1
|
Kwon SH, Lee J, Yoo J, Jung Y. Artificial keloid skin models: understanding the pathophysiological mechanisms and application in therapeutic studies. Biomater Sci 2024; 12:3321-3334. [PMID: 38812375 DOI: 10.1039/d4bm00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Keloid is a type of scar formed by the overexpression of extracellular matrix substances from fibroblasts following inflammation after trauma. The existing keloid treatment methods include drug injection, surgical intervention, light exposure, cryotherapy, etc. However, these methods have limitations such as recurrence, low treatment efficacy, and side effects. Consequently, studies are being conducted on the treatment of keloids from the perspective of inflammatory mechanisms. In this study, keloid models are created to understand inflammatory mechanisms and explore treatment methods to address them. While previous studies have used animal models with gene mutations, chemical treatments, and keloid tissue transplantation, there are limitations in fully reproducing the characteristics of keloids unique to humans, and ethical issues related to animal welfare pose additional challenges. Consequently, studies are underway to create in vitro artificial skin models to simulate keloid disease and apply them to the development of treatments for skin diseases. In particular, herein, scaffold technologies that implement three-dimensional (3D) full-thickness keloid models are introduced to enhance mechanical properties as well as biological properties of tissues, such as cell proliferation, differentiation, and cellular interactions. It is anticipated that applying these technologies to the production of artificial skin for keloid simulation could contribute to the development of inflammatory keloid treatment techniques in the future.
Collapse
Affiliation(s)
- Soo Hyun Kwon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jongmin Lee
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Vorstandlechner V, Copic D, Klas K, Direder M, Golabi B, Radtke C, Ankersmit HJ, Mildner M. The Secretome of Irradiated Peripheral Mononuclear Cells Attenuates Hypertrophic Skin Scarring. Pharmaceutics 2023; 15:pharmaceutics15041065. [PMID: 37111549 PMCID: PMC10143262 DOI: 10.3390/pharmaceutics15041065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypertrophic scars can cause pain, movement restrictions, and reduction in the quality of life. Despite numerous options to treat hypertrophic scarring, efficient therapies are still scarce, and cellular mechanisms are not well understood. Factors secreted by peripheral blood mononuclear cells (PBMCsec) have been previously described for their beneficial effects on tissue regeneration. In this study, we investigated the effects of PBMCsec on skin scarring in mouse models and human scar explant cultures at single-cell resolution (scRNAseq). Mouse wounds and scars, and human mature scars were treated with PBMCsec intradermally and topically. The topical and intradermal application of PBMCsec regulated the expression of various genes involved in pro-fibrotic processes and tissue remodeling. We identified elastin as a common linchpin of anti-fibrotic action in both mouse and human scars. In vitro, we found that PBMCsec prevents TGFβ-mediated myofibroblast differentiation and attenuates abundant elastin expression with non-canonical signaling inhibition. Furthermore, the TGFβ-induced breakdown of elastic fibers was strongly inhibited by the addition of PBMCsec. In conclusion, we conducted an extensive study with multiple experimental approaches and ample scRNAseq data demonstrating the anti-fibrotic effect of PBMCsec on cutaneous scars in mouse and human experimental settings. These findings point at PBMCsec as a novel therapeutic option to treat skin scarring.
Collapse
Affiliation(s)
- Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
4
|
Neves LMG, Wilgus TA, Bayat A. In Vitro, Ex Vivo, and In Vivo Approaches for Investigation of Skin Scarring: Human and Animal Models. Adv Wound Care (New Rochelle) 2023; 12:97-116. [PMID: 34915768 DOI: 10.1089/wound.2021.0139] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significance: The cutaneous repair process naturally results in different types of scarring that are classified as normal or pathological. Affected individuals are often affected from an esthetic, physical (functional), and psychosocial perspective. The distinct nature of scarring in humans, particularly the formation of pathological scars, makes the study of skin scarring a challenge for researchers in this area. Several established experimental models exist for studying scar formation. However, the increasing development and validation of newly emerging models have made it possible to carry out studies focused on different variables that influence this unique process. Recent Advances: Experimental models such as in vitro, ex vivo, and in vivo models have obtained different degrees of success in the reproduction of the scar formation in its native milieu and true environment. These models also differ in their ability to elucidate the molecular, cellular, and structural mechanisms involved in scarring, as well as for testing new agents and approaches for therapies. The models reviewed here, including cells derived from human skin and in vivo animal models, have contributed to the advancement of skin scarring research. Critical Issues and Future Directions: The absence of experimental models that faithfully reproduce the typical characteristics of the different types of human skin scars makes the improvement of validated models and the establishment of new ones a critical unmet need. The fields of wound healing research combined with tissue engineering have offered newer alternatives for experimental studies with the potential to provide clinically useful knowledge about scar formation.
