 363199, P.R. China
| | - Huihui Yan
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command (The 900th Hospital of Joint Logistic Support Force People's Liberation Army), Fuzhou, Fujian 350003, P.R. China
| | - Suhong Huang
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command (The 900th Hospital of Joint Logistic Support Force People's Liberation Army), Fuzhou, Fujian 350003, P.R. China
| | - Min Chen
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command (The 900th Hospital of Joint Logistic Support Force People's Liberation Army), Fuzhou, Fujian 350003, P.R. China
| | - Jian Liao
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command (The 900th Hospital of Joint Logistic Support Force People's Liberation Army), Fuzhou, Fujian 350003, P.R. China
| |
Collapse
|
20
|
FIB-4 Is a Potential Tool for Hepatocellular Carcinoma Risk Stratification in Ethnically Diverse Chronic Hepatitis B Patients When Using Specific Cutoff Values. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.94574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
21
|
Li, J, Wang, T, Xia J, Yao W, Huang F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases. FASEB J 2019; 33:11640-11654. [PMID: 31370704 PMCID: PMC6902721 DOI: 10.1096/fj.201901175r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Impaired glycolysis has pathologic effects on the occurrence and progression of liver diseases, and it appears that glycolysis is increased to different degrees in different liver diseases. As an important post-translational modification, reversible lysine acetylation regulates almost all cellular processes, including glycolysis. Lysine acetylation can occur enzymatically with acetyltransferases or nonenzymatically with acetyl-coenzyme A. Accompanied by the progression of liver diseases, there seems to be a temporal and spatial variation between enzymatic and nonenzymatic acetylations in the regulation of glycolysis. Here, we summarize the most recent findings on the functions and targets of acetylation in controlling glycolysis in the different stages of liver diseases. In addition, we discuss the differences and causes between enzymatic and nonenzymatic acetylations in regulating glycolysis throughout the progression of liver diseases. Then, we review these new discoveries to provide the potential implications of these findings for therapeutic interventions in liver diseases.-Li, J., Wang, T., Xia, J., Yao, W., Huang, F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases.
Collapse
Affiliation(s)
- Juan Li,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxin Wang,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Su YH, Kim AK, Jain S. Liquid biopsies for hepatocellular carcinoma. Transl Res 2018; 201:84-97. [PMID: 30056068 PMCID: PMC6483086 DOI: 10.1016/j.trsl.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the world's second leading cause of cancer death; 82.4% of patients die within 5 years. This grim prognosis is the consequence of a lack of effective early detection tools, limited treatment options, and the high frequency of HCC recurrence. Advances in the field of liquid biopsy hold great promise in improving early detection of HCC, advancing patient prognosis, and ultimately increasing the survival rate. In an effort to address the current challenges of HCC screening and management, several studies have identified and evaluated liver-cancer-associated molecular signatures such as genetic alterations, methylation, and noncoding RNA expression in the form of circulating biomarkers in body fluids and circulating tumor cells of HCC patients. In this review, we summarize the recent progress in HCC liquid biopsy, organized by the intended clinical application of the reported study.
Collapse
Affiliation(s)
- Ying-Hsiu Su
- The Baruch S. Blumberg Institute, Doylestown, Pennsylvania.
| | - Amy K Kim
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore Maryland.
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, Pennsylvania.
| |
Collapse
|
23
|
Chen D, Jain S, Su YH, Song W. Building Classification Models with Combined Biomarker Tests: Application to Early Detection of Liver Cancer. ACTA ACUST UNITED AC 2017; 5:91-103. [PMID: 29152526 DOI: 10.17265/2328-224x/2017.0506.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Early detection of hepatocellular carcinoma (HCC) is critical for the effective treatment. Alpha fetoprotein (AFP) serum level is currently used for HCC screening, but the cutoff of the AFP test has limited sensitivity (~50%), indicating a high false negative rate. We have successfully demonstrated that cancer derived DNA biomarkers can be detected in urine of patients with cancer and can be used for the early detection of cancer (Jain et al., 2015; Lin et al., 2011; Song et al., 2012; Su, Lin, Song, & Jain, 2014; Su, Wang, Norton, Brenner, & Block, 2008). By combining urine biomarkers (uBMK) values and serum AFP (sAFP) level, a new classification model has been proposed for more efficient HCC screening. Several criterions have been discussed to optimal the cutoff for uBMK score and sAFP score. A joint distribution of sAFP and uBMK with point mass has been fitted using maximum likelihood method. Numerical results show that the sAFP data and uBMK data are very well described by proposed model. A tree-structured sequential test can be optimized by selecting the cutoffs. Bootstrap simulations also show the robust classification results with the optimal cutoff.
Collapse
Affiliation(s)
- Dion Chen
- Biostatistics, Janssen R&D, LLC, Spring House, PA 19477, USA
| | - Surbhi Jain
- Biomarkers, JBS Science, Inc., Doylestown, PA 18902, USA
| | - Ying-Hsu Su
- Biomarkers, The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Wei Song
- Biomarkers, JBS Science, Inc., Doylestown, PA 18902, USA
| |
Collapse
|
24
|
Yu L, Chen S, Luo N, He S. The C-terminus domain of the hepatitis B virus x protein stimulates the proliferation of mouse foetal hepatic progenitor cells, although it is not required for the formation of spheroids. Int J Mol Med 2017. [PMID: 28627604 PMCID: PMC5505023 DOI: 10.3892/ijmm.2017.3026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The hepatitis B virus X (HBx) protein is an important factor in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). The C-terminal region of HBx plays a major role in the replication of HBV. Notably, HBx promotes the expansion and tumourigenesis of hepatic progenitor cells (HPCs) in mice. However, it remains unclear as to whether the C-terminal region of HBx is required for the stimulation fo the proliferation of mouse foetal HPCs (FHPCs). In our study, we used EpCAM+, CD133+ and CD49f+ FHPCs, which are bipotential clonogenic cells. These FHPCs transformed into mature hepatocytes and cholangiocytes when cultured under conditions that facilitate differentiation. Compared with the FHPCs grown as monolayers, spherical cell proliferation occurred more rapidly. Furthermore, spherically cultured FHPCs can grow in semi-solid agar and tend to maintain the morphology and characteristics of stem cells compared with growth in rat tail collagen. Notably, we also demonstrate that the C-terminus of HBx stimulates the proliferation of FHPCs, but is not required for the formation of spheroids, similar to hepatic cancer stem cells. These findings enhance our understanding of the HBx-induced tumourigenicity of FHPCs and may aid in the treatment of HCC.
