1
|
Forston MJ, Jordan SL, Cesarz GM, Burke DA, Shum-Siu A, Petruska JC, Magnuson DSK. Combining clinically common drugs with hindlimb stretching in spinal cord injured rodents. Spinal Cord 2024; 62:574-583. [PMID: 39187628 DOI: 10.1038/s41393-024-01023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
STUDY DESIGN Preclinical pilot study. OBJECTIVES To explore peripheral and central nociceptive mechanisms that contribute to muscle stretch-induced locomotor deficits following spinal cord injury. SETTING Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA. METHODS Ten female Sprague-Dawley rats received moderate, 25 g/cm T10 contusion injuries and recovered for 4 weeks. Rats were divided into three groups: Morphine/Ibuprofen-treated, Acetaminophen/Baclofen-treated, and saline control. Each group received daily hindlimb muscle stretching during weeks 4, 5, 9, and 10 post-injury and drugs were administered with stretching during weeks 4 and 9 only. Locomotor function was assessed throughout the experiment using the BBB Open Field Locomotor Scale. Hindlimb responses including spasticity, writhing, and clonic-like vibrations during muscle stretching were classified and scored. RESULTS Consistent with our previous studies, hindlimb muscle stretching caused significant deficits in locomotor recovery following spinal cord injury. Baclofen and Ibuprofen partially mitigated the stretching effect, but none of the drugs significantly prevented the drop in locomotor function during stretching. Interestingly, treatment with Baclofen or Ibuprofen significantly reduced hindlimb responses such as spasticity and writhing during stretching, while Morphine exacerbated clonic-like vibrations in response to stretching maneuvers. CONCLUSIONS These findings suggest that stretching may inhibit locomotor recovery through combined mechanisms of peripheral inflammation and sensitization of nociceptive afferents. When combined with central sprouting and loss of descending controls after SCI, this results in exaggerated nociceptive input during stretching. The inability of the applied clinical drugs to mitigate the detrimental effects of stretching highlights the complexity of the stretching phenomenon and emphasizes the need for further investigation.
Collapse
Affiliation(s)
- Morgan J Forston
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Savannah L Jordan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Greta M Cesarz
- Department of Health and Sports Sciences, University of Louisville, Louisville, KY, USA
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| | - David S K Magnuson
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, USA.
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Sugimoto T, Imai S, Yoshikawa M, Fujisato T, Hashimoto T, Nakamura T. Mechanical unloading in 3D-engineered muscle leads to muscle atrophy by suppressing protein synthesis. J Appl Physiol (1985) 2022; 132:1091-1103. [PMID: 35297688 DOI: 10.1152/japplphysiol.00323.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three dimensional (3D)-engineered muscle is an useful approach to a more comprehensive understanding of molecular mechanisms underlying unloading-induced muscle atrophy. We investigated the effects of mechanical unloading on molecular muscle protein synthesis (MPS)- and muscle protein breakdown (MPB)-related signaling pathways involved in muscle atrophy in 3D-engineered muscle, and to better understand in vitro model of muscle disuse. The 3D-engineered muscle consisting of C2C12 myoblasts and type-1 collagen gel was allowed to differentiate for 2 weeks and divided into three groups: 0 days of stretched-on control (CON), 2 and/or 7 days of stretched-on (ON), in which both ends of the muscle were fixed with artificial tendons, and the stretched-off group (OFF), in which one side of the artificial tendon was detached. Muscle weight (-38.1 to -48.4%), length (-67.0 to -73.5%), twitch contractile force (-70.5 to -75.0%) and myosin heavy chain expression (-32.5 to -50.5%) in the OFF group were significantly decreased on days 2 and 7 compared with the ON group (P < 0.05, respectively), despite that ON group was stable over time. Although determinative molecular signaling could not be identified, the MPS rate reflected by puromysin labeled protein was significantly decreased following mechanical unloading (P < 0.05, -38.5 to -51.1%). Meanwhile, MPB, particularly the ubiquitin-proteasome pathway, was not impacted. Hence, mechanical unloading of 3D-engineered muscle in vitro leads to muscle atrophy by suppressing MPS, cell differentiation, and cell growth rather than the promotion of MPB.