Collapse
Affiliation(s)
- Lia M G Neves
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom
| | - Traci A Wilgus
- Department of Pathology, Ohio State University, Columbus, Ohio, USA
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom.,Medical Research Council (MRC) Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Optimization of the Solvent and In Vivo Administration Route of Auranofin in a Syngeneic Non-Small Cell Lung Cancer and Glioblastoma Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14122761. [PMID: 36559255 PMCID: PMC9783082 DOI: 10.3390/pharmaceutics14122761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The antineoplastic activity of the thioredoxin reductase 1 (TrxR) inhibitor, auranofin (AF), has already been investigated in various cancer mouse models as a single drug, or in combination with other molecules. However, there are inconsistencies in the literature on the solvent, dose and administration route of AF treatment in vivo. Therefore, we investigated the solvent and administration route of AF in a syngeneic SB28 glioblastoma (GBM) C57BL/6J and a 344SQ non-small cell lung cancer 129S2/SvPasCrl (129) mouse model. Compared to daily intraperitoneal injections and subcutaneous delivery of AF via osmotic minipumps, oral gavage for 14 days was the most suitable administration route for high doses of AF (10-15 mg/kg) in both mouse models, showing no measurable weight loss or signs of toxicity. A solvent comprising 50% DMSO, 40% PEG300 and 10% ethanol improved the solubility of AF for oral administration in mice. In addition, we confirmed that AF was a potent TrxR inhibitor in SB28 GBM tumors at high doses. Taken together, our results and results in the literature indicate the therapeutic value of AF in several in vivo cancer models, and provide relevant information about AF's optimal administration route and solvent in two syngeneic cancer mouse models.
Collapse
|
6
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
7
|
Mistry R, Veres M, Issa F. A Systematic Review Comparing Animal and Human Scarring Models. Front Surg 2022; 9:711094. [PMID: 35529910 PMCID: PMC9073696 DOI: 10.3389/fsurg.2022.711094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction A reproducible, standardised model for cutaneous scar tissue to assess therapeutics is crucial to the progress of the field. A systematic review was performed to critically evaluate scarring models in both animal and human research. Method All studies in which cutaneous scars are modelling in animals or humans were included. Models that were focused on the wound healing process or those in humans with scars from an existing injury were excluded. Ovid Medline® was searched on 25 February 2019 to perform two near identical searches; one aimed at animals and the other aimed at humans. Two reviewers independently screened the titles and abstracts for study selection. Full texts of potentially suitable studies were then obtained for analysis. Results The animal kingdom search yielded 818 results, of which 71 were included in the review. Animals utilised included rabbits, mice, pigs, dogs and primates. Methods used for creating scar tissue included sharp excision, dermatome injury, thermal injury and injection of fibrotic substances. The search for scar assessment in humans yielded 287 results, of which 9 met the inclusion criteria. In all human studies, sharp incision was used to create scar tissue. Some studies focused on patients before or after elective surgery, including bilateral breast reduction, knee replacement or midline sternotomy. Discussion The rabbit ear scar model was the most popular tool for scar research, although pigs produce scar tissue which most closely resembles that of humans. Immunodeficient mouse models allow for in vivo engraftment and study of human scar tissue, however, there are limitations relating to the systemic response to these xenografts. Factors that determine the use of animals include cost of housing requirements, genetic traceability, and ethical concerns. In humans, surgical patients are often studied for scarring responses and outcomes, but reproducibility and patient factors that impact healing can limit interpretation. Human tissue use in vitro may serve as a good basis to rapidly screen and assess treatments prior to clinical use, with the advantage of reduced cost and setup requirements.
Collapse
Affiliation(s)
- Riyam Mistry
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Correspondence: Riyam Mistry
| | - Mark Veres
- John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
JIMI S, SAPAROV A, KOIZUMI S, MIYAZAKI M, TAKAGI S. A novel mouse wound model for scar tissue formation in abdominal muscle wall. J Vet Med Sci 2021; 83:1933-1942. [PMID: 34719609 PMCID: PMC8762401 DOI: 10.1292/jvms.21-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022] Open
Abstract
Hypertrophic scars found on the human body rarely develop in experimental animals, possibly due to their looser skin structure. This makes it difficult to understand the genesis of scar lesions. Therefore, appropriate animal models are urgently needed. In this study, we established a novel experimental model of a scar-forming wound by resecting a small portion of the abdominal muscle wall on the lower center of the abdomen in C57BL/6N mice, which are exposed to contractive forces by the surrounding muscle tissue. As a low-tension control, a back skin excision model was used with a splint fixed onto the excised skin edge, and granulation tissue formed on the muscle fascia supported by the back skeleton. One week after the resection, initial healing reactions, such as fibroblast proliferation, occurred in both models. However, after 21 days, lesions with collagen-rich granulation tissues, which were also accompanied by multiple nodular/spherical-like structures, developed only in the abdominal wall model. These lesions were analogous to scar lesions in humans. Therefore, the animal model developed in this study is unique in that fibrous scar tissues form under physiological conditions without using any artificial factors and is valuable for studying the pathogenesis and preclinical treatment of scar lesions.