Collapse
Affiliation(s)
- Liming Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shu Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Na Luo
- Department of ICU, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
25
|
Liu Z, Dai X, Wang T, Zhang C, Zhang W, Zhang W, Zhang Q, Wu K, Liu F, Liu Y, Wu J. Hepatitis B virus PreS1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells. Cancer Lett 2017; 400:149-160. [PMID: 28455240 DOI: 10.1016/j.canlet.2017.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/09/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a major etiologic agent of hepatocellular carcinoma (HCC). However, the molecular mechanism by which HBV infection contributes to HCC development is not fully understood. Here, we initially showed that HBV stimulates the production of cancer stem cells (CSCs)-related markers (CD133, CD117 and CD90) and CSCs-related genes (Klf4, Sox2, Nanog, c-Myc and Oct4) and facilitates the self-renewal of CSCs in human hepatoma cells. Cellular and clinical studies revealed that HBV facilitates hepatoma cell growth and migration, enhances white blood cell (WBC) production in the sera of patients, stimulates CD133 and CD117 expression in HCC tissues, and promotes the CSCs generation of human hepatoma cells and clinical cancer tissues. Detailed studies revealed that PreS1 protein of HBV is required for HBV-mediated CSCs generation. PreS1 activates CD133, CD117 and CD90 expression in normal hepatocyte derived cell line (L02) and human hepatoma cell line (HepG2 and Huh-7); facilitates L02 cells migration, growth and sphere formation; and finally enhances the abilities of L02 cells and HepG2 cells to induce tumorigeneses in nude mice. Thus, PreS1 acts as a new oncoprotein to play a key role in the appearance and self-renewal of CSCs during HCC development.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuechen Dai
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tianci Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengcheng Zhang
- Department of Pathogen Biology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjun Zhang
- Department of Pathogen Biology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
26
|
Wang MD, Wu H, Huang S, Zhang HL, Qin CJ, Zhao LH, Fu GB, Zhou X, Wang XM, Tang L, Wen W, Yang W, Tang SH, Cao D, Guo LN, Zeng M, Wu MC, Yan HX, Wang HY. HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Oncotarget 2017; 7:6711-26. [PMID: 26744319 PMCID: PMC4872744 DOI: 10.18632/oncotarget.6817] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/29/2015] [Indexed: 02/06/2023] Open
Abstract
Due to a high rate of nutrient consumption and inadequate vascularization, hepatocellular carcinoma (HCC) cells constantly undergo metabolic stress during tumor development. Hepatitis B virus (HBV) X protein (HBx) has been implicated in the pathogenesis of HBV-induced HCC. In this study, we investigated the functional roles of HBx in HCC adaptation to metabolic stress. Up-regulation of HBx increased the intracellular ATP and NADPH generation, and induced the resistance to glucose deprivation, whereas depletion of HBx via siRNA abolished these effects and conferred HCC cells sensitive to glucose restriction. Though HBx did not affect the glycolysis and oxidative phosphorylation capacity of HCC cells under normal culture conditions, it facilitated fatty acid oxidation (FAO) in the absence of glucose, which maintained NADPH and ATP levels. Further investigation showed that HBx expression, under glucose deprivation, stimulated phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) via a calcium/CaMKK-dependent pathway, which was required for the activation of FAO. Conversely, inhibition of FAO by etomoxir (ETO) restored the sensitivity of HBx-expressing cells to glucose deficiency in vitro and retarded xenograft tumor formation in vivo. Finally, HBx-induced activation of the AMPK and FAO pathways were also observed in xenograft tumors and HBV-associated HCC specimens. Our data suggest that HBx plays a key role in the maintenance of redox and energy homeostasis by activating FAO, which is critical for HCC cell survival under conditions of metabolic stress and might be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ming-Da Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Han Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Shuai Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Hui-Lu Zhang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Chen-Jie Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Ling-Hao Zhao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Xu Zhou
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Xian-Ming Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Liang Tang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Wen Wen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Wen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Shan-Hua Tang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Dan Cao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Lin-Na Guo
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Min Zeng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Meng-Chao Wu
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - He-Xin Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer Research, Shanghai 201805, P.R. China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200032, P.R. China
| |
Collapse
|
27
|
Åström E, Stål P, Zenlander R, Edenvik P, Alexandersson C, Haglund M, Rydén I, Påhlsson P. Reverse lectin ELISA for detecting fucosylated forms of α1-acid glycoprotein associated with hepatocellular carcinoma. PLoS One 2017; 12:e0173897. [PMID: 28296934 PMCID: PMC5352000 DOI: 10.1371/journal.pone.0173897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Altered fucosylation of glycoproteins is associated with development of hepatocellular carcinoma (HCC). Lectins have been commonly used to assay changes in fucosylation of plasma glycoproteins. In the present study a recombinantly engineered form of the fucose binding lectin Aleuria aurantia (AAL) consisting of a single binding site for fucose (S2), was used to construct a reverse lectin ELISA method. Microtiter plates coated with the S2 lectin were used to capture glycoproteins from plasma samples followed by antibody detection of S2-bound fucosylated α1-acid glycoprotein (S2-bound AGP). The method was used to compare the level of S2-bound AGP in serum samples from a small cohort of patients with hepatitis, cirrhosis or HCC. Using the reverse S2 lectin ELISA it was shown that the levels of S2-bound AGP was significantly higher in HCC patients compared to non-cancer patients and that there was also a significant elevation of S2-bound AGP in HCC patients compared to cirrhosis patients. There was no correlation between the level of S2-bound AGP and total AGP concentration. The performance of S2-bound AGP in differentiating HCC from cirrhosis samples or hepatitis samples were compared to other markers. A combination of S2-bound AGP, α-fetoprotein and AGP concentration showed performances giving area under receiver operating curves of 0.87 and 0.95 respectively.
