1
|
Farooqui A, Huang L, Wu S, Cai Y, Su M, Lin P, Chen W, Fang X, Zhang L, Liu Y, Zeng T, Paquette SG, Khan A, Kelvin AA, Kelvin DJ. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model. Antimicrob Agents Chemother 2015; 59:7255-64. [PMID: 26369969 PMCID: PMC4649212 DOI: 10.1128/aac.01885-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023] Open
Abstract
The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes.
Collapse
Affiliation(s)
- Amber Farooqui
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| | - Linxi Huang
- Infectious Diseases Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Suwu Wu
- Intensive Care Unit, Shantou Central Hospital, Shantou, China
| | - Yingmu Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Min Su
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Pengzhou Lin
- Infectious Diseases Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weihong Chen
- Intensive Care Unit, Shantou Central Hospital, Shantou, China
| | - Xibin Fang
- Intensive Care Unit, Shantou Central Hospital, Shantou, China
| | - Li Zhang
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Yisu Liu
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Tiansheng Zeng
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China
| | - Stephane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adnan Khan
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| | - Alyson A Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David J Kelvin
- Division of Immunology, International Institute of Infection and Immunity, University Health Network & Shantou University Medical College, Shantou, China Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Manjunatha N, Math SB, Kulkarni GB, Chaturvedi SK. The neuropsychiatric aspects of influenza/swine flu: A selective review. Ind Psychiatry J 2011; 20:83-90. [PMID: 23271861 PMCID: PMC3530294 DOI: 10.4103/0972-6748.102479] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The world witnessed the influenza virus during the seasonal epidemics and pandemics. The current strain of H1N1 (swine flu) pandemic is believed to be the legacy of the influenza pandemic (1918-19). The influenza virus has been implicated in many neuropsychiatric disorders. In view of the recent pandemic, it would be interesting to review the neuropsychiatric aspects of influenza, specifically swine flu. Author used popular search engine 'PUBMED' to search for published articles with different MeSH terms using Boolean operator (AND). Among these, a selective review of the published literature was done. Acute manifestations of swine flu varied from behavioral changes, fear of misdiagnosis during outbreak, neurological features like seizures, encephalopathy, encephalitis, transverse myelitis, aseptic meningitis, multiple sclerosis, and Guillian-Barre Syndrome. Among the chronic manifestations, schizophrenia, Parkinson's disease, mood disorder, dementia, and mental retardation have been hypothesized. Further research is required to understand the etiological hypothesis of the chronic manifestations of influenza. The author urges neuroscientists around the world to make use of the current swine flu pandemic as an opportunity for further research.
Collapse
Affiliation(s)
- Narayana Manjunatha
- Department of Psychiatry, MS Ramaiah Medical College, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
5
|
Lee AI, Hoffman MJ, Allen NN, Sullivan JT. Neuraxial labor analgesia in an obese parturient with influenza A H1N1. Int J Obstet Anesth 2010; 19:223-6. [PMID: 20194012 PMCID: PMC7133358 DOI: 10.1016/j.ijoa.2009.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 11/16/2022]
Abstract
We describe the use of epidural analgesia in a 39-year-old G2P1 parturient presenting at 38(+6) weeks estimated gestation with confirmed influenza A H1N1 and superimposed bilateral pneumonia. Although the patient had an uncomplicated intra- and post-partum course, little is known about the safety of performing neuraxial analgesia or anesthesia in patients with influenza. The prevalence of viremia and possible translocation of blood-borne virus to the central nervous system are discussed.
Collapse
Affiliation(s)
- A I Lee
- Departments of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
6
|
Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci U S A 2009; 106:14063-8. [PMID: 19667183 DOI: 10.1073/pnas.0900096106] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the greatest influenza pandemic threats at this time is posed by the highly pathogenic H5N1 avian influenza viruses. To date, 61% of the 433 known human cases of H5N1 infection have proved fatal. Animals infected by H5N1 viruses have demonstrated acute neurological signs ranging from mild encephalitis to motor disturbances to coma. However, no studies have examined the longer-term neurologic consequences of H5N1 infection among surviving hosts. Using the C57BL/6J mouse, a mouse strain that can be infected by the A/Vietnam/1203/04 H5N1 virus without adaptation, we show that this virus travels from the peripheral nervous system into the CNS to higher levels of the neuroaxis. In regions infected by H5N1 virus, we observe activation of microglia and alpha-synuclein phosphorylation and aggregation that persists long after resolution of the infection. We also observe a significant loss of dopaminergic neurons in the substantia nigra pars compacta 60 days after infection. Our results suggest that a pandemic H5N1 pathogen, or other neurotropic influenza virus, could initiate CNS disorders of protein aggregation including Parkinson's and Alzheimer's diseases.
Collapse
|
7
|
Jang H, Boltz DA, Webster RG, Smeyne RJ. Viral parkinsonism. Biochim Biophys Acta Mol Basis Dis 2008; 1792:714-21. [PMID: 18760350 DOI: 10.1016/j.bbadis.2008.08.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 12/30/2022]
Abstract
Parkinson's disease is a debilitating neurological disorder that affects 1-2% of the adult population over 55 years of age. For the vast majority of cases, the etiology of this disorder is unknown, although it is generally accepted that there is a genetic susceptibility to any number of environmental agents. One such agent may be viruses. It has been shown that numerous viruses can enter the nervous system, i.e. they are neurotropic, and induce a number of encephalopathies. One of the secondary consequences of these encephalopathies can be parkinsonism, that is both transient as well as permanent. One of the most highlighted and controversial cases of viral parkinsonism is that which followed the 1918 influenza outbreak and the subsequent induction of von Economo's encephalopathy. In this review, we discuss the neurological sequelae of infection by influenza virus as well as that of other viruses known to induce parkinsonism including Coxsackie, Japanese encephalitis B, St. Louis, West Nile and HIV viruses.
Collapse
Affiliation(s)
- Haeman Jang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|