Collapse
Affiliation(s)
- Shiro JIMI
- Central Lab for Pathology and Morphology, Faculty of
Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Arman SAPAROV
- Department of Medicine, School of Medicine, Nazarbayev
University, Nur-Sultan 010000, Kazakhstan
| | - Seiko KOIZUMI
- R&D Center, Nitta Gelatin Inc., Osaka 581-0024,
Japan
| | - Motoyasu MIYAZAKI
- Department of Pharmacy, Fukuoka University Chikushi
Hospital, Fukuoka 818-0067, Japan
| | - Satoshi TAKAGI
- Department of Plastic Reconstructive and aesthetic Surgery,
Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
9
|
Li J, Li Y, Wang Y, He X, Wang J, Cai W, Jia Y, Xiao D, Zhang J, Zhao M, Shen K, Li Z, Jia W, Wang K, Zhang Y, Su L, Zhu H, Hu D. Overexpression of miR-101 suppresses collagen synthesis by targeting EZH2 in hypertrophic scar fibroblasts. BURNS & TRAUMA 2021; 9:tkab038. [PMID: 34859108 PMCID: PMC8633590 DOI: 10.1093/burnst/tkab038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Indexed: 12/27/2022]
Abstract
Background MicroRNA-101 (miR-101) is a tumor suppressor microRNA (miRNA) and its loss is associated with the occurrence and progression of various diseases. However, the biological function and target of miR-101 in the pathogenesis of hypertrophic scars (HS) remains unknown. Methods We harvested HS and paired normal skin (NS) tissue samples from patients and cultured their fibroblasts (HSF and NSF, respectively). We used quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), enzyme-linked immunosorbent assays (ELISA) and Western blot analyses to measure mRNA levels and protein expression of miR-101, enhancer of zeste homolog 2 (EZH2), collagen 1 and 3 (Col1 and Col3) and α-smooth muscle actin (α-SMA) in different in vitro conditions. We also used RNA sequencing to evaluate the relevant signaling pathways and bioinformatics analysis and dual-luciferase reporter assays to predict miR-101 targets. We utilized a bleomycin-induced fibrosis mouse model in which we injected miR-101 mimics to evaluate collagen deposition in vivo. Results We found low expression of miR-101 in HS and HSF compared to NS and NSF. Overexpressing miR-101 decreased Col1, Col3 and α-SMA expression in HSF. We detected high expression of EZH2 in HS and HSF. Knockdown of EZH2 decreased Col1, Col3 and α-SMA in HSF. Mechanistically, miR-101 targeted the 3′-untranslated region (3′UTR) of EZH2, as indicated by the decreased expression of EZH2. Overexpressing EZH2 rescued miR-101-induced collagen repression. MiR-101 mimics effectively suppressed collagen deposition in the bleomycin-induced fibrosis mouse model. Conclusions Our data reveal that miR-101 targets EZH2 in HS collagen production, providing new insight into the pathological mechanisms underlying HS formation.