Collapse
Affiliation(s)
- Eva Åström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| | - Per Stål
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robin Zenlander
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pia Edenvik
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Mats Haglund
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden
| | - Ingvar Rydén
- Department of Clinical Chemistry, Kalmar County Hospital, Kalmar, Sweden
| | - Peter Påhlsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Zhang HL, Wang MD, Zhou X, Qin CJ, Fu GB, Tang L, Wu H, Huang S, Zhao LH, Zeng M, Liu J, Cao D, Guo LN, Wang HY, Yan HX, Liu J. Blocking preferential glucose uptake sensitizes liver tumor-initiating cells to glucose restriction and sorafenib treatment. Cancer Lett 2016; 388:1-11. [PMID: 27894955 DOI: 10.1016/j.canlet.2016.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
Cancer cells display altered metabolic phenotypes characterized by a high level of glycolysis, even under normoxic conditions. Because of a high rate of glycolytic flux and inadequate vascularization, tumor cells often suffer from nutrient deficiency and require metabolic adaptations to address such stresses. Although tumor-initiating cells (T-ICs) have been identified in various malignancies, the cells' metabolic phenotypes remain elusive. In this study, we observed that liver T-ICs preferentially survived under restricted glucose treatment. These cell populations compete successfully for glucose uptake by preferentially expressing glucose transporters (GLUT1 and GLUT3), whereas inhibition of GLUT1 or GLUT3 abolished the survival advantage and suppressed the tumorigenic potential of liver T-ICs. Among signaling pathways related to T-ICs, IL-6/STAT3 was identified to be responsible for the elevation of glucose uptake in liver T-ICs under glucose limitation. Further investigation revealed that IL-6 stimulation upregulated GLUT1 and GLUT3 expressions in CD133+ cells, particularly during glucose deprivation. More importantly, inhibition of glucose uptake sensitized liver T-ICs to sorafenib treatment and enhanced the therapeutic efficacy in vivo. Our findings suggest that blocking IL-6/STAT3-mediated preferential glucose uptake might be exploited for novel therapeutic targets during hepatocellular carcinoma (HCC) progression.
Collapse
Affiliation(s)
- Hui-Lu Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ming-Da Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xu Zhou
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Chen-Jie Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liang Tang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Han Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Shuai Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Ling-Hao Zhao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Min Zeng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Jiao Liu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Dan Cao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Lin-Na Guo
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China.
| | - He-Xin Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
29
|
Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, Tang L, Dong LW, Qin CJ, Huang S, Zhao LH, Zeng M, Wu MC, Yan HX, Wang HY. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology 2016; 63:1272-86. [PMID: 26698170 DOI: 10.1002/hep.28415] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Solid tumors often suffer from suboptimal oxygen and nutrient supplies. This stress underlies the requirement for metabolic adaptation. Aberrantly activated de novo lipogenesis is critical for development and progression of human hepatocellular carcinoma (HCC). However, whether de novo lipogenesis influences biological behaviors of HCCs under conditions of metabolic stress are still poorly understood. Here, we show that HCCs display distinct levels of glucose-derived de novo lipogenesis, which are positively correlated with their survival responses to glucose limitation. The enhanced lipogenesis in HCCs is characterized by an increased expression of rate-limiting enzyme acetyl-coenzyme A carboxylase alpha (ACCα). ACCα-mediated fatty acid (FA) synthesis determines the intracellular lipid content that is required to maintain energy hemostasis and inhibit cell death by means of FA oxidation (FAO) during metabolic stress. In accord, overexpression of ACCα facilitates tumor growth. ACCα forms a complex with carnitine palmitoyltransferase 1A (CPT1A) and prevents its mitochondria distribution under nutrient-sufficient conditions. During metabolic stress, phosphorylation of ACCα leads to dissociation of the complex and mitochondria localization of CPT1A, thus promoting FAO-mediated cell survival. Therefore, ACCα could provide both the substrate and enzyme storage for FAO during glucose deficiency. Up-regulation of ACCα is also significantly correlated with poorer overall survival and disease recurrence postsurgery. Multivariate Cox's regression analysis identified ACCα as an effective predictor of poor prognosis. CONCLUSION These results present novel mechanistic insight into a pivotal role of ACCα in maintaining HCC survival under metabolic stress. It could be exploited as a novel diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Ming-Da Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Gong-Bo Fu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hui-Lu Zhang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xu Zhou
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Li-Wei Dong
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Chen-Jie Qin
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuai Huang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ling-Hao Zhao
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Min Zeng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - He-Xin Yan
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
30
|
Mondal G, Saroha A, Bose PP, Chatterjee BP. Altered glycosylation, expression of serum haptoglobin and alpha-1-antitrypsin in chronic hepatitis C, hepatitis C induced liver cirrhosis and hepatocellular carcinoma patients. Glycoconj J 2016; 33:209-18. [PMID: 27034286 DOI: 10.1007/s10719-016-9658-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/01/2023]
Abstract
Liver cirrhosis with hepatitis C viral infection (HCV-LC) causes high risk to develop hepatocellular carcinoma (HCC). Besides diagnosis of liver cirrhosis by biochemical test, imaging techniques, assessment of structural liver damage by biopsy shows several disadvantages. Our aim was to monitor the changes in the expression level of serum proteins and their glycosylation pattern among chronic hepatitis C (HCV-CH), HCV-LC and HCC patients with respect to controls. 2D gel electrophoresis of HCV-CH, HCV-LC and HCC patients' sera showed several protein spots, which were identified by LC-MS. The change in the expression of two prominent protein spots, haptoglobin (Hp) and alpha 1-antitrypsin (AAT) was evaluated by western blot and ELISA. The changes in glycosylation pattern of these serum proteins were assayed using different lectins. Increased level of Hp and AAT was observed in HCV-LC and HCC patients' group whereas those were found to be present less in HCV-CH patient groups with respect to control as determined by ELISA using monoclonal antibodies. Decreased level of sialylation in both Hp and AAT was observed in HCV-LC and HCV-CH patients' group whereas increased level of sialylation was observed in HCC patient groups by ELISA using Sambucus nigra agglutinin. On the other hand increased level of fucosylation in two serum glycoproteins was observed in HCV-LC and HCC patients' group using Lens culinarris agglutinin. High glycan branching was found in HCV-LC and HCC patient groups in Hp but not in HCV-CH as determined by Datura stramonium agglutinin. However, there was no such change observed in glycan branching in AAT of HCV-CH and HCV-LC patients' groups, to the contrary high glycan branching was observed in HCC patients' group. Increased level of exposed galactose in both serum proteins was observed in both HCC patients' group as determined by Ricinus communis agglutinin. The present glycoproteomics study could predict the progression of HCV-CH, HCV-LC and HCC without the need of liver biopsy.
Collapse
Affiliation(s)
- Gautam Mondal
- Department of Natural Sciences, West Bengal University of Technology, Salt Lake, Kolkata, 700064, India
| | - Ashish Saroha
- Genomics and Molecular Medicine Division, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Partha Pratim Bose
- Department of Molecular Medicine, Bose Institute, P 1/12, CIT Road, Kolkata, 700054, India
| | - B P Chatterjee
- Department of Natural Sciences, West Bengal University of Technology, Salt Lake, Kolkata, 700064, India.
| |
Collapse
|
31
|
Evidence of Hepatitis B Virus Infection in Cancer and Noncancer Stem Cells Associated with Human Hepatocellular Carcinoma. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:8931591. [PMID: 27366184 PMCID: PMC4904564 DOI: 10.1155/2016/8931591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/06/2015] [Indexed: 12/14/2022]
Abstract
Both the hepatitis B virus (HBV) and cancer stem cells (CSCs) have been independently implicated in the pathogenesis of hepatocellular carcinoma (HCC). To date, there have been no reports describing HBV infection within CSCs. In this report we describe HBV core (HBcAg) and HBx protein expression within CSCs associated with human HCC. HBV markers were also identified in nonmalignant stem cells present in adjacent nontumor tissue. These findings provide new insights into the pathogenesis of HBV-induced HCC and are potentially relevant to the treatment of both HCC and chronic HBV.
