1
|
Espinosa M, Lizárraga F, Vázquez-Santillán K, Hidalgo-Miranda A, Piña-Sánchez P, Torres J, García-Ramírez RA, Maldonado V, Melendez-Zajgla J, Ceballos-Cancino G. Coexpression of Smac/DIABLO and Estrogen Receptor in breast cancer. Cancer Biomark 2021; 30:429-446. [PMID: 33492282 DOI: 10.3233/cbm-200535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Smac/DIABLO is a proapoptotic protein deregulated in breast cancer, with a controversial role as a tumor marker, possibly due to a lack of correlative mRNA and protein analyses. OBJECTIVE To investigate the association of Smac/DIABLO gene and protein levels with clinical variables in breast cancer patients. METHODS Smac/DIABLO mRNA expression was analyzed by qPCR in 57 frozen tissues, whereas protein levels were assessed by immunohistochemistry in 82 paraffin-embedded tissues. Survivin mRNA levels were also measured. In vitro assays were performed to investigate possible regulators of Smac/DIABLO. RESULTS Higher levels of Smac/DIABLO mRNA and protein were found in estrogen receptor (ER)-positive samples (p= 0.0054 and p= 0.0043, respectively) in comparison to ER-negative tumors. A negligible positive association was found between Smac/DIABLO and survivin expression. In vitro assays showed that Smac/DIABLO is not regulated by ER and, conversely, it does not participate in ER expression modulation. CONCLUSIONS mRNA and protein levels of Smac/DIABLO were increased in ER-positive breast tumors in comparison with ER-negative samples, although the mechanism of this regulation is still unknown. Public databases showed a possible clinical relevance for this association.
Collapse
Affiliation(s)
- Magali Espinosa
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Functional Cancer Genomics Laboratory, Mexico City, Mexico
| | - Floria Lizárraga
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Epigenetic Laboratory, Mexico City, Mexico
| | - Karla Vázquez-Santillán
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Epigenetic Laboratory, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Cancer Genomics Laboratory, Mexico City, Mexico
| | - Patricia Piña-Sánchez
- Instituto Mexicano del Seguro Social, CMN S XXI, Oncology Research Unit, Molecular Oncology Laboratory, Mexico City, Mexico
| | - Javier Torres
- Instituto Mexicano del Seguro Social, CMN S XXI, Unity of Research in Infectious Diseases, Mexico City, Mexico
| | - Román A García-Ramírez
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Functional Cancer Genomics Laboratory, Mexico City, Mexico
| | - Vilma Maldonado
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Epigenetic Laboratory, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Functional Cancer Genomics Laboratory, Mexico City, Mexico
| | - Gisela Ceballos-Cancino
- Instituto Nacional de Medicina Genómica, Department of Basic Research, Functional Cancer Genomics Laboratory, Mexico City, Mexico
| |
Collapse
|
2
|
Sallas ML, Zapparoli D, Dos Santos MP, Pereira JN, Orcini WA, Peruquetti RL, Chen ES, de Arruda Cardoso Smith M, Payão SLM, Rasmussen LT. Dysregulated Expression of Apoptosis-Associated Genes and MicroRNAs and Their Involvement in Gastric Carcinogenesis. J Gastrointest Cancer 2020; 52:625-633. [PMID: 32583363 DOI: 10.1007/s12029-019-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Analyze the expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b in patients with normal gastric tissue, chronic gastritis, and gastric adenocarcinoma. METHODS The expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b by qRT-PCR was analyzed in 158 samples from 53 patients with normal gastric mucosa, 86 with chronic gastritis, and 19 with gastric cancer. RESULTS The comparison between the gastric cancer and the control group revealed a decreased expression of caspase-9 in gastric cancer tissues; considering the Helicobacter pylor presence, comparable results were revealed. Smac/DIABLO was increased in gastric cancer cells, while XIAP demonstrated no significant difference in the gene expression. The microRNA analysis revealed a decreased expression of let-7a and let-7b in samples positive to H. pylori infection and in gastric cancer group, regardless of the presence of the bacterium. CONCLUSION Our study provided some evidence of low activity of the intrinsic apoptosis pathway, as well as the influence of H. pylori on let-7a and let-7b expression.