Collapse
Affiliation(s)
- Jie Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zichao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
10
|
Vorstandlechner V, Laggner M, Copic D, Klas K, Direder M, Chen Y, Golabi B, Haslik W, Radtke C, Tschachler E, Hötzenecker K, Ankersmit HJ, Mildner M. The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation. Nat Commun 2021; 12:6242. [PMID: 34716325 PMCID: PMC8556235 DOI: 10.1038/s41467-021-26495-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/08/2021] [Indexed: 01/23/2023] Open
Abstract
Despite recent advances in understanding skin scarring, mechanisms triggering hypertrophic scar formation are still poorly understood. In the present study, we investigate mature human hypertrophic scars and developing scars in mice at single cell resolution. Compared to normal skin, we find significant differences in gene expression in most cell types present in scar tissue. Fibroblasts show the most prominent alterations in gene expression, displaying a distinct fibrotic signature. By comparing genes upregulated in murine fibroblasts during scar development with genes highly expressed in mature human hypertrophic scars, we identify a group of serine proteases, tentatively involved in scar formation. Two of them, dipeptidyl-peptidase 4 (DPP4) and urokinase (PLAU), are further analyzed in functional assays, revealing a role in TGFβ1-mediated myofibroblast differentiation and over-production of components of the extracellular matrix in vitro. Topical treatment with inhibitors of DPP4 and PLAU during scar formation in vivo shows anti-fibrotic activity and improvement of scar quality, most prominently after application of the PLAU inhibitor BC-11. In this study, we delineate the genetic landscape of hypertrophic scars and present insights into mechanisms involved in hypertrophic scar formation. Our data suggest the use of serine protease inhibitors for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Yiyan Chen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- University of Applied Sciences, FH Campus Wien, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Konrad Hötzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Wu Q, Chen J, Tan Z, Wang D, Zhou J, Li D, Cen Y. Long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) regulates fibroblast growth factor receptor substrate 2 (FRS2) by targeting microRNA (miR)-29-3p in hypertrophic scar fibroblasts. Bioengineered 2021; 12:5210-5219. [PMID: 34414852 PMCID: PMC8806793 DOI: 10.1080/21655979.2021.1959221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in human diseases. However, the detailed role of lncRNAs in hypertrophic scar fibroblasts (HSFs) is inadequately understood. This study aimed to investigate the potential role of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in hypertrophic scarring. Expression of lncRNAs, miRNAs, and genes were detected by polymerase chain reaction; protein expression was evaluated using western blotting. Cellular function was determined using the CCK-8 assay. The interaction between microRNA (miR)-29-3p and NEAT1 or fibroblast growth factor receptor substrate 2 (FRS2) was verified by luciferase and RNA pull-down assays. The results showed that NEAT1 was overexpressed in the hypertrophic dermis and in HSFs. However, knockdown of NEAT1 suppressed the proliferation and extracellular matrix (ECM) production of HSFs. Moreover, NEAT1 functioned as a competing endogenous RNA to upregulate FRS2 by sponging miR-29-3p. Downregulation of miR-29-3p or overexpression of FRS2 antagonized the effects of NEAT1 knockdown and promoted HSF proliferation and ECM release. In conclusion, NEAT1 knockdown protected against hypertrophic scarring by modulating the miR-29-3p/FRS2 axis, which is a viable target in scar treatment.
Collapse
Affiliation(s)
- Qinghua Wu
- The Department of Plastic and Burn Surgery of West China Hospital, Sichuan University, Chengdu, China.,Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan
| | - Junjie Chen
- The Department of Plastic and Burn Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Ziming Tan
- Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan
| | - Dehuai Wang
- Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan
| | - Jianwen Zhou
- Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan
| | - Dan Li
- Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan
| | - Ying Cen
- The Department of Plastic and Burn Surgery of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Zu W, Jiang B, Liu H. Establishment of a long-term hypertrophic scar model by injection of anhydrous alcohol: A rabbit model. Int J Exp Pathol 2021; 102:105-112. [PMID: 33710702 DOI: 10.1111/iep.12389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
The processes of hypertrophic scar formation are extremely complex, and current animal models have limitations in terms of the complete characterization of lesions. An ideal animal model is indispensable for exploring the complex progression of scar formation to elucidate its pathophysiology and to perform therapeutic testing. This study aimed to establish a long-term, consistent and easily testable animal model by injecting anhydrous alcohol into the dorsal trunk dermis of rabbits. The rabbits were injected with different amounts of anhydrous alcohol. Anhydrous alcohol was infiltrated into the subcutaneous and superficial fascia. The optimal amount of anhydrous alcohol was determined by measuring the area and thickness of the scar. The typical model was established by determining the optimum dosage, and then we analysed the histological characteristics and fibrosis-associated protein expression. The dermal scar was generated by treating with 2 ml/kg anhydrous alcohol and displayed histopathologic features that characterize human hypertrophic scarring, including a parallel collagen fibre orientation, dermal and epidermal thickening, broad collagen deposition and the loss of dermal adnexal structures. The expression of fibrotic pan-markers was also enhanced. Moreover, the scar features and duration were compared between the anhydrous alcohol model and the rabbit ear model. Our results show that injecting anhydrous alcohol in the rabbit model thickened the dermal tissue, stimulated dermal fibroproliferation and resulted in hypertrophic scars with protein and histologic features similar to those seen in humans. Taken together, the findings from this study show that our model could be a feasible and useful tool for further research on the pathogenesis of hypertrophic scars.