Collapse
Affiliation(s)
- Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shoma Imai
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya, Osaka, Japan
| | - Maki Yoshikawa
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toshia Fujisato
- Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, Ohmiya, Osaka, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya, Osaka, Japan
| |
Collapse
|
3
|
Passive repetitive stretching is associated with greater muscle mass and cross-sectional area in the sarcopenic muscle. Sci Rep 2021; 11:15302. [PMID: 34315961 PMCID: PMC8316451 DOI: 10.1038/s41598-021-94709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Mechanical stimulation has benefits for muscle mass and function. Passive stretching is widely performed in clinical rehabilitation medicine. However, the hypertrophic effects of passive repetitive stretching on senescent skeletal muscles against muscle atrophy remain unknown. We used senescence-accelerated model SAM-P8 mice. The gastrocnemius muscle was passively repetitive stretched by manual ankle dorsiflexion for 15 min, 5 days a week for 2 weeks under deep anesthesia. We examined the effects of passive stretching on muscle mass, myofiber cross-sectional area, muscle fiber type composition, satellite cell and myonuclei content, signaling pathways involved in muscle protein synthesis, and myogenic regulatory factors. The gastrocnemius muscle weight and fiber cross-sectional area of the stretched side was found greater compared with that of the unstretched side. Passive repetitive stretching increased the mRNA expression level of Akt, p70S6K, 4E-BP1, Myf5, myogenin, MuRF1.The phosphorylation level of p70S6K significantly increased in the stretched muscles, whereas of Akt and 4E-BP1 remained unchanged, compared to the unstretched side. The Pax7+ cells and myonuclei content did not differ between the stretched and unstretched muscles. These findings suggest that the hypertrophic or suppressed atrophic observation in the stretched muscles are mainly attributable to the protein turnover provoked by stretching. These findings are applicable to clinical muscle strengthening and sarcopenia prevention.
Collapse
|
4
|
Kruse NT. 'Comment on: "The Case for Retiring Flexibility as a Major Component of Physical Fitness". Sports Med 2020; 50:1405-1407. [PMID: 32385621 DOI: 10.1007/s40279-020-01291-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nicholas T Kruse
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Muscle-specific activation of calpain system in hindlimb unloading rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse. J Comp Physiol B 2018; 188:863-876. [PMID: 30039299 DOI: 10.1007/s00360-018-1176-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/28/2023]
Abstract
To determine whether the regulation of calpain system is involved in non-hibernators and hibernators in disused condition, the soleus (SOL) and extensor digitorum longus (EDL) muscles were used for investigating the muscle mass, the ratio of muscle wet weight/body weight (MWW/BW), fiber-type distribution, fiber cross-sectional area (CSA), and the protein expression of MuRF1, calpain-1, calpain-2, calpastatin, desmin, troponin T, and troponin C in hindlimb unloading rats and hibernating Daurian ground squirrels. The muscle mass, MWW/BW, and fiber CSA were found significantly decreased in SOL and EDL of hindlimb unloading rats, but unchanged in hibernating ground squirrels. The MuRF1 expression was increased in both SOL and EDL of unloading rats, while it was only increased in SOL, but maintained in EDL of hibernating ground squirrels. The expression levels of calpain-1 and calpain-2 were increased in different degrees in unloaded SOL and EDL in rats, while they were maintained in EDL and even reduced in SOL of hibernating ground squirrels. Besides, the expression of calpastatin was decreased in unloaded rats, but increased in hibernating ground squirrels. The desmin expression was decreased in unloaded rats, but maintained in hibernating squirrels. Interestingly, the levels of troponin T and troponin C were decreased in both SOL and EDL of unloaded rats, but increased in hibernating ground squirrels with muscle-type specificity. In conclusion, differential calpain activation and substrate-selective degradation in slow and fast muscles are involved in the mechanisms of muscle atrophy of unloaded rats and remarkable ability of muscle maintenance of hibernating ground squirrels.
