1
|
Mahmoudi N, Dadak M, Bronzlik P, Maudsley AA, Sheriff S, Lanfermann H, Ding XQ. Microstructural and Metabolic Changes in Normal Aging Human Brain Studied with Combined Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging. Clin Neuroradiol 2023; 33:993-1005. [PMID: 37336867 PMCID: PMC10654209 DOI: 10.1007/s00062-023-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE This study aimed to detect age-related brain metabolic and microstructural changes in healthy human brains by the use of whole-brain proton magnetic resonance spectroscopic imaging (1H‑MRSI) and quantitative MR imaging (qMRI). METHODS In this study, 60 healthy participants with evenly distributed ages (between 21 and 69 years) and sex underwent MRI examinations at 3T including whole-brain 1H‑MRSI. The concentrations of the metabolites N‑acetylaspartate (NAA), choline-containing compounds (Cho), total creatine and phosphocreatine (tCr), glutamine and glutamate (Glx), and myo-inositol (mI), as well as the brain relaxation times T2, T2' and T1 were measured in 12 regions of interest (ROI) in each hemisphere. Correlations between measured parameters and age were estimated with linear regression analysis and Pearson's correlation test. RESULTS Significant age-related changes of brain regional metabolite concentrations and tissue relaxation times were found: NAA decreased in eight of twelve ROIs, Cho increased in three ROIs, tCr in four ROIs, and mI in three ROIs. Glx displayed a significant decrease in one ROI and an increase in another ROI. T1 increased in four ROIs and T2 in one ROI, while T2' decreased in two ROIs. A negative correlation of tCr concentrations with T2' relaxation time was found in one ROI as well as the positive correlations of age-related T1 relaxation time with concentrations of tCr, mI, Glx and Cho in another ROI. CONCLUSION Normal aging in human brain is associated with coexistent brain regional metabolic alterations and microstructural changes, which may be related to age-related decline in cognitive, affective and psychomotor domains of life in the older population.
Collapse
Affiliation(s)
- N Mahmoudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany.
| | - M Dadak
- Department of Diagnostic and Interventional Radiology and Neuroradiology, St. Vincenz Hospital Paderborn, Paderborn, Germany
| | - P Bronzlik
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - A A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - S Sheriff
- Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - H Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - X-Q Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Gogishvili A, Farrher E, Doppler CEJ, Seger A, Sommerauer M, Shah NJ. Quantification of the neurochemical profile of the human putamen using STEAM MRS in a cohort of elderly subjects at 3 T and 7 T: Ruminations on the correction strategy for the tissue voxel composition. PLoS One 2023; 18:e0286633. [PMID: 37267283 DOI: 10.1371/journal.pone.0286633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
The aim of this work is to quantify the metabolic profile of the human putamen in vivo in a cohort of elderly subjects using single-voxel proton magnetic resonance spectroscopy. To obtain metabolite concentrations specific to the putamen, we investigated a correction method previously proposed to account for the tissue composition of the volume of interest. We compared the method with the conventional approach, which a priori assumes equal metabolite concentrations in GM and WM. Finally, we compared the concentrations acquired at 3 Tesla (T) and 7 T MRI scanners. Spectra were acquired from 15 subjects (age: 67.7 ± 8.3 years) at 3 T and 7 T, using an ultra-short echo time, stimulated echo acquisition mode sequence. To robustly estimate the WM-to-GM metabolite concentration ratio, five additional subjects were measured for whom the MRS voxel was deliberately shifted from the putamen in order to increase the covered amount of surrounding WM. The concentration and WM-to-GM concentration ratio for 16 metabolites were reliably estimated. These ratios ranged from ~0.3 for γ-aminobutyric acid to ~4 for N-acetylaspartylglutamate. The investigated correction method led to significant changes in concentrations compared to the conventional method, provided that the ratio significantly differed from unity. Finally, we demonstrated that differences in tissue voxel composition cannot fully account for the observed concentration difference between field strengths. We provide not only a fully comprehensive quantification of the neurochemical profile of the putamen in elderly subjects, but also a quantification of the WM-to-GM concentration ratio. This knowledge may serve as a basis for future studies with varying tissue voxel composition, either due to tissue atrophy, inconsistent voxel positioning or simply when pooling data from different voxel locations.