Collapse
Affiliation(s)
| | - Diana Zapparoli
- Universidade do Sagrado Coração (USC), Bauru, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
4
|
Corti A, Milani M, Lecis D, Seneci P, Rosa M, Mastrangelo E, Cossu F. Structure‐based design and molecular profiling of Smac‐mimetics selective for cellular
IAP
s. FEBS J 2018; 285:3286-3298. [DOI: 10.1111/febs.14616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Alessandro Corti
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori Milano Italy
| | - Mario Milani
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| | - Daniele Lecis
- Fondazione IRCCS Istituto Nazionale dei Tumori Milano Italy
| | - Pierfausto Seneci
- Dipartimento di Chimica Organica e Industriale Università di Milano Italy
| | - Matteo Rosa
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| | - Eloise Mastrangelo
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| | - Federica Cossu
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| |
Collapse
|
5
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
6
|
Paul A, Krelin Y, Arif T, Jeger R, Shoshan-Barmatz V. A New Role for the Mitochondrial Pro-apoptotic Protein SMAC/Diablo in Phospholipid Synthesis Associated with Tumorigenesis. Mol Ther 2017; 26:680-694. [PMID: 29396267 DOI: 10.1016/j.ymthe.2017.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022] Open
Abstract
The mitochondrial pro-apoptotic protein SMAC/Diablo participates in apoptosis by negatively regulating IAPs and activating caspases, thus encouraging apoptosis. Unexpectedly, we found that SMAC/Diablo is overexpressed in cancer. This paradox was addressed here by silencing SMAC/Diablo expression using specific siRNA (si-hSMAC). In cancer cell lines and subcutaneous lung cancer xenografts in mice, such silencing reduced cell and tumor growth. Immunohistochemistry and electron microscopy of the si-hSMAC-treated residual tumor demonstrated morphological changes, including cell differentiation and reorganization into glandular/alveoli-like structures and elimination of lamellar bodies, surfactant-producing organs. Next-generation sequencing of non-targeted or si-hSMAC-treated tumors revealed altered expression of genes associated with the cellular membrane and extracellular matrix, of genes found in the ER and Golgi lumen and in exosomal networks, of genes involved in lipid metabolism, and of lipid, metabolite, and ion transporters. SMAC/Diablo silencing decreased the levels of phospholipids, including phosphatidylcholine. These findings suggest that SMAC/Diablo possesses additional non-apoptotic functions related to regulating lipid synthesis essential for cancer growth and development and that this may explain SMAC/Diablo overexpression in cancer. The new lipid synthesis-related function of the pro-apoptotic protein SMAC/Diablo in cancer cells makes SMAC/Diablo a promising therapeutic target.