Collapse
|
6
|
Wei Y, Gong L, Fu W, Xu S, Wang Z, Zhang J, Ning E, Chang H, Wang H, Gao Y. Unexpected regulation pattern of the IKKβ/NF‐κB/MuRF1 pathway with remarkable muscle plasticity in the Daurian ground squirrel (
Spermophilus dauricus
). J Cell Physiol 2018; 233:8711-8722. [DOI: 10.1002/jcp.26751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yanhong Wei
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Lingchen Gong
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Weiwei Fu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Shenhui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Zhe Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Jie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Er Ning
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| |
Collapse
|
7
|
Zhang J, Li Y, Li G, Ma X, Wang H, Goswami N, Hinghofer-Szalkay H, Chang H, Gao Y. Identification of the optimal dose and calpain system regulation of tetramethylpyrazine on the prevention of skeletal muscle atrophy in hindlimb unloading rats. Biomed Pharmacother 2017; 96:513-523. [DOI: 10.1016/j.biopha.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 01/20/2023] Open
|
8
|
Zushi K, Yamazaki T. The Effect of Reloading on Disuse Muscle Atrophy: Time Course of Hypertrophy and Regeneration Focusing on the Myofiber Cross-sectional Area and Myonuclear Change. JOURNAL OF THE JAPANESE PHYSICAL THERAPY ASSOCIATION 2015; 15:1-8. [PMID: 25792895 DOI: 10.1298/jjpta.vol15_001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/05/2012] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to investigate the effect of reloading on atrophied muscle and the time course of hypertrophy and regeneration. Forty-nine male Wistar rats were randomly assigned to groups for hindlimb suspension (HS), hindlimb suspension and reloading (R), or control (C0). Rats in the HS group were suspended for 14 days. Rats in the R group were randomly divided into five subgroups for different post-hindlimb-suspension recovery times. Briefly, each subgroup was suspended for 14 days and given 1 day of reloading (R1), 3 days of reloading (R3), 7 days of reloading (R7), 10 days of reloading (R10), or 14 days of reloading (R14). Myonuclear numbers were significantly decreased in the groups with hindlimb suspension and 1 day and 3 days of reloading compared with that in the control group. We focused on the processes of change of mean myofiber cross-sectional area and myonuclear domain size; the degrees of increase of both indexes were limited until 3 days of reloading, and significantly increased after 7 days of reloading. An important finding of the current study was that the processes of muscle hypertrophy and regeneration did not show uniform change. In addition, there were differences in the ratio of increase among the stages of hypertrophy and regeneration. Therefore, consideration of the duration and method of physiotherapeutic intervention for atrophied muscle on the basis of the process of hypertrophy and regeneration is needed to provide more effective physiotherapy.
Collapse
Affiliation(s)
- Kazumi Zushi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan ; Department of Rehabilitation, Minamigaoka Hospital
| | - Toshiaki Yamazaki
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
9
|
Kelleher AR, Gordon BS, Kimball SR, Jefferson LS. Changes in REDD1, REDD2, and atrogene mRNA expression are prevented in skeletal muscle fixed in a stretched position during hindlimb immobilization. Physiol Rep 2014; 2:e00246. [PMID: 24744910 PMCID: PMC3966240 DOI: 10.1002/phy2.246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 12/29/2022] Open
Abstract
Immobilized skeletal muscle fixed in a shortened position displays disuse atrophy, whereas when fixed in a stretched position it does not (Goldspink, D. F. (1977) J Physiol 264, 267–282). Although significant advances have been made in our understanding of mechanisms involved in development of atrophy in muscle fixed in a shortened position, little is known about why mass is maintained when muscle is immobilized in a stretched position. In the present study, we hypothesized that skeletal muscle immobilized in a stretched position would be protected from gene expression changes known to be associated with disuse atrophy. To test the hypothesis, male Sprague‐Dawley rats were anesthetized using isoflurane and subjected to unilateral hindlimb immobilization for 3 days with the soleus fixed in either a shortened or stretched position. All comparisons were made to the contralateral nonimmobilized muscle. Soleus immobilized in a shortened position exhibited disuse atrophy, attenuated rates of protein synthesis, attenuated mTORC1 signaling, and induced expression of genes for REDD1, REDD2, MAFbx, and MuRF1. In contrast, immobilization of the soleus in a stretched position prevented these changes as it exhibited no difference in muscle mass, rates of protein synthesis, mTORC1 signaling, or expression of genes encoding REDD1, MAFbx or MuRF1, with REDD2 expression being reduced compared to control. In conclusion, fixed muscle length plays a major role in immobilization‐induced skeletal muscle atrophy whereby placing muscle in a shortened position leads to induction of gene expression for REDD1, REDD2, and atrogenes. e00246 Immobilized skeletal muscle fixed in a shortened position displays disuse atrophy, whereas when it is fixed in a stretched position it does not. Using a rat model of unilateral hindlimb immobilization, we tested the hypothesis that skeletal muscle immobilized in a stretched position is protected from gene expression changes known to be associated with disuse atrophy. The results demonstrate that fixed muscle length plays a major role in immobilization‐induced skeletal muscle atrophy whereby placing muscle in a stretched position prevents the induction of gene expression for REDD1, REDD2, and atrogenes that is observed in muscle placed in a shortened position.