Collapse
Affiliation(s)
- Ana Gogishvili
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Engineering Physics Department, Georgian Technical University, Tbilisi, Georgia
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Christopher E J Doppler
- Cognitive Neuroscience, Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aline Seger
- Cognitive Neuroscience, Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Sommerauer
- Cognitive Neuroscience, Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Onukwufor JO, Dirksen RT, Wojtovich AP. Iron Dysregulation in Mitochondrial Dysfunction and Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11040692. [PMID: 35453377 PMCID: PMC9027385 DOI: 10.3390/antiox11040692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating progressive neurodegenerative disease characterized by neuronal dysfunction, and decreased memory and cognitive function. Iron is critical for neuronal activity, neurotransmitter biosynthesis, and energy homeostasis. Iron accumulation occurs in AD and results in neuronal dysfunction through activation of multifactorial mechanisms. Mitochondria generate energy and iron is a key co-factor required for: (1) ATP production by the electron transport chain, (2) heme protein biosynthesis and (3) iron-sulfur cluster formation. Disruptions in iron homeostasis result in mitochondrial dysfunction and energetic failure. Ferroptosis, a non-apoptotic iron-dependent form of cell death mediated by uncontrolled accumulation of reactive oxygen species and lipid peroxidation, is associated with AD and other neurodegenerative diseases. AD pathogenesis is complex with multiple diverse interacting players including Aβ-plaque formation, phosphorylated tau, and redox stress. Unfortunately, clinical trials in AD based on targeting these canonical hallmarks have been largely unsuccessful. Here, we review evidence linking iron dysregulation to AD and the potential for targeting ferroptosis as a therapeutic intervention for AD.
Collapse
Affiliation(s)
- John O. Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Correspondence:
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
| | - Andrew P. Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
4
|
MacDonald ME, Pike GB. MRI of healthy brain aging: A review. NMR IN BIOMEDICINE 2021; 34:e4564. [PMID: 34096114 DOI: 10.1002/nbm.4564] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
We present a review of the characterization of healthy brain aging using MRI with an emphasis on morphology, lesions, and quantitative MR parameters. A scope review found 6612 articles encompassing the keywords "Brain Aging" and "Magnetic Resonance"; papers involving functional MRI or not involving imaging of healthy human brain aging were discarded, leaving 2246 articles. We first consider some of the biogerontological mechanisms of aging, and the consequences of aging in terms of cognition and onset of disease. Morphological changes with aging are reviewed for the whole brain, cerebral cortex, white matter, subcortical gray matter, and other individual structures. In general, volume and cortical thickness decline with age, beginning in mid-life. Prevalent silent lesions such as white matter hyperintensities, microbleeds, and lacunar infarcts are also observed with increasing frequency. The literature regarding quantitative MR parameter changes includes T1 , T2 , T2 *, magnetic susceptibility, spectroscopy, magnetization transfer, diffusion, and blood flow. We summarize the findings on how each of these parameters varies with aging. Finally, we examine how the aforementioned techniques have been used for age prediction. While relatively large in scope, we present a comprehensive review that should provide the reader with sound understanding of what MRI has been able to tell us about how the healthy brain ages.