Collapse
|
32
|
Wang J, Xu L, Zeng W, Hu P, Zeng M, Rabkin SD, Liu R. Treatment of human hepatocellular carcinoma by the oncolytic herpes simplex virus G47delta. Cancer Cell Int 2014; 14:83. [PMID: 25360068 PMCID: PMC4213511 DOI: 10.1186/s12935-014-0083-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
Background Oncolytic herpes simplex virus (HSV) can replicate in and kill cancer cells while sparing the adjacent normal tissue. Hepatocellular carcinoma (HCC) is amongst the most common and lethal cancers, especially in Third World countries. In this study, the cytotoxicity of a third-generation oncolytic HSV, G47Δ, was investigated in different human HCC cell lines and in an immortalized human hepatic cell line. Additionally, subcutaneous models of HCC were established to evaluate the in vivo anti-tumor efficacy of G47Δ. Methods The HepG2, HepB, SMMC-7721, BEL-7404, and BEL-7405 human HCC cell lines and the HL-7702 human hepatic immortalized cell lines were infected with G47Δ at different multiplicities of infection (MOIs). The viability of infected cells was determined, and the G47Δ replication was identified by X-gal staining for LacZ expression. Two subcutaneous (s.c.) HCC tumor models of HCC were also established in Balb/c nude mice, which were intratumorally(i.t.) treated with either G47Δ or mock virus. Tumor volume and mouse survival times were documented. Results More than 95% of the HepG2, Hep3B,and SMMC-7721 HCC cells were killed on by day 5 after infection with a MOI’s of 0.01. For the HL-7702 human hepatic immortalized cells, 100% of the cells were killed on by day 5 after infection with a MOI’s of 0.01. The BEL-7404 HCC cell line was less susceptible with about 70% cells were killed by day 5 after infection with a MOI’s of 0.01. Whereas the BEL-7405 HCC cells were the least susceptible, with only 30% of the cells were killed. Both the SMMC-7721 and BEL-7404 cells form aggressive sc tumor models. G47Δ replicates in the tumors, such that most of the tumors regressed after the G47Δ-treatment, and treated tumor-bearing mice survived much longer than the control animals. Conclusions G47Δ effectively kills human HCC cells and an immortalized hepatic cell line at low MOI. Intra-tumor injection of G47Δ can induce a therapeutic effect and prolong the survival of treated mice bearing SMMC-7721 and BEL-7404 subcutaneously (s.c.) tumors. Thus, G47Δ may be useful as a novel therapeutic agent for HCC.
Collapse
Affiliation(s)
- Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China
| | - Lihua Xu
- Department of Oncology and Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weigen Zeng
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China ; Department of Colorectal Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, 100021 Beijing, China
| | - Pan Hu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Renbin Liu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China
| |
Collapse
|
33
|
Ahmad J, Wahab R, Siddiqui MA, Musarrat J, Al-Khedhairy AA. Zinc oxide quantum dots: a potential candidate to detain liver cancer cells. Bioprocess Biosyst Eng 2014; 38:155-63. [PMID: 25073692 DOI: 10.1007/s00449-014-1254-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/03/2014] [Indexed: 12/18/2022]
Abstract
The term cancer is used for diseases in which abnormal cells proliferate without control and are able to attack with other tissues. Over various types of cancers, liver cancer is the most hurtful disease, which affects the whole body system. The aim of the present study was to investigate the efficiency against cancer cells of HepG2 cells, with quantum dots of ZnO. The cytotoxic effects were analyzed with MTT assays in range of 1-100 μg/ml. The cells were exposed to ZnO-QDs and it exhibit significant reduction, which starts from concentration 5 μg/ml (4 %; p < 0.05). The assay was justified with quantitative RT-PCR and it demonstrates, exposure of ZnO-QDs on HepG2 cells. The level of mRNA expressions was significantly up-regulated (Bax, P53, and Caspase-3), whereas the anti-apoptotic gene (Bcl-2) was down-regulated. The QDs (5 ± 2 nm) were prepared via soft chemical solution process and analyzed using FESEM, TEM and HR-TEM.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | |
Collapse
|
34
|
Yang J, Huang X, Luo F, Cheng X, Cheng L, Liu B, Chen L, Hu R, Shi C, Zhuang G, Yin P. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody. Onco Targets Ther 2014; 7:779-87. [PMID: 24899816 PMCID: PMC4039402 DOI: 10.2147/ott.s59872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective To prepare hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody, and study their characteristics, functions, and mechanisms of action. Materials and methods The anti-human death receptor 5 single-chain antibody was constructed and expressed. Protein-loaded hydroxyethyl chitosan nanoparticles were prepared, and their size, morphology, particle-size distribution and surface zeta potential were measured by scanning electron microscopy and laser particle-size analysis. Mouse H22 hepatocellular carcinoma cells were cultured, and growth inhibition was examined using the CellTiter-Blue cell-viability assay. Flow cytometry and Hoechst 33342 were employed to measure cell apoptosis. Kunming mice with H22 tumor models were treated with protein-loaded hydroxyethyl chitosan nanoparticles, and their body weight and tumor size were measured, while hematoxylin and eosin staining was used to detect antitumor effects in vivo and side effects from tumors. Results The protein-loaded hydroxyethyl chitosan nanoparticles had good stability; the zeta potential was −24.2±0.205, and the dispersion index was 0.203. The inhibition of the protein-loaded hydroxyethyl chitosan nanoparticles on H22 growth was both time- and dose-dependent. Increased expressions of active caspase 8, active caspase 3, and BAX were detected following treatment. The average weight gain, tumor weight, and mean tumor volume of the protein and protein-loaded hydroxyethyl chitosan nanoparticle groups were significantly different (P<0.05) compared with the phosphate-buffered saline group. Conclusion The protein-loaded hydroxyethyl chitosan nanoparticles effectively suppressed tumor growth, indicating that nanotechnology has the potential for broad application in cancer therapy.