Collapse
Affiliation(s)
- Andrew R Kelleher
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Bradley S Gordon
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
10
|
Clark BC, Hoffman RL, Russ DW. Immobilization-induced increase in fatigue resistance is not explained by changes in the muscle metaboreflex. Muscle Nerve 2009; 38:1466-1473. [PMID: 18932206 DOI: 10.1002/mus.21127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Immobilization has been reported to enhance fatigability, which is paradoxical in light of the metabolic and molecular alterations that occur in atrophied muscles. We examined whether the immobilization-induced enhancement in fatigability was associated with attenuation in the muscle metaboreflex response. Ten subjects were examined after 3 weeks of hand-forearm immobilization. The time to task failure of a handgrip contraction (20% intensity) was determined along with heart rate (HR) and mean arterial pressure (MAP) at rest, during the task and during a 2-min postexercise muscle ischemia (PEMI) test that continues to stimulate the metaboreflex. Immobilization decreased strength by 25% (P<0.01) and increased the time to task failure by 21% (P=0.03). However, no changes were observed for the HR and MAP responses to the exercise task or during PEMI (P>0.05). These findings indicate that the augmentation of time to task failure with immobilization is not associated with changes in the pressor or metaboreflex responses.
Collapse
Affiliation(s)
- Brian C Clark
- Institute for Neuromusculoskeletal Research, Department of Biomedical Sciences, 211 Irvine Hall, Ohio University, Athens, Ohio 45701, USA
| | - Richard L Hoffman
- Institute for Neuromusculoskeletal Research, Department of Biomedical Sciences, 211 Irvine Hall, Ohio University, Athens, Ohio 45701, USA
| | - David W Russ
- School of Physical Therapy, Ohio University, Athens, Ohio, USA
| |
Collapse
|
11
|
Agata N, Sasai N, Inoue-Miyazu M, Kawakami K, Hayakawa K, Kobayashi K, Sokabe M. Repetitive stretch suppresses denervation-induced atrophy of soleus muscle in rats. Muscle Nerve 2009; 39:456-62. [DOI: 10.1002/mus.21103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Murakami T, Hijikata T, Yorifuji H. Staging of disuse atrophy of skeletal muscles on immunofluorescence microscopy. Anat Sci Int 2008; 83:68-76. [PMID: 18507615 DOI: 10.1111/j.1447-073x.2007.00205.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Japanese population is rapidly aging, thereby causing excess demand for facilities for elderly invalids. It is imperative that social measures and scientific studies be carried out to enable better care of bedridden elderly people. The purpose of the present study was to review the histological changes that occur in disuse atrophy of skeletal muscles, the primary pathophysiology of bedridden invalids, with the object of developing a staging standard to be used by researchers and clinicians. Rat hindlimb suspension was used as an experimental model. Atrophy of the soleus muscle was evaluated qualitatively and quantitatively on immunofluorescence microscopy. The myofibrils decreased significantly in the first 2-3 weeks of disuse atrophy. The earliest morphological change was fan-shaped multistep forking of sarcomeres, which appeared by the first week. This type of muscular lesion, designated here as 'sarcomeric disarray', was first described in the present study. Central-core lesions appeared mainly in slow muscle fibers by the second week. These lesions disappeared by the fourth or fifth week. Nerves remained intact and no inflammation or regeneration occurred up to the fifth week. Methods and criteria were compiled for staging of disuse atrophy based on the present results and a diagnosis kit designed for studies on disuse atrophy of skeletal muscles.