Collapse
Affiliation(s)
- M Ethan MacDonald
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Li C, Chen Y, Wu PY, Wu B, Gong T, Wang H, Chen M. Associations between brain volumetry and relaxometry signatures and the Edmonton Frail Scale in frailty. Quant Imaging Med Surg 2021; 11:2560-2571. [PMID: 34079723 DOI: 10.21037/qims-20-852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Frailty is a geriatric condition characterized by a decreased reserve. The Edmonton frailty scale (EFS) has been widely used as an assessment tool in clinical practice. However, the brain's underlying pathophysiological changes in frailty and their associations with the EFS remain unclear. This study aimed to explore the associations between brain volumetry and relaxometry signatures and the EFS (and each domain score of the EFS) in frailty. Methods A total of 40 non-demented subjects were enrolled in this prospective study. Frailty assessment was performed for each subject according to the EFS. All subjects underwent synthetic magnetic resonance imaging (MRI) (MAGnetic resonance image Compilation, MAGiC) and three-dimensional fast spoiled gradient-recalled echo (3D-FSPGR) T1-weighted structural image acquisitions on a 3.0 T MR scanner. Brain segmentation was performed based on quantitative values obtained from the MAGiC and 3D-FSPGR images. Volumetry and relaxometry of the global brain and regional gray matter (GM) were also obtained. The associations between the total EFS score (and the score of each domain) and the brain's volumetry and relaxometry were investigated by partial correlation while eliminating the effects of age. Multiple comparisons of regional GM volumetry and relaxometry analyses were controlled by false discovery rate (FDR) correction. All data were analyzed using the SPSS 13.0 statistical package (IBM, Armonk, NY, USA) and MATLAB (MathWorks, Natick, MA, USA). Results For global volumetry, significant correlations were found between multiple global volumetry parameters and the EFS, as well as the cognition score, functional independence score, nutrition score, and functional performance score (P<0.05). For global relaxometry, notable positive correlations were found between the T2 values of gray and white matter (WM) and the EFS (r=0.357, P=0.026; r=0.357, P=0.026, respectively). Significant correlations were also identified between the T2 value of GM, the T1, T2, and PD values of WM, and the cognition score (r=0.426, P=0.007; r=0.456, P=0.003; r=0.377, P=0.018; r=0.424, P=0.007, respectively), functional independence score (r=-0.392, P=0.014; r=-0.611, P<0.001; r=-0.367, P=0.022; r=-0.569, P<0.001, respectively), and functional performance score (r=0.337, P=0.036; r=0.472, P=0.002; r=0.354, P=0.027; r=0.376, P=0.018, respectively). For regional GM volumetry, multiple regions showed significant negative correlations with the EFS (P<0.05). Notable negative correlations were found between multiple regional GM volume and the functional independence score (P<0.05). For regional GM relaxometry, the T1 and T2 values of several regions showed significant negative correlations with the functional independence score (T1 value of caudate, r=-0.617, P<0.001; T2 value of insula, r=-0.510, P=0.015; T2 value of caudate, r=-0.633, P<0.001, respectively). No significant correlation was found between the domain scores of the EFS and regional GM PD values (P>0.05). Conclusions In conclusion, brain volumetry and relaxometry signatures showed strong associations with the EFS and some EFS domain scores in frailty. These associations may reveal the possible underlying pathophysiology of the EFS and different domains of the EFS.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Bing Wu
- GE Healthcare, Beijing, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Wearn AR, Nurdal V, Saunders-Jennings E, Knight MJ, Isotalus HK, Dillon S, Tsivos D, Kauppinen RA, Coulthard EJ. T2 heterogeneity: a novel marker of microstructural integrity associated with cognitive decline in people with mild cognitive impairment. Alzheimers Res Ther 2020; 12:105. [PMID: 32912337 PMCID: PMC7488446 DOI: 10.1186/s13195-020-00672-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Early Alzheimer's disease (AD) diagnosis is vital for development of disease-modifying therapies. Prior to significant brain tissue atrophy, several microstructural changes take place as a result of Alzheimer's pathology. These