Collapse
Affiliation(s)
- Avijit Paul
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Rina Jeger
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
7
|
Shoshan-Barmatz V, Bishitz Y, Paul A, Krelin Y, Nakdimon I, Peled N, Lavon A, Rudoy-Zilberman E, Refaely Y. A molecular signature of lung cancer: potential biomarkers for adenocarcinoma and squamous cell carcinoma. Oncotarget 2017; 8:105492-105509. [PMID: 29285267 PMCID: PMC5739654 DOI: 10.18632/oncotarget.22298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Adenocarcinoma (AC) and squamous cell carcinoma (SCC), sub-types of non-small cell lung cancer (NSCLC), both present unique features at the genome, epigenome, transcriptome and proteome levels, as well as shared clinical and histopathological characteristics, but differ in terms of treatment. To ensure proper treatment, one must be able to distinguish between these sub-types. Here, we identify novel biomarker proteins in NSCLC, allowing for distinguishing between the AC and SCC sub-types. Proteomics analysis distinguished between healthy and tumor tissues, with the expression level of 1,494 proteins being altered, 378 of which showed a ≥|100|-fold change. Enrichment of proteins related to protein synthesis and degradation, and of proteins associated with mitochondria, metabolism, and apoptosis, was found. Network analysis defined groups of proteins, such as those associated with cell metabolic processes or with fatty acid/lipid metabolism and transport. Several biomarkers that enable for distinguishing between AC and SCC were identified here for the first time, and together with previous reports confirmed here, led us to propose a list of proteins differentially expressed in SCC and AC. Some of these biomarkers are clear signatures for AC or SCC and four of them are secreted proteins. The presence of the mitochondrial protein SMAC/Diablo in the nucleus was found to be a signature for SCC. Precise diagnosis of AC and SCC is essential for selecting appropriate treatment and thus, increasing patient life expectancy. Finally, the search for drugs that target some of these biomarkers may lead to new treatments for lung cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Bishitz
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avijit Paul
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yakov Krelin
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itay Nakdimon
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nir Peled
- Thoracic Cancer Unit and The Center for Precision Cancer Care, Davidoff Cancer Center, Petach Tiqwa, Israel
| | - Avia Lavon
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elina Rudoy-Zilberman
- Department of Cardio-Thoracic Surgery, Soroka University Medical Center and The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Refaely
- Department of Cardio-Thoracic Surgery, Soroka University Medical Center and The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
8
|
Heider T, Mutschelknaus L, Radulović V, Winkler K, Kimmel J, Anastasov N, Atkinson MJ, Moertl S. Radiation induced transcriptional and post-transcriptional regulation of the hsa-miR-23a ~ 27a ~ 24-2 cluster suppresses apoptosis by stabilizing XIAP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1127-1137. [DOI: 10.1016/j.bbagrm.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
|
9
|
Dizdar L, Tomczak M, Werner TA, Safi SA, Riemer JC, Verde PE, Stoecklein NH, Knoefel WT, Krieg A. Survivin and XIAP expression in distinct tumor compartments of surgically resected gastric cancer: XIAP as a prognostic marker in diffuse and mixed type adenocarcinomas. Oncol Lett 2017; 14:6847-6856. [PMID: 29109763 DOI: 10.3892/ol.2017.6999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
There is considerable evidence that the inhibitor of apoptosis protein (IAP) family serves a role in tumorigenesis. The most studied IAP family members, survivin and X-linked inhibitor of apoptosis (XIAP), have been demonstrated to serve as biomarkers in distinct tumor entities. Thus, the present study aimed to investigate the expression levels of both IAPs in the tumor center, invasion front and lymph node metastases of surgically resected gastric cancer (GC) specimens. Tissue microarrays containing samples from 201 primary GCs were analyzed. IAP expression was detected using immunohistochemistry in different tumor compartments, normal mucosa and lymph node metastases. In addition, the association between the expression levels of these proteins, and clinicopathological parameters and overall survival was investigated. High levels of survivin and XIAP were evident in GC, when compared with normal mucosa, and were correlated with intestinal-type and well-differentiated GC, as well as low International Union Against Cancer stages. Increased XIAP expression was detected in lymph node metastases as compared with corresponding primary tumors. XIAP overexpression was identified to be an independent negative prognostic marker in diffuse and mixed type GC. These results suggest a potential role of survivin and XIAP in the early phase of gastric carcinogenesis. In addition, increased XIAP expression in lymph node metastases supports the observation that IAPs serve an essential role in metastatic tumor disease. Since XIAP expression was identified to be associated with poor survival in diffuse and mixed type GC, XIAP may serve as a novel therapeutic target in these types of GC.