Collapse
Affiliation(s)
- Jingjing Yang
- Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China ; Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China
| | - Xiaoping Huang
- Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China ; Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China
| | - Fanghong Luo
- Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China
| | - Xiaofeng Cheng
- Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China
| | - Lianna Cheng
- Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China
| | - Bin Liu
- Jilin Vocational College of Industry and Technology, Jilin, People's Republic of China
| | - Lihong Chen
- The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Ruyi Hu
- Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China ; Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China
| | - Chunyan Shi
- Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China ; Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China
| | - Guohong Zhuang
- Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China ; Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China
| | - Ping Yin
- The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
35
|
Liu M, Zheng SJ, Chen Y, Li N, Ren PF, Dai LP, Duan ZP, Zhang JY. Autoantibody response to murine double minute 2 protein in immunodiagnosis of hepatocellular carcinoma. J Immunol Res 2014; 2014:906532. [PMID: 24955377 PMCID: PMC4053260 DOI: 10.1155/2014/906532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. Although new therapeutic strategies have been continuously developed and applied to clinical treatment for HCC, the prognosis is still very poor. Thus, early detection of HCC may enhance effective and curative management. In this study, autoantibody responses to MDM2 protein in HCC patient's serum were evaluated by enzyme-linked immunosorbent assay (ELISA) and part sera were evaluated by Western blotting and indirect immunofluorescence assay. Immunohistochemistry (IHC) over tissue array slides was also performed to analyze protein expression of MDM2 in HCC and control tissues. The prevalence of autoantibodies against MDM2 was significantly higher than that in liver cirrhosis (LC), chronic hepatitis (CH), and normal human sera (NHS). The average titer of autoantibodies against MDM2 in HCC serum was higher compared to that in LC, CH, and NHS. A high titer of autoantibodies against MDM2 in ELISA could be observed in the serum in 6 to 9 months before the clinical diagnosis of HCC in the serum of several HCC patients with serial bleeding samples. Our preliminary data indicate that MDM2 and anti-MDM2 system may be a potential biomarker for early stage HCC screening and immunodiagnosis.
Collapse
Affiliation(s)
- Mei Liu
- Beijing You'an Hospital, Capital Medical University, Beijing 10069, China
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Su-jun Zheng
- Beijing You'an Hospital, Capital Medical University, Beijing 10069, China
| | - Yu Chen
- Beijing You'an Hospital, Capital Medical University, Beijing 10069, China
| | - Ning Li
- Beijing You'an Hospital, Capital Medical University, Beijing 10069, China
| | - Peng-fei Ren
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Li-ping Dai
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zhong-ping Duan
- Beijing You'an Hospital, Capital Medical University, Beijing 10069, China
| | - Jian-Ying Zhang
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
36
|
Overexpression of TRIM24 is associated with the onset and progress of human hepatocellular carcinoma. PLoS One 2014; 9:e85462. [PMID: 24409330 PMCID: PMC3883694 DOI: 10.1371/journal.pone.0085462] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
The survival and colonization of tumor cells at new locations involve a variety of complex genetic, epigenetic, and microenvironmental factors. TRIM24 was originally named transcription intermediary factor 1-alpha (TIF1α), which was associated with cellular proliferation and was an oncogene in tumor development. Here we provide the first evidence of the expression profile and clinicopathological significance of TRIM24 in patients with hepatocellular carcinoma (HCC). Immunohistochemistry was employed to determine the expression level of TRIM24 in HCC tissues and noncancerous liver tissues. Elevated TRIM24 level was found in 61.4% HCC samples (51/83) correlating with AFP (P = 0.036), poor differentiation (P = 0.004), intrahepatic metastasis (P = 0.004), recurrence (P = 0.000006), and shorter tumor-free survival time (P = 0.002). Small interfering RNA induced down-regulation of TRIM24 promoted apoptosis in HCC cell line HepG2. Moreover, western blotting analysis revealed that knockdown of TRIM24 increased the protein levels of p53, Bax, and Caspase-8, and decreased Bcl-2, Survivin, Cyclin D1, and CDK4. Depletion of TRIM24 decreased Snail, Slug, β-catenin, and Vimentin, and increased E-cadherin expression, which suggested the involvement of TRIM24 in EMT. These results indicated that TRIM24 plays an important role in the pathogenesis of human HCC.
Collapse
|
37
|
Wang M, Mehta A, Block TM, Marrero J, Di Bisceglie AM, Devarajan K. A comparison of statistical methods for the detection of hepatocellular carcinoma based on serum biomarkers and clinical variables. BMC Med Genomics 2013; 6 Suppl 3:S9. [PMID: 24564861 PMCID: PMC3980825 DOI: 10.1186/1755-8794-6-s3-s9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Currently, a surgical approach is the best curative treatment for those with hepatocellular carcinoma (HCC). However, this requires HCC detection and removal of the lesion at an early stage. Unfortunately, most cases of HCC are detected at an advanced stage because of the lack of accurate biomarkers that can be used in the surveillance of those at risk. It is believed that biomarkers that could detect HCC early will play an important role in the successful treatment of HCC. METHODS In this study, we analyzed serum levels of alpha fetoprotein, Golgi protein, fucosylated alpha-1-anti-trypsin, and fucosylated kininogen from 113 patients with cirrhosis and 164 serum samples from patients with cirrhosis plus HCC. We utilized two different methods, namely, stepwise penalized logistic regression (stepPLR) and model-based classification and regression trees (mob), along with the inclusion of clinical and demographic factors such as age and gender, to determine if these improved algorithms could be used to increase the detection of cancer. RESULTS AND DISCUSSION The performance of multiple biomarkers was found to be better than that of individual biomarkers. Using several statistical methods, we were able to detect HCC in the background of cirrhosis with an area under the receiver operating characteristic curve of at least 0.95. stepPLR and mob demonstrated better predictive performance relative to logistic regression (LR), penalized LR and classification and regression trees (CART) used in our prior study based on three-fold cross-validation and leave one out cross-validation. In addition, mob provided unparalleled intuitive interpretation of results and potential cut-points for biomarker levels. The inclusion of age and gender improved the overall performance of both methods among all models considered, while the stratified male-only subset provided the best overall performance among all methods and models considered. CONCLUSIONS In addition to multiple biomarkers, the incorporation of age and gender into statistical models significantly improved their predictive performance in the detection of HCC.
