1
|
|
2
|
Gilbert JR, Losee JE, Mooney MP, Cray JJ, Gustafson J, Cunningham ML, Cooper GM. Genetic associations and phenotypic heterogeneity in the craniosynostotic rabbit. PLoS One 2018; 13:e0204086. [PMID: 30235265 PMCID: PMC6147457 DOI: 10.1371/journal.pone.0204086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022] Open
Abstract
Craniosynostosis (CS) is a disorder that involves the premature ossification of one or more cranial sutures. Our research team has described a naturally occurring rabbit model of CS with a variable phenotype and unknown etiology. Restriction-site associated DNA (RAD) sequencing is a genomic sampling method for identifying genetic variants in species with little or no existing sequence data. RAD sequencing data was analyzed using a mixed linear model to identify single nucleotide polymorphisms (SNPs) associated with disease occurrence and onset in the rabbit model of CS. SNPs achieving a genome-wide significance of p ≤ 5 x 10-8 were identified on chromosome 2 in association with disease occurrence and on chromosomes 14 and 19 in association with disease onset. Genotyping identified a coding variant in fibroblast growth factor binding protein 1 (FGFBP-1) on chromosome 2 and a non-coding variant upstream of integrin alpha 3 (ITGA3) on chromosome 19 that associated with disease occurrence and onset, respectively. Retrospective analysis of patient data revealed a significant inverse correlation between FGFBP-1 and ITGA3 transcript levels in patients with coronal CS. FGFBP-1 and ITGA3 are genes with roles in early development that warrant functional study to further understand suture biology.
Collapse
Affiliation(s)
- James R. Gilbert
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph E. Losee
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark P. Mooney
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthodontics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James J. Cray
- Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Gustafson
- Center for Developmental Biology and Regenerative Medicine and the Craniofacial Center Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Michael L. Cunningham
- Center for Developmental Biology and Regenerative Medicine and the Craniofacial Center Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Gregory M. Cooper
- Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Calandrelli R, Pilato F, Massimi L, Panfili M, Di Rocco C, Colosimo C. Quantitative analysis of cranial-orbital changes in infants with anterior synostotic plagiocephaly. Childs Nerv Syst 2018; 34:1725-1733. [PMID: 29761256 DOI: 10.1007/s00381-018-3824-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/04/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE The effects of premature fusion of one coronal suture cause skull and orbital alterations in term of side-to-side asymmetry. This study aimed to quantify the cranio-orbital complex changes related to the severity of skull base dysmorphology in patients with unicoronal synostosis. METHODS Twenty-four infants affected by unicoronal synostosis were subdivided in three subgroups according to the severity of skull base deformity and their high-resolution CT images were quantitatively analyzed (groups IIa, IIb, III). Dimensions of cranial fossae, intracranial volume (ICV), ICV synostotic and ICV non synostotic side, whole brain volume (WBV), orbital volumes (OV), ICV/WBV, ICVsynostotic/ICVnon-synostotic, and OVsynostotic/OVnon-synostotic were evaluated. RESULTS Asymmetry and reduction in the growth of the anterior and middle fossae were found in all groups while asymmetry of the posterior cranial fossa was found only in IIb and III groups. In all groups, ICV, WBV, and ICV/WBV were not significantly different while ICVsynostotic/ICVnon-synostotic and OVsynostotic/OVnon-synostotic resulted significant difference (p < 0.05). ICVsynostotic side resulted reduction only in group III. OV on the synostotic side was not significantly reduced although a trend in progressively reducing volumes was noted according to the severity of the group. CONCLUSION Skull and orbital changes revealed a side-to-side asymmetry but the effects of the premature synostosis were more severe in group III suggesting an earlier timing of premature unicoronal synostosis in group III with respect to the other groups. The assessment of the skull base deformity might be an indirect parameter of severity of skull orbital changes and it might be useful for surgical planning.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Polo scienze delle immagini, di laboratorio ed infettivologiche Area diagnostica per immagini Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.