Collapse
Affiliation(s)
- Tohru Murakami
- Neuromuscular and Developmental Anatomy, Gunma University Graduate School of Medicine, 39-22 Showa-machi 3-chome, Maebashi, Gunma, Japan.
| | | | | |
Collapse
|
13
|
Adams GR, Haddad F, Bodell PW, Tran PD, Baldwin KM. Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats. J Appl Physiol (1985) 2007; 103:1644-54. [PMID: 17872405 DOI: 10.1152/japplphysiol.00669.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previously, we reported that an isometric resistance training program that was effective in stimulating muscle hypertrophy in ambulatory rats could not completely prevent muscle atrophy during unloading (Haddad F, Adams GR, Bodell PW, Baldwin KM. J Appl Physiol 100: 433–441, 2006). These results indicated that preventing muscle atrophy does not appear to be simply a function of providing an anabolic stimulus. The present study was undertaken to determine if resistance training, with increased volume (3-s contractions) and incorporating both static and dynamic components, would be effective in preventing unloading-induced muscle atrophy. Rats were exposed to 5 days of muscle unloading via tail suspension. During that time one leg received electrically stimulated resistance exercise (RE) that included an isometric, concentric, and eccentric phase. The results of this study indicate that this combined-mode RE provided an anabolic stimulus sufficient to maintain the mass and myofibril content of the trained but not the contralateral medial gastrocnemius (MG) muscle. Relative to the contralateral MG, the RE stimulus increased the amount of total RNA (indicative of translational capacity) as well as the mRNA for several anabolic/myogenic markers such as insulin-like growth factor-I, myogenin, myoferlin, and procollagen III-α-1 and decreased that of myostatin, a negative regulator of muscle size. The combined-mode RE protocol also increased the activity of anabolic signaling intermediates such as p70S6 kinase. These results indicate that a combination of static- and dynamic-mode RE of sufficient volume provides an effective stimulus to stimulate anabolic/myogenic mechanisms to counter the initial stages of unloading-induced muscle atrophy.
Collapse
Affiliation(s)
- G R Adams
- Dept. of Physiology and Biophysics, Univ. of California, Irvine, CA 92697-4560, USA
| | | | | | | | | |
Collapse
|
14
|
Strasser EM, Wessner B, Roth E. [Cellular regulation of anabolism and catabolism in skeletal muscle during immobilisation, aging and critical illness]. Wien Klin Wochenschr 2007; 119:337-48. [PMID: 17634890 DOI: 10.1007/s00508-007-0817-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 05/16/2007] [Indexed: 12/13/2022]
Abstract
Skeletal muscle atrophy is associated with situations of acute and chronical illness, such as sepsis, surgery, trauma and immobility. Additionally, it is a common problem during the physiological process of aging. The myofibrillar proteins myosin and actin, which are essential for muscle contraction, are the major targets during the process of protein degradation. This leads to a general loss of muscle mass, muscle strength and to increased muscle fatigue. In critically ill or immobile patients skeletal muscle atrophy is accompanied by enhanced inflammation, reduced wound healing, weaning complications and difficulties in mobilisation. During aging it results in falls, fractures, physical injuries and loss of mobility. Relating to the primary stimulators - hormones, muscle lengthening, stress, inflammation, neuronal activity - research is now focusing on the investigation of the signal transduction pathways, which influence protein synthesis and protein degradation during skeletal muscle atrophy.
Collapse
Affiliation(s)
- Eva-Maria Strasser
- Chirurgische Forschungslaboratorien, Medizinische Universität Wien, Wien, Austria
| | | | | |
Collapse
|
15
|
Boonyarom O, Inui K. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxf) 2006; 188:77-89. [PMID: 16948795 DOI: 10.1111/j.1748-1716.2006.01613.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review summarizes current information on structural and functional changes that occur during muscle atrophy and hypertrophy. Most published studies consider an increase in total mass of a muscle as hypertrophy, whereas a decrease in total mass of a muscle is referred to as atrophy. In hypertrophy, the rate of synthesis is much higher than the rate of degradation of muscle contractile proteins, leading to an increase in the size or volume of an organ due to enlargement of existing cells. When a muscle remains in disuse for a long period, the rate of degradation of contractile proteins becomes greater than the rate of replacement, resulting in muscle atrophy. This defect may occur as a result of lack of nutrition, loss of nerve supply, micro-gravity, ageing, systemic disease, prolonged immobilization or disuse. An understanding of the specific modifications that occur during muscle atrophy and hypertrophy may facilitate the development of novel techniques, as well as new therapies for affected muscles.