Collapse
Affiliation(s)
- Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Monika Tomczak
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Thomas A Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Sami A Safi
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Jasmin C Riemer
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Nikolas H Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| |
Collapse
|
10
|
Qin S, Yang C, Zhang B, Li X, Sun X, Li G, Zhang J, Xiao G, Gao X, Huang G, Wang P, Ren H. XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC. Int J Oncol 2016; 49:1289-96. [PMID: 27498621 PMCID: PMC5021253 DOI: 10.3892/ijo.2016.3634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/25/2016] [Indexed: 02/06/2023] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) and second mitochondrial-derived activator of caspase (Smac) are two important prognostic biomarkers for cancer. They are negatively correlated in many types of cancer. However, their relationship is still unknown in lung cancer. In the present study, we found that there was a negative correlation between Smac and XIAP at the level of protein but not mRNA in NSCLC patients. However, XIAP overexpression had no effect on degrading endogenous Smac in lung cancer cell lines. Therefore, we constructed plasmids with full length of Smac (fSmac) and mature Smac (mSmac) which located in cytoplasm instead of original mitochondrial location, and was confirmed by immunofluorescence. Subsequently, we found that mSmac rather than fSmac was degraded by XIAP and inhibited cell viability. CHX chase assay and ubiquitin assay were performed to illustrate XIAP degraded mSmac through ubiquitin pathway. Overexpression of XIAP partially reverted apoptotic induction and cell viability inhibition by mSmac, which was due to inhibiting caspase-3 activation. In nude mouse xenograft experiments, mSmac inhibited Ki-67 expression and slowed down lung cancer growth, while XIAP partially reversed the effect of mSmac by degrading it. In conclusion, XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC.
Collapse
Affiliation(s)
- Sida Qin
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chengcheng Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Boxiang Zhang
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang Li
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Sun
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Li
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhang
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guodong Xiao
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Gao
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guanghong Huang
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peili Wang
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ren
- Department II of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Admoni-Elisha L, Nakdimon I, Shteinfer A, Prezma T, Arif T, Arbel N, Melkov A, Zelichov O, Levi I, Shoshan-Barmatz V. Novel Biomarker Proteins in Chronic Lymphocytic Leukemia: Impact on Diagnosis, Prognosis and Treatment. PLoS One 2016; 11:e0148500. [PMID: 27078856 PMCID: PMC4831809 DOI: 10.1371/journal.pone.0148500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL) that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS) analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1), regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in CLL patients, as revealed from LC-HR-MS/MS, we could distinguish between patients in a stable disease state and those who would be later transferred to anti-cancer treatments. The over-expressed proteins can thus serve as potential biomarkers for early diagnosis, prognosis, new targets for CLL therapy, and treatment guidance of CLL, forming the basis for personalized therapy.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Chromatography, Liquid
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukocytes, Mononuclear/metabolism
- Male
- Prognosis
- Proteome/analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tandem Mass Spectrometry/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee Admoni-Elisha
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itay Nakdimon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Prezma
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Melkov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ori Zelichov
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itai Levi
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
12
|
Zhao WJ, Deng BY, Wang XM, Miao Y, Wang JN. XIAP associated factor 1 (XAF1) represses expression of X-linked inhibitor of apoptosis protein (XIAP) and regulates invasion, cell cycle, apoptosis, and cisplatin sensitivity of ovarian carcinoma cells. Asian Pac J Cancer Prev 2016; 16:2453-8. [PMID: 25824780 DOI: 10.7314/apjcp.2015.16.6.2453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) associated factor 1 (XAF1) exhibits aberrantly low or absent expression in various human malignancies, closely associated with anti-apoptosis and overgrowth of cancer cells. However, limited attention has been directed towards the contribution of XAF1 to invasion, apoptosis, and cisplatin (DDP)-resistance of epithelial ovarian cancer (EOC) cells. This study aimed to evaluate the potential effects of XAF1 on invasion, cell cycle, apoptosis, and cisplatin-resistance by overexpressing XAF1 in SKOV-3 and SKOV-3/DDP cells. METHODS AND RESULTS The pEGFP-C1-XAF1 plasmid was transfected into SKOV-3 and SKOV-3/DDP cells, and the expression of XAF1 at both mRNA and protein levels was analyzed by reverse transcription-PCR and Western blotting. Overexpression of XAF1 suppressed XIAP expression in both SKOV-3 and SKOV-3/DDP cells. Transwell invasion assays demonstrated that XAF1 exerted a strong anti-invasive effect in XAF1-overexpressing cells. Moreover, flow cytometry analysis revealed that XAF1 overexpression arrested the cell cycle at G0/G1 phase, and cell apoptosis analysis showed that overexpression of XAF1 enhanced apoptosis of SKOV-3 and SKOV-3/DDP cells apparently by activating caspase-9 and caspase-3. Furthermore, MTT assay confirmed a dose-dependent inhibitory effect of cisplatin in the tested tumor cells, and overexpression of XAF1 increased the sensitivity of SKOV-3 and SKOV-3/DDP cells to cisplatin-mediated anti- proliferative effects. CONCLUSIONS In summary, our data indicated that overexpression of XAF1 could suppress XIAP expression, inhibit invasion, arrest cell cycle, promote apoptosis, and confer cisplatin-sensitivity in SKOV-3 and SKOV-3/DDP cells. Therefore, XAF1 may be further assessed as a potential target for the treatment of both cisplatin-resistant and non-resistant EOCs.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Medical Ultrasonics, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China E-mail :
| | | | | | | | | |
Collapse
|
13
|
Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget 2015; 5:5403-15. [PMID: 24980821 PMCID: PMC4170645 DOI: 10.18632/oncotarget.2114] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment.