| | - Fabio Pilato
- Polo scienze dell'invecchiamento, neurologiche, ortopediche e della testa-collo, Area neuroscienze Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Luca Massimi
- Polo scienze dell'invecchiamento, neurologiche, ortopediche e della testa-collo, Area neuroscienze Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Marco Panfili
- Polo scienze delle immagini, di laboratorio ed infettivologiche Area diagnostica per immagini Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Concezio Di Rocco
- Polo scienze dell'invecchiamento, neurologiche, ortopediche e della testa-collo, Area neuroscienze Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Cesare Colosimo
- Polo scienze delle immagini, di laboratorio ed infettivologiche Area diagnostica per immagini Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
4
|
Grandhi R, Peitz GW, Foley LM, Bonfield CM, Fellows-Mayle W, Hitchens TK, Mooney MP. The influence of suturectomy on age-related changes in cerebral blood flow in rabbits with familial bicoronal suture craniosynostosis: A quantitative analysis. PLoS One 2018; 13:e0197296. [PMID: 29856748 PMCID: PMC5983410 DOI: 10.1371/journal.pone.0197296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Background Coronal suture synostosis is a condition which can have deleterious physical and cognitive sequelae in humans if not corrected. A well-established animal model has previously demonstrated disruptions in intracranial pressure and developmental abnormalities in rabbits with congenital craniosynostosis compared to wild type rabbits. Objective The current study aimed to measure the cerebral blood flow (CBF) in developing rabbits with craniosynostosis who underwent suturectomy compared to those with no intervention and compared to wild type rabbits. Methods Rabbits with early onset coronal suture synostosis were assigned to have suturectomy at 10 days of age (EOCS-SU, n = 15) or no intervention (EOCS, n = 18). A subset of each group was randomly selected for measurement at 10 days of age, 25 days of age, and 42 days of age. Wild type rabbits (WT, n = 18) were also randomly assigned to measurement at each time point as controls. Cerebral blood flow at the bilateral hemispheres, cortices, thalami, and superficial cortices was measured in each group using arterial spin-labeling MRI. Results At 25 days of age, CBF at the superficial cortex was significantly higher in EOCS rabbits (192.6 ± 10.1 mL/100 mg/min on the left and 195 ± 9.5 mL/100 mg/min on the right) compared to WT rabbits (99.2 ± 29.1 mL/100 mg/min on the left and 96.2 ± 21.4 mL/100 mg/min on the right), but there was no significant difference in CBF between EOCS-SU (97.6 ± 11.3 mL/100 mg/min on the left and 99 ± 7.4 mL/100 mg/min on the right) and WT rabbits. By 42 days of age the CBF in EOCS rabbits was not significantly different than that of WT rabbits. Conclusion Suturectomy eliminated the abnormally increased CBF at the superficial cortex seen in EOCS rabbits at 25 days of age. This finding contributes to the evidence that suturectomy limits abnormalities of ICP and CBF associated with craniosynostosis.