include deposition of amyloid, tau and iron, as well as altered water homeostasis in tissue and some cell death. T2 relaxation time, a quantitative MRI measure, is sensitive to these changes and may be a useful non-invasive, early marker of tissue integrity which could predict conversion to dementia. We propose that different microstructural changes affect T2 in opposing ways, such that average 'midpoint' measures of T2 are less sensitive than measuring distribution width (heterogeneity). T2 heterogeneity in the brain may present a sensitive early marker of AD pathology. METHODS In this cohort study, we tested 97 healthy older controls, 49 people with mild cognitive impairment (MCI) and 10 with a clinical diagnosis of AD. All participants underwent structural MRI including a multi-echo sequence for quantitative T2 assessment. Cognitive change over 1 year was assessed in 20 participants with MCI. T2 distributions were modelled in the hippocampus and thalamus using log-logistic distribution giving measures of log-median value (midpoint; T2μ) and distribution width (heterogeneity; T2σ). RESULTS We show an increase in T2 heterogeneity (T2σ; p < .0001) in MCI compared to healthy controls, which was not seen with midpoint (T2μ; p = .149) in the hippocampus and thalamus. Hippocampal T2 heterogeneity predicted cognitive decline over 1 year in MCI participants (p = .018), but midpoint (p = .132) and volume (p = .315) did not. Age affects T2, but the effects described here are significant even after correcting for age. CONCLUSIONS We show that T2 heterogeneity can identify subtle changes in microstructural integrity of brain tissue in MCI and predict cognitive decline over a year. We describe a new model that considers the competing effects of factors that both increase and decrease T2. These two opposing forces suggest that previous conclusions based on T2 midpoint may have obscured the true potential of T2 as a marker of subtle neuropathology. We propose that T2 heterogeneity reflects microstructural integrity with potential to be a widely used early biomarker of conditions such as AD.
Collapse
Affiliation(s)
- Alfie R Wearn
- Bristol Medical School, University of Bristol, Bristol, UK.
- Institute of Clinical Neurosciences, North Bristol NHS Trust, Bristol, UK.
| | - Volkan Nurdal
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Michael J Knight
- School of Psychological Science, University of Bristol, Bristol, UK
| | | | - Serena Dillon
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Demitra Tsivos
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Elizabeth J Coulthard
- Bristol Medical School, University of Bristol, Bristol, UK
- Institute of Clinical Neurosciences, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
7
|
Kupeli A, Kocak M, Goktepeli M, Karavas E, Danisan G. Role of T1 mapping to evaluate brain aging in a healthy population. Clin Imaging 2020; 59:56-60. [DOI: 10.1016/j.clinimag.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 09/23/2019] [Indexed: 11/25/2022]
|
8
|
Dorsal hippocampal changes in T2 relaxation times are associated with early spatial cognitive deficits in 5XFAD mice. Brain Res Bull 2019; 153:150-161. [PMID: 31422072 DOI: 10.1016/j.brainresbull.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
T2 relaxation time (T2) alterations may serve as markers for early detection and disease progression monitoring by reflecting brain microstructural integrity in Alzheimer's disease (AD). However, the characteristics of T2 alterations during the early stage of AD remain elusive. We explored T2 alterations and their possible correlations with cognitive function in 5XFAD mice at early ages (1, 2, 3, and 5 months of age). Voxel-based analysis (VBA) and region of interest (ROI) analysis showed a decreased T2 in the hippocampus of 2-, 3-, and 5-month-old 5XFAD mice compared to those of controls. The dorsal hippocampal T2 decreased earlier than the ventral hippocampus T2. A significant correlation was observed between Morris water maze (MWM) test cognitive behavior and the dorsal hippocampus T2 in 5XFAD mice. These results indicated that the microstructural integrity of brain tissues, particularly the hippocampus, was impaired early and the impairment became more extensive and severe during disease progression. Furthermore, the dorsal hippocampus is a crucial component involved in spatial cognition impairment in young 5XFAD mice.