Collapse
|
14
|
Dubrez L, Berthelet J, Glorian V. IAP proteins as targets for drug development in oncology. Onco Targets Ther 2013; 9:1285-304. [PMID: 24092992 PMCID: PMC3787928 DOI: 10.2147/ott.s33375] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inhibitors of apoptosis (IAPs) constitute a family of proteins involved in the regulation of
various cellular processes, including cell death, immune and inflammatory responses, cell
proliferation, cell differentiation, and cell motility. There is accumulating evidence supporting
IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to tumor
development, such as cell death, cell proliferation, and cell migration; their expression is
increased in a number of human tumor samples, and IAP overexpression has been correlated with tumor
growth, and poor prognosis or low response to treatment; and IAP expression can be rapidly induced
in response to chemotherapy or radiotherapy because of the presence of an internal ribosome entry
site (IRES)-dependent mechanism of translation initiation, which could contribute to resistance to
antitumor therapy. The development of IAP antagonists is an important challenge and was subject to
intense research over the past decade. Six molecules are currently in clinical trials. This review
focuses on the role of IAPs in tumors and the development of IAP-targeting molecules for anticancer
therapy.
Collapse
Affiliation(s)
- Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), Dijon, France ; Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|
15
|
Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012; 11:109-24. [PMID: 22293567 DOI: 10.1038/nrd3627] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evasion of apoptosis is one of the crucial acquired capabilities used by cancer cells to fend off anticancer therapies. Inhibitor of apoptosis (IAP) proteins exert a range of biological activities that promote cancer cell survival and proliferation. X chromosome-linked IAP is a direct inhibitor of caspases - pro-apoptotic executioner proteases - whereas cellular IAP proteins block the assembly of pro-apoptotic protein signalling complexes and mediate the expression of anti-apoptotic molecules. Furthermore, mutations, amplifications and chromosomal translocations of IAP genes are associated with various malignancies. Among the therapeutic strategies that have been designed to target IAP proteins, the most widely used approach is based on mimicking the IAP-binding motif of second mitochondria-derived activator of caspase (SMAC), which functions as an endogenous IAP antagonist. Alternative strategies include transcriptional repression and the use of antisense oligonucleotides. This Review provides an update on IAP protein biology as well as current and future perspectives on targeting IAP proteins for therapeutic intervention in human malignancies.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| | | |
Collapse
|
16
|
Expression of apoptosis-related proteins and its clinical implication in surgically resected gastric carcinoma. Virchows Arch 2011; 459:503-10. [PMID: 21947931 DOI: 10.1007/s00428-011-1150-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 08/08/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Apoptosis, via caspase cascade, is involved in tumorigenesis and progression, and thus, altered apoptosis-related protein expressions have clinical and prognostic significance. Moreover, the apoptosis pathway is highlighted due to the recent introduction of apoptosis-targeted therapy for several genes such as the X-linked