Collapse
Affiliation(s)
- O Boonyarom
- Department of Physical Therapy, Naresuan University, Phitsanulok, Thailand.
| | | |
Collapse
|
16
|
Golding JD, Rigley MacDonald ST, Juurlink BHJ, Rosser BWC. The effect of glutamine on locomotor performance and skeletal muscle myosins following spinal cord injury in rats. J Appl Physiol (1985) 2006; 101:1045-52. [PMID: 16778003 DOI: 10.1152/japplphysiol.00428.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following initial spinal cord injury (SCI), a cascade of pathological events, including oxidative stress, leads to secondary injury. Glutathione (GSH) plays a critical role in oxidant scavenging. Maintenance of GSH concentrations after SCI lessens secondary injury and improves recovery. Since glutamine promotes GSH synthesis, this nonessential amino acid was examined for therapeutic potential. Denervation alters the expression of myosin heavy chain (MHC) isoforms within skeletal muscles. The hypotheses of this study were that glutamine administration to SCI rats would lead to improved functional recovery and more preserved MHC phenotypes in representative locomotor muscles. Male Wistar rats were divided into four groups: healthy, sham with laminectomy, laminectomized SCI untreated, and laminectomized SCI treated with glutamine. Functional performance was measured weekly for 6 wk using Basso-Beattie-Bresnahan scale and angle board methods. MHC composition of rat soleus and extensor digitorum longus muscles was determined using SDS-PAGE. Glutamine-treated rats had significantly higher angle board scores (P < 0.001) and Basso-Beattie-Bresnahan scores (P < 0.01) than untreated SCI rats. Soleus of healthy rats contained 94% type 1 myosin isoform. Treated rats maintained 68%, which was significantly (P < 0.001) greater than 28% in untreated rats. The extensor digitorum longus of healthy rats contained 55% type 2b myosin. There was a significant (P < 0.001) decrease in this isoform following SCI, but no significant difference between treated and untreated groups. There were strong correlations between higher functional scores and more preserved MHC phenotypes. Our findings suggest glutamine improves functional recovery and helps preserve myosin profile by reducing secondary SCI, thereby maintaining more nerves.
Collapse
Affiliation(s)
- Jamie D Golding
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Rm. A315 Health Science Bldg., 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
17
|
Pierre MC, Genc KO, Litow M, Humphreys B, Rice AJ, Maender CC, Cavanagh PR. Comparison of knee motion on Earth and in space: an observational study. J Neuroeng Rehabil 2006; 3:8. [PMID: 16613607 PMCID: PMC1482707 DOI: 10.1186/1743-0003-3-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 04/13/2006] [Indexed: 11/19/2022] Open
Abstract
Background Spaceflight has been shown to cause atrophy, reduced functional capacity, and increased fatigue in lower-limb skeletal muscles. The mechanisms of these losses are not fully understood but are thought to result, in part, from alteration in muscle usage. Methods Knee-joint angles and lower-extremity muscle activity were measured continually, via elecrogoniometry and surface electromyography respectively, from two subjects during entire working days of activity on Earth and onboard the International Space Station (ISS). Results On Earth the distribution of angular positions of the knee was typically bimodal, with peaks of >75 degrees of flexion and in almost full extension (<15 degrees of flexion). However, on the ISS, a single peak in the mid-range of the available range of motion was seen. The knee joint was also moved through fewer excursions and the excursions were smaller in amplitude, resulting in a reduced span of angles traversed. The velocities of the excursions in space were lower than those used on Earth. Conclusion These results demonstrate that, in space, overall knee-joint motion is reduced, and there is a transformation in the type of muscle action compared to that seen on Earth, with more isometric action at the expense of concentric and particularly eccentric action.
Collapse
Affiliation(s)
- Mark C Pierre
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Space Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kerim O Genc
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Space Medicine, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Micah Litow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Space Medicine, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Andrea J Rice
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Space Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Peter R Cavanagh
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Space Medicine, Cleveland Clinic, Cleveland, OH, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
- Orthopaedic Research Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|