Collapse
|
9
|
Tang X, Cai F, Ding DX, Zhang LL, Cai XY, Fang Q. Magnetic resonance imaging relaxation time in Alzheimer's disease. Brain Res Bull 2018; 140:176-189. [PMID: 29738781 DOI: 10.1016/j.brainresbull.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 12/26/2022]
Abstract
The magnetic resonance imaging (MRI) relaxation time constants, T1 and T2, are sensitive to changes in brain tissue microstructure integrity. Quantitative T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of Alzheimer's disease (AD), in which alterations are believed to not only reflect AD-related neuropathology but also cognitive impairment. In this review, we summarize the applications and key findings of MRI techniques in the context of both AD subjects and AD transgenic mouse models. Furthermore, the possible mechanisms of relaxation time alterations in AD will be discussed. Future studies could focus on relaxation time alterations in the early stage of AD, and longitudinal studies are needed to further explore relaxation time alterations during disease progression.
Collapse
Affiliation(s)
- Xiang Tang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Feng Cai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Dong-Xue Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Lu-Lu Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Xiu-Ying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China.
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
10
|
Kuno H, Jara H, Buch K, Qureshi MM, Chapman MN, Sakai O. Global and Regional Brain Assessment with Quantitative MR Imaging in Patients with Prior Exposure to Linear Gadolinium-based Contrast Agents. Radiology 2017; 283:195-204. [DOI: 10.1148/radiol.2016160674] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hirofumi Kuno
- From the Departments of Radiology (H.K., H.J., K.B., M.M.Q., M.N.C., O.S.), Radiation Oncology (M.M.Q., O.S.), and Otolaryngology—Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA 02118
| | - Hernán Jara
- From the Departments of Radiology (H.K., H.J., K.B., M.M.Q., M.N.C., O.S.), Radiation Oncology (M.M.Q., O.S.), and Otolaryngology—Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA 02118
| | - Karen Buch
- From the Departments of Radiology (H.K., H.J., K.B., M.M.Q., M.N.C., O.S.), Radiation Oncology (M.M.Q., O.S.), and Otolaryngology—Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA 02118
| | - Muhammad Mustafa Qureshi
- From the Departments of Radiology (H.K., H.J., K.B., M.M.Q., M.N.C., O.S.), Radiation Oncology (M.M.Q., O.S.), and Otolaryngology—Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA 02118
| | - Margaret N. Chapman
- From the Departments of Radiology (H.K., H.J., K.B., M.M.Q., M.N.C., O.S.), Radiation Oncology (M.M.Q., O.S.), and Otolaryngology—Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA 02118
| | - Osamu Sakai
- From the Departments of Radiology (H.K., H.J., K.B., M.M.Q., M.N.C., O.S.), Radiation Oncology (M.M.Q., O.S.), and Otolaryngology—Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Ave, Boston, MA 02118
| |
Collapse
|
11
|
Okubo G, Okada T, Yamamoto A, Fushimi Y, Okada T, Murata K, Togashi K. Relationship between aging and T
1
relaxation time in deep gray matter: A voxel-based analysis. J Magn Reson Imaging 2017; 46:724-731. [DOI: 10.1002/jmri.25590] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gosuke Okubo
- Department of Diagnostic Imaging and Nuclear Medicine; Kyoto University Graduate School of Medicine; Kyoto Kyoto Japan
| | - Tomohisa Okada
- Department of Diagnostic Imaging and Nuclear Medicine; Kyoto University Graduate School of Medicine; Kyoto Kyoto Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine; Kyoto University Graduate School of Medicine; Kyoto Kyoto Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine; Kyoto University Graduate School of Medicine; Kyoto Kyoto Japan
| | - Tsutomu Okada
- Department of Diagnostic Imaging and Nuclear Medicine; Kyoto University Graduate School of Medicine; Kyoto Kyoto Japan
| | | | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine; Kyoto University Graduate School of Medicine; Kyoto Kyoto Japan
| |
Collapse
|
12
|