Collapse
Affiliation(s)
- Wenxuan Zu
- Department of Anatomy, Bengbu Medical College, Bengbu, China
| | - Banghong Jiang
- Department of Plastic Surgery, 1st Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Plastic Surgery, 1st Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongwei Liu
- Department of Plastic Surgery, 1st Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Marchesini A, De Francesco F, Mattioli-Belmonte M, Zingaretti N, Riccio V, Orlando F, Zavan B, Riccio M. A New Animal Model for Pathological Subcutaneous Fibrosis: Surgical Technique and in vitro Analysis. Front Cell Dev Biol 2020; 8:542. [PMID: 32850775 PMCID: PMC7409519 DOI: 10.3389/fcell.2020.00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
Fibrosis is a condition that affects the connective tissue in an organ or tissue in the restorative or responsive phase as a result of injury. The consequences of excessive fibrotic tissue growth may lead to various physiological complications of deformity and impairment due to hypertrophic scars, keloids, and tendon adhesion without understating the psychological impact on the patient. However, no method accurately quantifies the rate and pattern of subcutaneous induced hypertrophic fibrosis. We, therefore, devised a rodent excisional model to evaluate the extent of fibrosis with talc. Tissue specimens were set on formalin, and paraffin sections for histological, immunohistochemical, and molecular analysis talc was used to induce the fibroproliferative mechanism typical of hypertrophic scars. This pathway is relevant to the activation of inflammatory and fibrotic agents to stimulate human hypertrophic scarring. This model reproduces morpho-functional features of human hypertrophic scars to investigate scar formation and assess potential anti-scarring therapies.
Collapse
Affiliation(s)
- Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Department of Medical Area (DAME), Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Valentina Riccio
- Veterinary Medical School, University of Camerino, Camerino, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRNCA, Ancona, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| |
Collapse
|
14
|
Hsieh JC, Joshi CJ, Wan R, Galiano RD. The Northwestern Abdominoplasty Scar Model: A Tool for High-Throughput Assessment of Scar Therapeutics. Adv Wound Care (New Rochelle) 2020; 9:396-404. [PMID: 32320363 DOI: 10.1089/wound.2018.0900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Significance: Scar management is an important concern in plastic surgery. Scar models that best mimic in vivo human scarring are essential for understanding scar development and progression, assessing the efficacy of therapeutics, and providing reliable and valid research outcomes. Recent Advances: In 2016, Lanier et al. proposed a new in vivo patient model, the Northwestern Abdominoplasty Scar Model, that overcomes the prior limitations of both animal and human models, with greater representativeness of the human scarring process, expedited recruitment, smaller sample requirements, and greater flexibility in the types and number of interventions that can be studied simultaneously. Critical Issues: Existing animal models suffer from limitations that impede generalization to human scars. Human scar studies are difficult to conduct and rarely used due to recruitment difficulties, ethical concerns regarding purposeful wounding, and inherent variability based on location, type of scar, and the heterogeneity of the host response between humans. Although overcoming many of these hurdles, the Northwestern Abdominoplasty Scar Model still has a few limitations. In addition, there remains a need for further study of and comparison between the Northwestern Abdominoplasty Scar Model and existing human and animal models, to inspire more widespread acceptance of a standardized human scar model. Future Directions: The Northwestern Abdominoplasty Scar Model is a critical stepping stone toward better human scar models. This model hopefully will inspire other in vivo patient models utilizing elective surgery to overcome recruitment and ethical concerns.
Collapse
Affiliation(s)
- Ji-Cheng Hsieh
- Department of Plastic and Reconstructive Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chitang J. Joshi
- Department of Plastic and Reconstructive Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rou Wan
- Department of Plastic and Reconstructive Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Robert D. Galiano
- Department of Plastic and Reconstructive Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
15
|
Wang Z, Huang X, Zan T, Li Q, Li H. A modified scar model with controlled tension on secondary wound healing in mice. BURNS & TRAUMA 2020; 8:tkaa013. [PMID: 32395565 PMCID: PMC7201370 DOI: 10.1093/burnst/tkaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Indexed: 11/19/2022]
Abstract
Pathological scars might cause a distorted appearance and restricted mobility, and the study of scar pathophysiology has been hindered by the absence of a reliable model. In this study, we introduce a model with a modified device to induce controlled tension on a wound healing by secondary intention to overcome the shortcomings of the model generated by Aarabi et al. We investigated and recommend an induction of 0.1 N/mm2 tension on day 7 for 14 days to mimic the characteristics of human scars. A 3.5-fold increase in scar tissue and a 2-fold increase in collagen production were induced by the modified model. Histologically, the modified method increased scar thickness. However, no significant difference was found in cell density between the two groups. This modified procedure significantly increased scar tissue, which could be used for further cellular and biomolecular research. The mechanical force applied to the wound became measurable and controllable. This method is more convenient for researchers to observe in real-time and for providing timely adjustments of the tension used in this modified model.