inhibitor of apoptosis protein (XIAP). XIAP is the most potent direct inhibitor of caspase, and XIAP-associated factor 1 (XAF1) and secondary mitochondrial activator of caspase/direct IAP-binding protein with low PI (Smac/DIABLO) are negative regulators of XIAP. In this study, we evaluated the expression of these proteins and investigated their clinical and prognostic significance in gastric carcinomas. Immunohistochemical analysis by using the tissue array method was performed for XIAP, survivin, Bcl-2, XAF1, Smac/DIABLO, and cleaved caspase-3 proteins in 1,162 surgically resected gastric carcinoma cases. XIAP expression was related to the advanced stage. The expression of XIAP showed negative relationship with XAF1 and Smac/DIABLO expressions. In addition, XIAP expression was associated with a poor prognosis and was also proved to be an independent prognostic factor. Cleaved caspase-3 expression was related to the early stage. In addition, cleaved caspase-3 expression was associated with a favorable prognosis and was also proved to be an independent prognostic factor. The expression of XIAP showed an inverse relationship with cleaved caspase-3. In addition, the expression of XAF1 and Smac/DIABLO had a positive relationship with cleaved caspase-3. These findings are consistent with their known functions, and they may help to identify individuals best suited for apoptosis-targeted therapy as a baseline data in gastric carcinoma.
Collapse
|
17
|
Prognostic significance of smac/DIABLO in endometrioid endometrial cancer. Folia Histochem Cytobiol 2011; 48:678-81. [PMID: 21478115 DOI: 10.2478/v10042-010-0091-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis may occur via a death receptor-dependent or independent (mitochondrial) pathway. The mitochondrial pathway is regulated by small molecules, such as smac/Diablo, which activates caspase cascades. This study examined smac/DIABLO expression in 76 patients with endometrioid endometrial cancers. Presence of smac/DIABLO was quantified by Western blot analysis using nonfixed fresh frozen tissues. Its appearance was found in 55 (72%) of examined tumors. Smac/DIABLO expression significantly correlated with tumor grade (p<0.001). Patients with positive smac/DIABLO tumors had a longer disease-specific survival when compared with those with negative tumors in the 10-year follow-up (p=0.043). The study demonstrated that negative smac/DIABLO expression was a poor prognostic sign.
Collapse
|
18
|
Zhai J, Liu HF, Zhang CG. Role of alternative splicing events in gastric carcinogenesis. Shijie Huaren Xiaohua Zazhi 2011; 19:44-47. [DOI: 10.11569/wcjd.v19.i1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing affects many essential biologic processes and is the basis for a number of pathologic conditions, including cancer. Inherited and acquired changes in pre-mRNA splicing have been documented to play a significant role in human disease development. Many cancer-associated genes are regulated by alternative splicing. In this review, we will summarize the evidence supporting the association between alternative splicing and gastric carcinogenesis. The potential significance of alternative splicing events as a target for the diagnosis and treatment of gastric cancer will also be discussed.
Collapse
|
19
|
The enigmatic roles of caspases in tumor development. Cancers (Basel) 2010; 2:1952-79. [PMID: 24281211 PMCID: PMC3840446 DOI: 10.3390/cancers2041952] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022] Open
Abstract
One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.