Collapse
Affiliation(s)
| | - Anand Mehta
- 3508 Old Easton Rd, Doylestown, PA, 18902, USA
| | | | - Jorge Marrero
- Division of Gastroenterology, University of Michigan, 3912 Taubman Center, Ann Arbor, MI 48109, USA
| | - Adrian M Di Bisceglie
- Saint Louis University School of Medicine, 1402 S. Grand FDT 12th Floor, St. Louis, MO 63104, USA
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 18901, USA
| |
Collapse
|
38
|
Zaenker P, Ziman MR. Serologic autoantibodies as diagnostic cancer biomarkers--a review. Cancer Epidemiol Biomarkers Prev 2013; 22:2161-81. [PMID: 24057574 DOI: 10.1158/1055-9965.epi-13-0621] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Current diagnostic techniques used for the early detection of cancers are successful but subject to detection bias. A recent focus lies in the development of more accurate diagnostic tools. An increase in serologic autoantibody levels has been shown to precede the development of cancer disease symptoms. Therefore, autoantibody levels in patient blood serum have been proposed as diagnostic biomarkers for early-stage diagnosis of cancers. Their clinical application has, however, been hindered by low sensitivity, specificity, and low predictive value scores. These scores have been shown to improve when panels of multiple diagnostic autoantibody biomarkers are used. A five-marker biomarker panel has been shown to increase the sensitivity of prostate cancer diagnosis to 95% as compared with 12.2% for prostate-specific antigen alone. New potential biomarker panels were also discovered for lung, colon, and stomach cancer diagnosis with sensitivity of 76%, 65.4%, and 50.8%, respectively. Studies in breast and liver cancer, however, seem to favor single markers, namely α-2-HS-glycoprotein and des-γ-carboxyprothrombin with sensitivities of 79% and 89% for the early detection of the cancers. The aim of this review is to discuss the relevance of autoantibodies in cancer diagnosis and to outline the current methodologies used in the detection of autoantibodies. The review concludes with a discussion of the autoantibodies currently used in the diagnosis of cancers of the prostate, breast, lung, colon, stomach, and liver. A discussion of the potential future use of autoantibodies as diagnostic cancer biomarkers is also included in this review.
Collapse
Affiliation(s)
- Pauline Zaenker
- Authors' Affiliations: School of Medical Sciences, Edith Cowan University, Perth; and Department of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | | |
Collapse
|
39
|
Comunale MA, Wang M, Anbarasan N, Betesh L, Karabudak A, Moritz E, Devarajan K, Marrero J, Block TM, Mehta A. Total serum glycan analysis is superior to lectin-FLISA for the early detection of hepatocellular carcinoma. Proteomics Clin Appl 2013; 7:690-700. [PMID: 23857719 DOI: 10.1002/prca.201200125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/22/2013] [Accepted: 03/30/2013] [Indexed: 12/25/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a primary cancer of the liver that is predominantly the result of infection with a hepatotropic virus such as hepatitis B virus or hepatitis C virus. As liver cancer is often asymptomatic, the development of sensitive noninvasive biomarkers is needed for early detection and improved survival. EXPERIMENTAL DESIGN We have previously identified alterations in the N-linked glycosylation of serum proteins with the development of HCC and identified many of the proteins that contained the altered glycosylation. In the current study, we compared the ability of the identified proteins to diagnose HCC with the total serum glycan analysis. RESULTS Surprisingly, glycan analysis of total serum had the greatest ability to distinguish HCC from cirrhosis with an AUROC of 0.851, a sensitivity of 73% at a specificity of 88%. When total glycan sequencing was combined with alpha-fetoprotein (AFP), the sensitivity increased to 95% at a specificity of 90%. CONCLUSION AND CLINICAL RELEVANCE Changes in glycosylation as detected in whole serum could be used to diagnose HCC with greater sensitivity and specificity than that observed through the analysis of specific protein glycoforms or protein levels. Such an assay could have value in the management of those at risk for the development of HCC.
Collapse
Affiliation(s)
- Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology, Drexel University College of Medicine, Doylestown, PA 18901, USA
| | - Mengjun Wang
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology, Drexel University College of Medicine, Doylestown, PA, USA
| | | | - Lucy Betesh
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Aykan Karabudak
- Institute for Hepatitis and Virus Research, Doylestown, PA, USA
| | - Ethan Moritz
- Institute for Hepatitis and Virus Research, Doylestown, PA, USA
| | | | - Jorge Marrero
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy M Block
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Anand Mehta
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology, Drexel University College of Medicine, Doylestown, PA, USA
| |
Collapse
|
40
|
Miao HL, Pan ZJ, Lei CJ, Wen JY, Li MY, Liu ZK, Qiu ZD, Lin MZ, Chen NP, Chen M. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J Cell Biochem 2013; 114:625-31. [PMID: 23060277 DOI: 10.1002/jcb.24404] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022]
Abstract
Glypican-3 (GPC3), a membrane-associated heparan sulfate proteoglycan, is frequently upregulated in hepatocellular carcinoma (HCC). Yes-associated protein (YAP) is also found over-expressed in HCC and has been identified as a key effector molecule in Hippo pathway, which could control the organ size in animals through the regulation of cell proliferation and apoptosis and plays an important role in the development of malignant tumors. Studies have reported that GPC3 and YAP might collaborate to regulate the development of HCC. To elucidate the role of GPC3 in the development of HCC and its relationship with YAP, siRNA technique was employed to knock down GPC3 in Huh7 HCC cells. Moreover, recombinant human YAP-1 was used to examine the effects of GPC3 on Huh7 cells. The results of flow cytometric analysis and Annexin-V-FLUOS apoptosis assay showed that knockdown of GPC3-induced apoptosis in Huh7 cells, resulting in inhibition of cell proliferation as examined by EdU incorporation assay, migration, and invasion. GPC3 knockdown also suppressed the expression of YAP in mRNA and protein levels, as examined by fluorescence quantitative PCR and Western blot analysis. Moreover, addition of recombinant human YAP-1 effectively rescued the cells from apoptosis triggered by GPC3 knockdown. Taken together, our findings suggest that GPC3 regulates HCC cell proliferation with the involvement of Hippo pathway.
Collapse
Affiliation(s)
- Hui-Lai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ceborska M, Szwed K, Suwinska K. β-Cyclodextrin as the suitable molecular container for isopulegol enantiomers. Carbohydr Polym 2013; 97:546-50. [PMID: 23911483 DOI: 10.1016/j.carbpol.2013.04.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/19/2013] [Accepted: 04/30/2013] [Indexed: 11/25/2022]
Abstract
Isopulegol, an insoluble in water and highly volatile compound, due to its neuroactive properties is a potentially important agent for medical applications. Formation of "host-guest" molecular complexes with cyclodextrins would lead to the increase of its water solubility and bioavailability. Interactions between native cyclodextrins (α, β and γ) and isopulegol enantiomers were studied in solution proving the formation of inclusion complexes for β- and γ-cyclodextrins. For the more stable complexes with β-cyclodextrin crystal structures were obtained showing the formation of molecular capsules forming molecular container able to accommodate two guest molecules.