Collapse
Affiliation(s)
- Zi Wang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Medical School of Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Medical School of Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Medical School of Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Medical School of Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Medical School of Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
16
|
Yang F, Chen E, Yang Y, Han F, Han S, Wu G, Zhang M, Zhang J, Han J, Su L, Hu D. The Akt/FoxO/p27 Kip1 axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars. J Cell Mol Med 2019; 23:6164-6172. [PMID: 31270945 PMCID: PMC6714140 DOI: 10.1111/jcmm.14498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scars (HS) are characterized by the excessive production and deposition of extracellular matrix (ECM) proteins. Pentoxifylline (PTX), a xanthine derived antioxidant, inhibits the proliferation, inflammation and ECM accumulation of HS. In this study, we aimed to explore the effect of PTX on HS and further clarify the mechanism of PTX‐induced anti‐proliferation. We found that PTX could significantly attenuate proliferation of HS fibroblasts and fibrosis in an animal HS model. PTX inhibited the proliferation of HSFs in a dose‐ and time‐dependent manner, and this growth inhibition was mainly mediated by cell cycle arrest. Transcriptome sequencing showed that PTX affects HS formation through the PI3K/Akt/FoxO1 signalling pathway to activate p27Kip1. PTX down‐regulated p‐Akt and up‐regulated p‐FoxO1 in TGF‐β1 stimulated fibroblasts at the protein level, and simultaneously, the expression of p27Kip1 was activated. In a mouse model of HS, PTX treatment resulted in the ordering of collagen fibres. The results revealed that PTX regulates TGFβ1‐induced fibroblast activation and inhibits excessive scar formation. Therefore, PTX is a promising agent for the treatment of HS formation.
Collapse
Affiliation(s)
- Fangfang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
17
|
Lebeko M, Khumalo NP, Bayat A. Multi-dimensional models for functional testing of keloid scars: In silico, in vitro, organoid, organotypic, ex vivo organ culture, and in vivo models. Wound Repair Regen 2019; 27:298-308. [PMID: 30761660 DOI: 10.1111/wrr.12705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 01/20/2023]
Abstract
Keloid scars are described as benign fibro-proliferative dermal outgrowths that commonly occur in pigmented skin post cutaneous injury, and continue to grow beyond the boundary of the original wound margin. There is a lack of thorough understanding of keloid pathogenesis and thus keloid therapeutic options remain ill-defined. In view of the poor response to current therapy and high recurrence rates, there is an unmet need in improving our knowledge and therefore in identifying targeted and effective treatment strategies in management of keloids. Keloid research however, is hampered by a lack of relevant animal models as keloids do not spontaneously occur in animals and are unique to human skin. Therefore, developing novel animal models and nonanimal models for functional evaluation of keloid cells and tissue for better understanding their pathobiology and response to putative candidate therapies are essential. Here, we present the key concepts and relevant emerging research on two-dimensional and three-dimensional cell and tissue models for functional testing of keloid scars. We will describe in detail current models including in vitro mono- and co-cultures, multi-cellular spheroids (organoids) and organotyopic cultures, ex vivo whole skin keloid tissue organ culture models as well as in vivo human patient models. Finally, we discuss the role played by time as the fourth dimension in a novel model that involves sequential temporal biopsies of human patients with keloids (a so called 4D in vivo human model). The use of these unique models will no doubt prove pivotal in identification of new drug targets as well as biomarkers, in functional testing of emerging novel therapeutics, and in enhancing our understanding of keloid disease biology.
Collapse
Affiliation(s)
- Maribanyana Lebeko
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Lateef Z, Stuart G, Jones N, Mercer A, Fleming S, Wise L. The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model. Int J Mol Sci 2019; 20:ijms20030538. [PMID: 30696002 PMCID: PMC6387172 DOI: 10.3390/ijms20030538] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Many burn interventions aim to target the inflammatory response as a means of enhancing healing or limiting hypertrophic scarring. Murine models of human burns have been developed, but the inflammatory response to injury in these models has not been well defined. The aim of this study was to profile inflammatory cell populations and gene expression relative to healing and scarring in a murine model of thermal burns. Cutaneous injuries were created on the dorsal region of C57Bl/6 mice using a heated metal rod. Animals were euthanized at selected time points over ten weeks, with the lesions evaluated using macroscopic measurements, histology, immunofluorescent histochemistry and quantitative PCR. The burn method generated a reproducible, partial-thickness injury that healed within two weeks through both contraction and re-epithelialization, in a manner similar to human burns. The injury caused an immediate increase in pro-inflammatory cytokine and chemokine expression, coinciding with an influx of neutrophils, and the disappearance of Langerhans cells and mast cells. This preceded an influx of dendritic cells and macrophages, a quarter of which displayed an inflammatory (M1) phenotype, with both populations peaking at closure. As with human burns, the residual scar increased in size, epidermal and dermal thickness, and mast cell numbers over 10 weeks, but abnormal collagen I-collagen III ratios, fibre organization and macrophage populations resolved 3–4 weeks after closure. Characterisation of the inflammatory response in this promising murine burn model will assist future studies of burn complications and aid in the preclinical testing of new anti-inflammatory and anti-scarring therapies.