Collapse
|
20
|
Wolf M, Korja M, Karhu R, Edgren H, Kilpinen S, Ojala K, Mousses S, Kallioniemi A, Haapasalo H. Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication. BMC Cancer 2010; 10:181. [PMID: 20444257 PMCID: PMC2873396 DOI: 10.1186/1471-2407-10-181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/05/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma. METHODS A single-gene resolution aCGH profiling was integrated with microarray-based gene expression profiling data to distinguish genetic copy number alterations that were strongly associated with transcriptional changes in two neuroblastoma cell lines. FISH analysis using a hotspot tumor tissue microarray of 37 paraffin-embedded neuroblastoma samples and in silico data mining for gene expression information obtained from previously published studies including up to 445 healthy nervous system samples and 123 neuroblastoma samples were used to evaluate the clinical significance and transcriptional consequences of the detected alterations and to identify subsequently activated gene(s). RESULTS In addition to the anticipated high-level amplification and subsequent overexpression of MYCN, MEIS1, CDK4 and MDM2 oncogenes, the aCGH analysis revealed numerous other genetic alterations, including microamplifications at 2p and 12q24.11. Most interestingly, we identified and investigated the clinical relevance of a previously poorly characterized amplicon at 12q24.31. FISH analysis showed low-level gain of 12q24.31 in 14 of 33 (42%) neuroblastomas. Patients with the low-level gain had an intermediate prognosis in comparison to patients with MYCN amplification (poor prognosis) and to those with no MYCN amplification or 12q24.31 gain (good prognosis) (P = 0.001). Using the in silico data mining approach, we identified elevated expression of five genes located at the 12q24.31 amplicon in neuroblastoma (DIABLO, ZCCHC8, RSRC2, KNTC1 and MPHOSPH9). Among these, DIABLO showed the strongest activation suggesting a putative role in neuroblastoma progression. CONCLUSIONS The presented systematic and rapid framework, which integrates aCGH, gene expression and tissue data to obtain novel targets and biomarkers for cancer, identified a low-level gain of the 12q24.31 as a potential new biomarker for neuroblastoma progression. Furthermore, results of in silico data mining suggest a new neuroblastoma target gene, DIABLO, within this region, whose functional and therapeutic role remains to be elucidated in follow-up studies.
Collapse
Affiliation(s)
- Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Augello C, Caruso L, Maggioni M, Donadon M, Montorsi M, Santambrogio R, Torzilli G, Vaira V, Pellegrini C, Roncalli M, Coggi G, Bosari S. Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 2009; 9:125. [PMID: 19397802 PMCID: PMC2680906 DOI: 10.1186/1471-2407-9-125] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/27/2009] [Indexed: 02/07/2023] Open
Abstract
Background Similarly to other tumor types, an imbalance between unrestrained cell proliferation and impaired apoptosis appears to be a major unfavorable feature of hepatocellular carcinoma (HCC). The members of IAP family are key regulators of apoptosis, cytokinesis and signal transduction. IAP survival action is antagonized by specific binding of Smac/DIABLO and XAF1. This study aimed to investigate the gene and protein expression pattern of IAP family members and their antagonists in a series of human HCCs and to assess their clinical significance. Methods Relative quantification of IAPs and their antagonist genes was assessed by quantitative Real Time RT-PCR (qPCR) in 80 patients who underwent surgical resection for HCC. The expression ratios of XIAP/XAF1 and of XIAP/Smac were also evaluated. Survivin, XIAP and XAF1 protein expression were investigated by immunohistochemistry. Correlations between mRNA levels, protein expression and clinicopathological features were assessed. Follow-up data were available for 69 HCC patients. The overall survival analysis was estimated according to the Kaplan-Meier method. Results Survivin and Livin/ML-IAP mRNAs were significantly over-expressed in cancer tissues compared to non-neoplastic counterparts. Although Survivin immunoreactivity did not correlate with qPCR data, a significant relation was found between higher Survivin mRNA level and tumor stage, tumor grade and vascular invasion. The mRNA ratio XIAP/XAF1 was significantly higher in HCCs than in cirrhotic tissues. Moreover, high XIAP/XAF1 ratio was an indicator of poor prognosis when overall survival was estimated and elevated XIAP immunoreactivity was significantly associated with shorter survival. Conclusion Our study demonstrates that alterations in the expression of IAP family members, including Survivin and Livin/ML-IAP, are frequent in HCCs. Of interest, we could determine that an imbalance in XIAP/XAF1 mRNA expression levels correlated to overall patient survival, and that high XIAP immunoreactivity was a poor prognostic factor.