Collapse
Affiliation(s)
- Magdalena Ceborska
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
42
|
Liang H, Block TM, Wang M, Nefsky B, Long R, Hafner J, Mehta AS, Marrero J, Gish R, Norton PA. Interleukin-6 and oncostatin M are elevated in liver disease in conjunction with candidate hepatocellular carcinoma biomarker GP73. Cancer Biomark 2013; 11:161-71. [PMID: 23144154 DOI: 10.3233/cbm-2012-00276] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Golgi phosphoprotein GP73 is elevated in the circulation of individuals with a diagnosis of hepatocellular carcinoma. Its usefulness as a biomarker of HCC is questioned, since it has also been reported to be elevated in the circulation of people with liver cirrhosis. Regulation of GP73 by inflammatory cytokines is therefore of interest. The interleukin-6 (IL-6) family cytokines were tested for effects on GP73 mRNA and/or protein levels in human hepatoblastoma HepG2 cells. Levels of GP73 mRNA and protein were up-regulated in HepG2 cells following treatment with either proinflammatory cytokine IL-6 or the related cytokine oncostatin M (OSM). Induction required the shared receptor subunit gp130, and correlated with increased tyrosine phosphorylation of STAT3. Maximal cytokine-mediated induction was not observed in the presence of protein synthesis inhibitor cycloheximide, suggesting additional regulatory factors play an important role. ELISA measurement of GP73 and IL-6 levels in the sera of patients with pre-malignant liver disease revealed a significant correlation between circulating levels of the two proteins. Similarly, a sensitive ELISA assay was developed to measure circulating OSM. OSM levels were elevated 6-7 fold in sera from patients with either cirrhosis or HCC relative to controls without liver disease. Although there was an association between levels of GP73 and OSM in serum from people with liver cirrhosis, there was not a statistically significant correlation in HCC, suggesting that the role of the cytokines in determining circulating levels may be complex. To our knowledge, this is the first report of OSM elevation being associated with liver disease.
Collapse
Affiliation(s)
- Hongyan Liang
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, PA 18902, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu M, Xie XH, Xie XY, Xu ZF, Liu GJ, Zheng YL, Huang GL, Wang W, Zheng SG, Lü MD. Sorafenib suppresses the rapid progress of hepatocellular carcinoma after insufficient radiofrequency ablation therapy: an experiment in vivo. Acta Radiol 2013; 54:199-204. [PMID: 23171528 DOI: 10.1258/ar.2012.120249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Radiofrequency ablation (RFA) is a widely applied treatment for hepatocellular carcinoma (HCC), but insufficient RFA can promote rapid progression of the residual tumor through the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGFA) pathway. Although sorafenib has been successfully applied to advanced HCC, the use of sorafenib in residual tumor cells after RFA has rarely been tested. PURPOSE To evaluate the potential role of sorafenib as an adjunct to RFA to reduce the recurrence rate after insufficient RFA. MATERIAL AND METHODS Xenograft tumors of SMMC 7721 were created by subcutaneously inoculating nude mice with hepatoma cells (5 × 10(6) cells per mouse). Fourteen days after inoculation, all mice were divided into three groups (control group [sham puncture], RFA group, and RFA combined with sorafenib treatment group) with six mice in each group. Each group was given a different treatment procedure. After treatment, the volume of the tumors was calculated from the resected specimens. The mRNA and protein expression of HIF-1α and VEGFA was quantified by real-time PCR and immunohistochemistry analysis. The micro-vessel density (MVD) was determined by CD34 immunohistochemistry. RESULTS Real-time PCR and immunohistochemistry analysis showed that, compared to the RFA group, HIF-1α and VEGFA expression were significantly decreased in the group that received RFA combined with sorafenib treatment (P < 0.05). By comparing the control group with the RFA group, we found that insufficient RFA promoted HIF-1α and VEGFA expression (P < 0.05). Similar results were obtained for MVD expression. Additionally, the combination of RFA with sorafenib therapy resulted in a synergistic reduction in tumor growth compared to insufficient RFA and sham puncture (P < 0.05). CONCLUSION Sorafenib was able to inhibit the expression of HIF-1α and VEGFA, and sorafenib was able to increase time to recurrence when used as an adjunct to RFA.
Collapse
Affiliation(s)
- Ming Xu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Xiao-hua Xie
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Xiao-yan Xie
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Zuo-feng Xu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Guang-jian Liu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Yan-ling Zheng
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Guang-liang Huang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Wei Wang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Shu-guang Zheng
- Department of Medical Ultrasonics, the First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou
| | - Ming-de Lü
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Serum biomarkers identification by mass spectrometry in high-mortality tumors. INTERNATIONAL JOURNAL OF PROTEOMICS 2013; 2013:125858. [PMID: 23401773 PMCID: PMC3562576 DOI: 10.1155/2013/125858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/16/2012] [Accepted: 12/11/2012] [Indexed: 02/08/2023]
Abstract
Cancer affects millions of people worldwide. Tumor mortality is substantially due to diagnosis at stages that are too late for therapies to be effective. Advances in screening methods have improved the early diagnosis, prognosis, and survival for some cancers. Several validated biomarkers are currently used to diagnose and monitor the progression of cancer, but none of them shows adequate specificity, sensitivity, and predictive value for population screening. So, there is an urgent need to isolate novel sensitive, specific biomarkers to detect the disease early and improve prognosis, especially in high-mortality tumors. Proteomic techniques are powerful tools to help in diagnosis and monitoring of treatment and progression of the disease. During the last decade, mass spectrometry has assumed a key role in most of the proteomic analyses that are focused on identifying cancer biomarkers in human serum, making it possible to identify and characterize at the molecular level many proteins or peptides differentially expressed. In this paper we summarize the results of mass spectrometry serum profiling and biomarker identification in high mortality tumors, such as ovarian, liver, lung, and pancreatic cancer.
Collapse
|
45
|
Wang M, Block TM, Marrero J, Di Bisceglie AM, Devarajan K, Mehta A. Improved biomarker performance for the detection of hepatocellular carcinoma by inclusion of clinical parameters. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2012; 2012. [PMID: 24307972 DOI: 10.1109/bibm.2012.6392612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously identified several biomarkers of hepatocellular carcinoma (HCC). The levels of three of these biomarkers were analyzed individually and in combination with the currently used marker, alpha fetoprotein (AFP), for the ability to distinguish between a diagnosis of cirrhosis (n=113) and HCC (n=164). We have utilized several novel biostatistical tools, along with the inclusion of clinical factors such as age and gender, to determine if improved algorithms could be used to increase the probability of cancer detection. Using several of these methods, we are able to detect HCC in the background of cirrhosis with an AUC of at least 0.95. The use of clinical factors in combination with biomarker values to detect HCC is discussed.