Collapse
Affiliation(s)
- Zabeen Lateef
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Gabriella Stuart
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Nicola Jones
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Andrew Mercer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Stephen Fleming
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
19
|
Inhibition of FKBP10 Attenuates Hypertrophic Scarring through Suppressing Fibroblast Activity and Extracellular Matrix Deposition. J Invest Dermatol 2017; 137:2326-2335. [DOI: 10.1016/j.jid.2017.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
20
|
Kurdi A, De Doncker M, Leloup A, Neels H, Timmermans JP, Lemmens K, Apers S, De Meyer GRY, Martinet W. Continuous administration of the mTORC1 inhibitor everolimus induces tolerance and decreases autophagy in mice. Br J Pharmacol 2016; 173:3359-3371. [PMID: 27638766 DOI: 10.1111/bph.13626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Everolimus is an allosteric inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1) widely known for its potent autophagy stimulating properties. Because everolimus shows poor solubility and stability in aqueous solutions, long-term in vivo administration in preclinical models is challenging. The aim of the present study was to evaluate the effects of short-term and long-term everolimus administration on mTORC1 inhibition and autophagy induction in mice. EXPERIMENTAL APPROACH We developed a vehicle in which everolimus was solubilized and stable at 37°C for at least 1 month. Using osmotic minipumps, GFP microtubule-associated protein light chain 3 transgenic mice were treated continuously either with vehicle or everolimus (1.5 mg·kg-1 per day) for 3 or 28 days. Alternatively, a regimen consisting of intermittent everolimus administration (every other day) for 56 days by oral gavage was used. Autophagy markers and mTORC1 activation status were investigated in the liver. KEY RESULTS As expected, everolimus inhibited mTORC1 and stimulated autophagy in the liver after 3 days of treatment. However, continuous administration for 28 days resulted in hyperactivation of the Akt1-mTORC1 pathway accompanied by a remarkable decrease in autophagy markers. Everolimus given intermittently for 56 days partially rescued mTORC1 sensitivity to the drug but without inducing autophagy. The failure to induce autophagy following long-term everolimus administration was due to uncoupling of the mTORC1 substrate unc-51 like autophagy activating kinase 1. CONCLUSIONS AND IMPLICATIONS Our data encourage the use of intermittent everolimus regimens to prevent tolerance and to extend its activity.
Collapse
Affiliation(s)
- Ammar Kurdi
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Arthur Leloup
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hugo Neels
- Laboratory for TDM and Toxicology, ZNA Stuivenberg, Antwerp, Belgium.,Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Katrien Lemmens
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandra Apers
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Alrobaiea SM, Ding J, Ma Z, Tredget EE. A Novel Nude Mouse Model of Hypertrophic Scarring Using Scratched Full Thickness Human Skin Grafts. Adv Wound Care (New Rochelle) 2016; 5:299-313. [PMID: 27366591 PMCID: PMC4900225 DOI: 10.1089/wound.2015.0670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Objective: Hypertrophic scar (HTS) is a dermal form of fibroproliferative disorder that develops following deep skin injury. HTS can cause deformities, functional disabilities, and aesthetic disfigurements. The pathophysiology of HTS is not understood due to, in part, the lack of an ideal animal model. We hypothesize that human skin with deep dermal wounds grafted onto athymic nude mice will develop a scar similar to HTS. Our aim is to develop a representative animal model of human HTS. Approach: Thirty-six nude mice were grafted with full thickness human skin with deep dermal scratch wound before or 2 weeks after grafting or without scratch. The scratch on the human skin grafts was made using a specially designed jig that creates a wound >0.6 mm in depth. The xenografts were morphologically analyzed by digital photography. Mice were euthanized at 1, 2, and 3 months postoperatively for histology and immunohistochemistry analysis. Results: The mice developed raised and firm scars in the scratched xenografts with more contraction, increased infiltration of macrophage, and myofibroblasts compared to the xenografts without deep dermal scratch wound. Scar thickness and collagen bundle orientation and morphology resembled HTS. The fibrotic scars in the wounded human skin were morphologically and histologically similar to HTS, and human skin epithelial cells persisted in the remodeling tissues for 1 year postengraftment. Innovation and Conclusions: Deep dermal injury in human skin retains its profibrotic nature after transplantation, affording a novel model for the assessment of therapies for the treatment of human fibroproliferative disorders of the skin.