Collapse
Affiliation(s)
- Claudia Augello
- Department of Medicine, Surgery and Dentistry, Division of Pathology, University of Milan, AO S Paolo e Fondazione IRCCS Ospedale Maggiore Policlinico, Regina Elena e Mangiagalli, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martinez-Ruiz G, Maldonado V, Ceballos-Cancino G, Grajeda JPR, Melendez-Zajgla J. Role of Smac/DIABLO in cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:48. [PMID: 18822137 PMCID: PMC2566557 DOI: 10.1186/1756-9966-27-48] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/26/2008] [Indexed: 12/12/2022]
Abstract
Second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI (Smac/DIABLO) is a proapoptogenic mitochondrial protein that is released to the cytosol in response to diverse apoptotic stimuli, including commonly used chemotherapeutic drugs. In the cytosol, Smac/DIABLO interacts and antagonizes inhibitors of apoptosis proteins (IAPs), thus allowing the activation of caspases and apoptosis. This activity has prompted the synthesis of peptidomimetics that could potentially be used in cancer therapy. For these reasons, several authors have analyzed the expression levels of Smac/DIABLO in samples of patients from different tumors. Although dissimilar results have been found, a tissue-specific role of this protein emerges from the data. The objective of this review is to present the current knowledge of the Smac/DIABLO role in cancer and its possible use as a marker or therapeutic target for drug design.
Collapse
Affiliation(s)
- Gustavo Martinez-Ruiz
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Periferico Sur 4124, Torre Zafiro II 5to piso, Col, Ex-Rancho de Anzaldo, Alvaro Obregon 01900, Mexico City, México.
| | | | | | | | | |
Collapse
|
23
|
Shibata T, Noguchi T, Takeno S, Gabbert HE, Ramp U, Kawahara K. Disturbed XIAP and XAF1 Expression Balance Is an Independent Prognostic Factor in Gastric Adenocarcinomas. Ann Surg Oncol 2008; 15:3579-87. [DOI: 10.1245/s10434-008-0062-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 06/14/2008] [Accepted: 06/15/2008] [Indexed: 11/18/2022]
|
24
|
Heikaus S, Kempf T, Mahotka C, Gabbert HE, Ramp U. Caspase-8 and its inhibitors in RCCs in vivo: the prominent role of ARC. Apoptosis 2008; 13:938-49. [PMID: 18516683 DOI: 10.1007/s10495-008-0225-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of the initiator-caspase, caspase-8 is under tight control of multiple antiapoptotic regulators including ARC, cFlip(S), cFlip(L) and PED/PEA-15. Since there is little data regarding the expression of caspase-8 and its antiapoptotic regulators in human tumours in vivo, we analysed their expression in renal cell carcinomas (RCCs) to identify which of these genes might be crucial for the well known impaired apoptosis and--as a result--resistance towards chemotherapy and ionizing radiation of RCCs. Caspase-8, cFlip(S), cFlip(L) and PED/PEA-15 mRNA expression was significantly increased only in early stages of RCCs compared to non-neoplastic renal tissue. In contrast, ARC mRNA expression was significantly increased in RCCs of all stages without differences between the tumour stages and grades. Importantly, the relative mRNA expression ratio between ARC and caspase-8 was significantly increased during carcinogenesis and tumour progression. In contrast, the relative mRNA expression ratio between cFlip(S), cFlip(L) or PED/PEA-15 and caspase-8 remained constant during all tumour stages. In conclusion, our analysis revealed that ARC is the only caspase-8 inhibiting regulator being constantly overexpressed in RCCs. Furthermore, the balance between antiapoptotic ARC and proapoptotic caspase-8 is the only one to be disturbed during carcinogenesis and tumour progression of RCCs. This inhibition of Caspase-8 might therefore be one example for the multiple antiapoptotic functions of ARC in RCCs possibly contributing to the marked resistance of RCCs towards radio- and chemotherapy and reflects a shift of gene expression towards a more antiapoptotic context in RCCs.
Collapse
Affiliation(s)
- Sebastian Heikaus
- Institute of Pathology, Heinrich-Heine University Hospital, Moorenstrasse 5, 40225 Duesseldorf, Germany,
| | | | | | | | | |
Collapse
|