Collapse
Affiliation(s)
- Ramesh Grandhi
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| | - Geoffrey W. Peitz
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States of America
- High Field Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M. Bonfield
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Wendy Fellows-Mayle
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - T. Kevin Hitchens
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States of America
- High Field Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. Mooney
- Departments of Oral Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Deparment of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Deparment of Orthodontics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Discussion: Spring-Assisted Cranioplasty for the Correction of Nonsyndromic Scaphocephaly: A Quantitative Analysis of 100 Consecutive Cases. Plast Reconstr Surg 2017; 140:135-136. [PMID: 28654598 DOI: 10.1097/prs.0000000000003642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Gilbert JR, Taylor GM, Losee JE, Mooney MP, Cooper GM. Resequencing of the Col1A1 gene of Oryctolagus cuniculus identifies splicing errors and single nucleotide polymorphisms. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Bonfield CM, Foley LM, Kundu S, Fellows-Mayle W, Hitchens TK, Rohde GK, Grandhi R, Mooney MP. The influence of surgical correction on white matter microstructural integrity in rabbits with familial coronal suture craniosynostosis. Neurosurg Focus 2016; 38:E3. [PMID: 25929965 DOI: 10.3171/2015.2.focus14849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Craniosynostosis is a condition in which one or more of the calvarial sutures fuses prematurely. In addition to the cosmetic ramifications attributable to premature suture fusion, aberrations in neurophysiological parameters are seen, which may result in more significant damage. This work examines the microstructural integrity of white matter, using diffusion tensor imaging (DTI) in a homogeneous strain of rabbits with simple, familial coronal suture synostosis before and after surgical correction. METHODS After diagnosis, rabbits were assigned to different groups: wild-type (WT), rabbits with early-onset complete fusion of the coronal suture (BC), and rabbits that had undergone surgical correction with suturectomy (BC-SU) at 10 days of age. Fixed rabbit heads were imaged at 12, 25, or 42 days of life using a 4.7-T, 40-cm bore Avance scanner with a 7.2-cm radiofrequency coil. For DTI, a 3D spin echo sequence was used with a diffusion gradient (b = 2000 sec/mm(2)) applied in 6 directions. RESULTS As age increased from 12 to 42 days, the DTI differences between WT and BC groups became more pronounced (p < 0.05, 1-way ANOVA), especially in the corpus callosum, cingulum, and fimbriae. Suturectomy resulted in rabbits with no significant differences compared with WT animals, as assessed by DTI of white matter tracts. Also, it was possible to predict to which group an animal belonged (WT, BC, and BC-SU) with high accuracy based on imaging data alone using a linear support vector machine classifier. The ability to predict to which group the animal belonged improved as the age of the animal increased (71% accurate at 12 days and 100% accurate at 42 days). CONCLUSIONS Craniosynostosis results in characteristic changes of major white matter tracts, with differences becoming more apparent as the age of the rabbits increases. Early suturectomy (at 10 days of life) appears to mitigate these differences.
Collapse
|
8
|
Abstract
Objective The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)–bone and PDL–cementum attachment sites and within the tissues per se. Design Accentuated mechanical strain was induced by applying a unidirectional force of 0.06 N for 14 days on molars in a rat model. The associated changes in functional space between the tooth and bone, mineral forming and resorbing events at the PDL–bone and PDL–cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, and AFM-based nanoindentation technique. Results from these analytical techniques were correlated with histochemical strains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate resistant acid phosphatase (TRAP) staining. Results Unique chemical and mechanical qualities including heterogeneous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III — 1240 cm− 1) to inorganic (phosphate — 960 cm− 1) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL–bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. Conclusions From a fundamental science perspective the shift in local properties due to strain amplification at the soft–hard tissue attachment sites is governed by semiautonomous cellular events at the PDL–bone and PDL–cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of tissues per se, and consequently the overall biomechanics of the bone–PDL–tooth complex. From a clinical perspective, the shifts in magnitude and duration of forces on the periodontal ligament can prompt a shift in physiologic mineral apposition in cementum and alveolar bone albeit of an adapted quality owing to the rapid mechanical translation of the tooth. Load-mediated shifts in mechanical strains will prompt self-governing zones at PDL-cementum and PDL-bone entheses. The intensity of strain amplification is predominantly felt at the entheses as it is a region where disparate materials attach. Physicochemical observations at the PDL-bone enthesial zone are not directly correlated to the events at PDL-cementum zone. Rapid shifts in PDL strain can prompt a shift in mineral apposition at respective entheses albeit of an adapted quality.