Collapse
Affiliation(s)
- Mengjun Wang
- Drexel University College of Medicine, Doylestown, PA, 18901
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Chinese herbal medicine () attracts much attention in the treatment of liver injuries. Numerous studies have revealed various biological activities of medicinal mushrooms such as Antrodia Cinnamomea (). Although A. cinnamomea is rare in the wild, recent developments in fermentation and cultivation technologies make the mycelia and fruiting bodies of this valuable medicinal mushroom readily available. Liver diseases such as fatty liver, hepatitis, hepatic fibrosis, and liver cancer are complicated processes of liver injuries that have tremendous impact on human society. In this article, we reviewed studies about the hepatoprotective effects of the fruiting bodies and mycelia of A. cinnamomea performed in different experimental models. The results of those studies suggest the potential application of A. cinnamomea in preventing and treating liver diseases and its potential to be developed into health foods or new drugs.
Collapse
Affiliation(s)
- Yen-Wenn Liu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Yang T, Cai SY, Zhang J, Lu JH, Lin C, Zhai J, Wu MC, Shen F. Krüppel-like factor 8 is a new Wnt/beta-catenin signaling target gene and regulator in hepatocellular carcinoma. PLoS One 2012; 7:e39668. [PMID: 22761862 PMCID: PMC3384617 DOI: 10.1371/journal.pone.0039668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022] Open
Abstract
Krüppel-like factor 8 (KLF8) plays important role in cell cycle and oncogenic transformation. Here we report the mechanisms by which KLF8 crosstalks with Wnt/β-catenin signaling pathway and regulates hepatocellular carcinoma (HCC) cells proliferation. We show that overexpression of KLF8 and nucleus accumulation of β-catenin in the human HCC samples are positively correlated. More importantly, KLF8 protein levels plus nucleus accumulation of β-catenin levels were significantly elevated in high-grade HCC compared to low-grade HCC. Using HCC HepG2 cells we find that, on the one hand both protein and mRNA of KLF8 are up-regulated under Wnt3a stimulation, on the other hand overexpression of KLF8 increases the cytoplasm and nucleus accumulation of β-catenin, recruits p300 to β-catenin/T-cell factor 4 (TCF4) transcription complex, enhances TOP flash report gene transcription, and induces Wnt/β-catenin signaling target genes c-Myc, cyclin D1 and Axin1 expression. Knockdown of KLF8 using shRNA inhibits Wnt3a induced transcription of TOP flash report gene and expression of c-Myc, cyclin D1 and Axin1. Knockdown of β-catenin by shRNA rescues the enhanced HepG2 and Hep3B cells proliferation ability induced by overexpression of KLF8.
Collapse
Affiliation(s)
- Tian Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sheng-Yun Cai
- Department of Gynaecology and Obstetrics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Hua Lu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chuan Lin
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian Zhai
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
48
|
Mehta A, Norton P, Liang H, Comunale MA, Wang M, Rodemich-Betesh L, Koszycki A, Noda K, Miyoshi E, Block T. Increased levels of tetra-antennary N-linked glycan but not core fucosylation are associated with hepatocellular carcinoma tissue. Cancer Epidemiol Biomarkers Prev 2012; 21:925-33. [PMID: 22490318 PMCID: PMC3380809 DOI: 10.1158/1055-9965.epi-11-1183] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Alterations in glycosylation have long been associated with the development of cancer. In the case of primary hepatocellular carcinoma (HCC), one alteration that has often been associated is increased amounts of fucose attached to the N-glycans of serum proteins secreted by the liver. METHODS In an effort to determine the origin of this increased fucosylation, we have conducted N-linked glycan analysis of HCC tissue, the surrounding nontumor tissue, and compared this to tissue from a nondiseased adult liver. RESULTS Surprisingly, no difference in the level of fucosylation was observed from the three donor groups, suggesting that the increased levels of fucosylation observed in serum of those with HCC is not the result of increased synthesis of fucosylated proteins in the cancer tissue. On the other hand, increased levels of a tetra-antennary glycan were observed in the HCC tissue as compared with the surrounding tissue or to the nondiseased livers. CONCLUSIONS This represents, to our knowledge, one of the first reports associating increased levels of branching with the development of HCC. IMPACT The identification of increased levels of tetra-antennary glycan on liver tumor tissue, as opposed to adjacent or nondiseased tissue may lead to improved detection of HCC.
Collapse
Affiliation(s)
- Anand Mehta
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Molecular and serum markers in hepatocellular carcinoma: Predictive tools for prognosis and recurrence. Crit Rev Oncol Hematol 2012; 82:116-40. [DOI: 10.1016/j.critrevonc.2011.05.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/08/2011] [Accepted: 05/18/2011] [Indexed: 12/12/2022] Open
|
50
|
Liao J, Zhang R, Qian H, Cao L, Zhang Y, Xu W, Li J, Wu M, Yin Z. Serum profiling based on fucosylated glycoproteins for differentiating between chronic hepatitis B and hepatocellular carcinoma. Biochem Biophys Res Commun 2012; 420:308-14. [PMID: 22425980 DOI: 10.1016/j.bbrc.2012.02.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) is associated with the majority of cases of hepatocellular carcinoma (HCC) in China. Despite this, there is no effective method for the early detection of HBV-induced liver cancer. Aberrant fucosylation is known to occur during the development of HCC. We, therefore, developed a method of applying matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the relationship between aberrant fucosylation, tumor genesis and progression of HBV-associated HCC, and to establish proteomic profiling of serum for early diagnosis of HCC. The MALDI-TOF MS was based on Lens culinaris agglutinin (LCA) lectin magnetic beads and their affinity for separation. The method was applied initially to a 'training' cohort of 111 serum samples obtained from subjects in China with no liver disease (n=26), chronic hepatitis B without cirrhosis (n=21), HBV-infected cirrhosis (n=32), or HBV-infected HCC (n=32). In contrast to previous findings, the results of our profiling analysis demonstrated defucosylation on some of the glycoproteins involved in HCC. HCC was then diagnostically classified in a 'blind test' cohort (n=96). In this group we demonstrated that, HCC could be distinguished from all serum samples, HBV-associated chronic liver disease, and HBV-associated cirrhosis with a sensitivity/specificity of 70%/70%, 78%/74%, and 81%/82%, respectively. When combined with serum alpha-fetoprotein detection (AFP>20 ng/mL), the sensitivity/specificity improved to 78%/88%, 85%/88%, and 89%/91%, respectively. In conclusion, serum glycoprotein fucosylation abnormalities have diverse forms in patients with HCC. MALDI-TOF MS profiling of aberrant serum fucosylated glycoproteins distinguished HCC from controls with high accuracy.
Collapse
Affiliation(s)
- Jian Liao
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China.
| | | | | | | | | | | | | | | | | |
Collapse
|