Collapse
Affiliation(s)
- Saad M. Alrobaiea
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Jie Ding
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Zengshuan Ma
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Canada
- Divisions of Plastic and Reconstructive Surgery and Critical Care, University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
Dermal Fibroblasts from the Red Duroc Pig Have an Inherently Fibrogenic Phenotype: An In Vitro Model of Fibroproliferative Scarring. Plast Reconstr Surg 2016; 136:990-1000. [PMID: 26505702 DOI: 10.1097/prs.0000000000001704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pathophysiology of hypertrophic scarring is unknown in part because of the lack of a robust animal model. Although the red Duroc pig has emerged as a promising in vivo model, the cellular mechanisms underlying Duroc scarring are unknown, and the size and cost of Duroc pigs are obstacles to their use. Given the central role of the dermal fibroblast in scarring, the authors hypothesized that dermal fibroblasts from the Duroc pig exhibit intrinsic differences in key aspects of the fibroblast response to injury compared with those from the Yorkshire pig, a same-species control that heals normally. METHODS Duroc and Yorkshire dermal fibroblasts were isolated from uninjured dorsal skin. Actin stress fibers and focal adhesions were visualized by immunocytochemistry and transmission electron microscopy. Cell migration was measured using a scratch wound-closure assay. Contractile function was assessed by collagen gel contraction. Expression of scarring-related genes was determined by quantitative real-time reverse-transcriptase polymerase chain reaction, and transforming growth factor (TGF)-β1 protein expression was determined by Western blotting. RESULTS Duroc dermal fibroblasts display increased adhesion-complex formation, impaired migration, enhanced collagen contraction, and profibrotic gene and protein expression profiles compared with Yorkshire fibroblasts at baseline. In addition, Duroc fibroblasts overexpressed TGF-β1 and were less responsive to exogenous TGF-β1. CONCLUSIONS Duroc dermal fibroblasts have inherent myofibroblastic differentiation that may account for the pathologic scarring in these animals. The authors' data further validate the Duroc model and support Duroc fibroblast cell culture as a simple, inexpensive, reproducible, and biologically tractable in vitro model for the study of fibroproliferative scarring.
Collapse
|
23
|
Marttala J, Andrews JP, Rosenbloom J, Uitto J. Keloids: Animal models and pathologic equivalents to study tissue fibrosis. Matrix Biol 2016; 51:47-54. [PMID: 26827712 PMCID: PMC4842112 DOI: 10.1016/j.matbio.2016.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Animal models are crucial for the study of fibrosis. Keloids represent a unique type of fibrotic scarring that occurs only in humans, thus presenting a challenge for those studying the pathogenesis of this disease and its therapeutic options. Here, several animal models of fibrosis currently in use are described, emphasizing recent progress and highlighting encouraging challenges.
Collapse
Affiliation(s)
- Jaana Marttala
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jonathan P Andrews
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
Cameron A, Turner C, Adams D, Jackson J, Melville E, Arkell R, Anderson P, Cowin A. Flightless I is a key regulator of the fibroproliferative process in hypertrophic scarring and a target for a novel antiscarring therapy. Br J Dermatol 2016; 174:786-94. [DOI: 10.1111/bjd.14263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Affiliation(s)
- A.M. Cameron
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
- Discipline of Surgery; School of Medicine; Faculty of Health Sciences; The University of Adelaide; Adelaide SA Australia
| | - C.T. Turner
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - D.H. Adams
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - J.E. Jackson
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - E. Melville
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| | - R.M. Arkell
- Research School of Biology; College of Medicine, Biology and Environment; Australian National University; Acton ACT 2601 Australia
| | - P.J. Anderson
- Discipline of Paediatrics; School of Medicine; Faculty of Health Sciences; The University of Adelaide; Adelaide SA Australia
| | - A.J. Cowin
- Regenerative Medicine; Future Industries Institute; University of South Australia; Mawson Lakes SA 5095 Australia
| |
Collapse
|
25
|
Native Australian plant extracts differentially induce Collagen I and Collagen III in vitro and could be important targets for the development of new wound healing therapies. Fitoterapia 2015; 109:45-51. [PMID: 26705840 DOI: 10.1016/j.fitote.2015.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 11/21/2022]
Abstract
Australian native plants have a long history of therapeutic use in indigenous cultures, however, they have been poorly studied scientifically. We analysed the effects of 14 plant derived compounds from the species Pilidiostigma glabrum, Myoporum montanum, Geijera parviflora, and Rhodomyrtus psidioides for their potential wound healing properties by assessing their ability to induce or suppress Collagen I and Collagen III expression in human skin fibroblasts in culture. The compound 7-geranyloxycoumarin was able to significantly increase Collagen I (23.7%, p<0.0002) expression in comparison to control. Significant suppression of Collagen III was observed for the compounds flindersine (11.1%, p<0.02), and (N-acetoxymethyl) flindersine (27%, p<0.00005). The implications of these finding is that these compounds could potentially alter the expression of different collagens in the skin allowing for the potential development of new wound healing therapies and new approaches for treating various skin diseases as well as photo (sun) damaged, and aged skin.
Collapse
|
26
|
A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin. Plast Reconstr Surg 2014; 134:163e-164e. [PMID: 25028834 DOI: 10.1097/prs.0000000000000299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|