Collapse
|
9
|
Cray JJ, Burrows AM, Vecchione L, Kinsella CR, Losee JE, Moursi AM, Siegel MI, Cooper GM, Mooney MP. Relaxin Does Not Rescue Coronal Suture Fusion in Craniosynostotic Rabbits. Cleft Palate Craniofac J 2012; 49:e46-54. [DOI: 10.1597/11-024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objectives Craniosynostosis affects 1 in 2000 to 3000 live births and may result in craniofacial and neural growth disturbances. Histological data have shown that thick collagenous bundles are present in the sutural ligament, which may tether the osteogenic fronts, resulting in premature fusion. The hormone relaxin has been shown to disrupt collagen fiber organization, possibly preventing craniosynostosis by relaxing the sutural ligament and allowing osteogenic fronts to separate normally and stay patent. This study tested this hypothesis with a rabbit model of delayed-onset coronal suture synostosis. Methods A total of 18 New Zealand White rabbits with craniosynostosis were randomly assigned to one of three groups: sham control, protein control (BSA), relaxin treatment. After initial diagnosis, sham surgery, BSA, or relaxin was delivered to the fusing coronal suture in a slow-release (56-day) collagen vehicle. Longitudinal radiographs and body weights were collected at 10, 25, 42, and 84 days of age, and sutures were harvested for histology. Results Relaxin-treated animals had more disorganized intrasuture content than control groups. These specimens also appeared to have relatively wider sutures ectocranially. There were no significant differences in relaxin-treated animals for all craniofacial growth measures, or suture separation compared with controls. Conclusions These data do not support our initial hypothesis that the use of relaxin may rescue sutures destined to undergo premature suture fusion. These findings suggest that collagen fiber arrangement may not be important for suture fusion. This protein therapy would not be clinically useful for craniosynostosis.
Collapse
Affiliation(s)
- James J. Cray
- Department of Surgery, Division of Plastic Surgery, Pediatric Craniofacial Biology Laboratory, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne M. Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, and Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa Vecchione
- Pittsburgh Cleft–Craniofacial Research Center, Pittsburgh, Pennsylvania, and Assistant Clinical Professor of Surgery, Department of Surgery, Division of Plastic Surgery and Department of Orthodontics and Dentofacial Orthopedics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher R. Kinsella
- Department of Surgery, Division of Plastic Surgery, Pediatric Craniofacial Biology Laboratory, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph E. Losee
- Surgery and Pediatrics, Chief, Pediatric Plastic Surgery, and Director, Pittsburgh Cleft–Craniofacial Center Program, Pittsburgh, Pennslyvania, and Plastic Surgery Residency, Department of Surgery, Division of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amr M. Moursi
- Department of Pediatric Dentistry, New York University, New York, New York
| | - Michael I. Siegel
- Departments of Anthropology and Orthodontics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory M. Cooper
- Department of Surgery, Division of Plastic Surgery, Department of Orthopedic Surgery, and Department of Oral Biology, and Children's Hospital of Pittsburgh University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P. Mooney
- Departments of Anthropology, Surgery–Division of Plastic Surgery, and Orthodontics
| |
Collapse
|
10
|
Recombinant Human Bone Morphogenetic Protein-2–Induced Craniosynostosis and Growth Restriction in the Immature Skeleton. Plast Reconstr Surg 2011; 127:1173-1181. [DOI: 10.1097/prs.0b013e318205f2b4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Intracranial compartment volume changes in sagittal craniosynostosis patients: influence of comprehensive cranioplasty. Plast Reconstr Surg 2010; 126:187-196. [PMID: 20595867 DOI: 10.1097/prs.0b013e3181dab5be] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND A retrospective analysis of intracranial compartment volume changes in children with sagittal craniosynostosis was performed to clarify the therapeutic objectives of corrective surgery. METHODS Chart and computed tomographic review of 53 consecutive children with previously unoperated sagittal synostosis was performed, and preoperative and postoperative computed tomographic scans were examined and compared with 143 age- and gender-matched controls. RESULTS Preoperative mean intracranial compartment volume and mean brain tissue volume of each subgroup were age dependent. Brain volume was less in unoperated male sagittal synostosis patients (<6 months old) compared with controls (672.63 ml versus 716.14 ml). Brain tissue volume was approximately the same as controls for the 7- to 12-month and 12- to 30-month age groups. Long-term brain volume, however, again became less than controls with longer periods without treatment (31 to 60 months, 1050.6 versus 1291.51 ml, respectively). Intracranial compartment volume was less in unoperated male sagittal synostosis patients (<6 months old) compared with controls (706.6 ml versus 757.76 ml). Preoperative mean intracranial compartment volume, however, was greater than in controls in the 7- to 12-month (979.78 versus 970.34 ml) and 13- to 30-month age groups (1108.23 versus 1177.52 ml). Long term (31 to 60 months), however, intracranial compartment volume was less in untreated sagittal synostosis patients (1206.3 ml versus 1311.37 ml). Comparing day-1 postoperative sagittal synostosis patient data to age- and gender-matched controls to 1 year postoperatively, the operated patients develop an equivalent increase in skull growth compared with normals. CONCLUSIONS Intracranial compartment volume is increased preoperatively in untreated sagittal synostosis patients older than 6 months. Intracranial compartment volume enlargement is largely attributable to an increase in brain volume. Comprehensive cranioplasty before 12 months of age increases intracranial compartment volume over normal growth.
Collapse
|
12
|
Mooney MP, Losken HW, Moursi AM, Bradley J, Azari K, Acarturk TO, Cooper GM, Thompson B, Opperman LA, Siegel MI. Anti-TGF-??2 Antibody Therapy Inhibits Postoperative Resynostosis in Craniosynostotic Rabbits. Plast Reconstr Surg 2007; 119:1200-1212. [PMID: 17496591 DOI: 10.1097/01.prs.0000258403.49584.ec] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Postoperative resynostosis is a common clinical finding. It has been suggested that an overexpression of transforming growth factor (TGF)-beta2 may be related to craniosynostosis and may contribute to postoperative resynostosis. Interference with TGF-beta2 function with the use of neutralizing antibodies may inhibit resynostosis. The present study was designed to test this hypothesis. METHODS New Zealand White rabbits with bilateral coronal suture synostosis were used as suturectomy controls (group 1, n = 9) or given suturectomy with nonspecific, control immunoglobulin G antibody (group 2, n = 9) or suturectomy with anti-TGF-beta2 antibody (group 3, n = 11). At 10 days of age, a 3 x 15-mm coronal suturectomy was performed. The sites in groups 2 and 3 were immediately filled with 0.1 cc of a slowly resorbing collagen gel mixed with either immunoglobulin G (100 mug per suture) or anti-TGF-beta2 (100 mug per suture). Three-dimensional computed tomography scan reconstructions of the defects were obtained at 10, 25, 42, and 84 days of age, and the sutures were harvested for histomorphometric analysis. RESULTS Computed tomography scan data revealed that the suturectomy sites treated with anti-TGF-beta2 showed significantly (p < 0.05) greater areas through 84 days of age compared with controls. Histomorphometry also showed that suturectomy sites treated with anti-TGF-beta2 had patent suturectomy sites and more fibrous tissue in the defects compared with sites in control rabbits and had significantly (p < 0.001) less new bone area (by approximately 215 percent) in the suturectomy site. CONCLUSIONS These data support the initial hypothesis that interference with TGF-beta2 function inhibited postoperative resynostosis in this rabbit model. They also suggest that this biologically based therapy may be a potential surgical adjunct to retard postoperative resynostosis in infants with craniosynostosis.
Collapse
Affiliation(s)
- Mark P Mooney
- Pittsburgh, Pa.; Chapel Hill, N.C.; Columbus, Ohio; Los Angeles, Calif.; Ankara, Turkey; and Dallas, Texas From the Departments of Oral Medicine and Pathology, Anthropology, Plastic and Reconstructive Surgery, Orthodontics, and Orthopedic Surgery, the Cleft Palate-Craniofacial Center, and the School of Dental Medicine, University of Pittsburgh; the Department of Plastic Surgery, School of Medicine, University of North Carolina; Department of Pediatric Dentistry, College of Dentistry, Ohio State University; Division of Plastic and Reconstructive Surgery, University of California, Los Angeles; Division of Plastic Surgery, University of Pittsburgh Medical Center; Department of Plastic and Reconstructive Surgery, Gülhane Military Medical Academy; and Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University System Health Science Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|