Jara H, Mian A, Sakai O, Anderson SW, Horn MJ, Norbash AM, Soto JA. Normal saline as a natural intravascular contrast agent for dynamic perfusion-weighted MRI of the brain: Proof of concept at 1.5T. J Magn Reson Imaging 2016; 44:1580-1591. [PMID: 27122183 DOI: 10.1002/jmri.25291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/05/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Gadolinium-based contrast agents have associated risks. Normal saline (NS) is a nontoxic sodium chloride water solution that can significantly increase the magnetic resonance imaging (MRI) relaxation times of blood via transient hemodilution (THD). The purpose of this pilot study was to test in vivo in the head the potential of normal saline as a safer, exogenous perfusion contrast agent. MATERIALS AND METHODS This Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study was approved by the local Institutional Review Board (IRB): 12 patients were scanned with T1 -weighted inversion recovery turbo spin echo pulse sequence at 1.5T. The dynamic inversion recovery pulse sequence was run before, during, and after the NS injection for up to 5 minutes: 100 ml of NS was power-injected via antecubital veins at 3-4 ml/s. Images were processed to map maximum enhancement area-under-the-curve, time-to-peak, and mean-transit-time. These maps were used to identify the areas showing significant NS injection-related signal and to generate enhancement time curves. Hardware and pulse sequence stability were studied via phantom experimentation. Main features of the time curves were tested against theoretical modeling of THD signal effects using inversion recovery pulse sequences. Pearson correlation coefficient (R) mapping was used to differentiate genuine THD effects from motion confounders and noise. RESULTS The scans of 8 out of 12 patients showed NS injection-related effects that correlate in magnitude with tissue type (gray matter ∼15% and white matter ∼3%). Motion artifacts prevented ascertaining NS signal effects in the remaining four patients. Positive and negative time curves were observed in vivo and this dual THD signal polarity was also observed in the theoretical simulations. R-histograms that were approximately constant in the range 0.1 < |R| < 0.8 and leading to correlation fractions of Fcorr (|R| > 0.5) = 0.45 and 0.59 were found to represent scans with genuine THD signal effects. CONCLUSION A measurable perfusion effect in brain tissue was demonstrated in vivo using NS as an injectable intravascular contrast agent. J. Magn. Reson. Imaging 2016;44:1580-1591.
Collapse
Affiliation(s)
- Hernán Jara
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Asim Mian
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Osamu Sakai
- Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Mitchel J Horn
- Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Jorge A Soto
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Eylers VV, Maudsley AA, Bronzlik P, Dellani PR, Lanfermann H, Ding XQ. Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging. AJNR Am J Neuroradiol 2015; 37:447-54. [PMID: 26564440 DOI: 10.3174/ajnr.a4557] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/26/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. MATERIALS AND METHODS Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. RESULTS Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. CONCLUSIONS The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients.
Collapse
Affiliation(s)
- V V Eylers
- From the Institute of Diagnostic and Interventional Neuroradiology (V.V.E., P.B., P.R.D., H.L., X.-Q.D.), Hannover Medical School, Hannover, Germany
| | - A A Maudsley
- Department of Radiology (A.A.M.), University of Miami School of Medicine, Miami, Florida
| | - P Bronzlik
- From the Institute of Diagnostic and Interventional Neuroradiology (V.V.E., P.B., P.R.D., H.L., X.-Q.D.), Hannover Medical School, Hannover, Germany
| | - P R Dellani
- From the Institute of Diagnostic and Interventional Neuroradiology (V.V.E., P.B., P.R.D., H.L., X.-Q.D.), Hannover Medical School, Hannover, Germany
| | - H Lanfermann
- From the Institute of Diagnostic and Interventional Neuroradiology (V.V.E., P.B., P.R.D., H.L., X.-Q.D.), Hannover Medical School, Hannover, Germany
| | - X-Q Ding
- From the Institute of Diagnostic and Interventional Neuroradiology (V.V.E., P.B., P.R.D., H.L., X.-Q.D.), Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Misaki M, Savitz J, Zotev V, Phillips R, Yuan H, Young KD, Drevets WC, Bodurka J. Contrast enhancement by combining T1- and T2-weighted structural brain MR Images. Magn Reson Med 2014; 74:1609-20. [PMID: 25533337 DOI: 10.1002/mrm.25560] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE In order to more precisely differentiate cerebral structures in neuroimaging studies, a novel technique for enhancing the tissue contrast based on a combination of T1-weighted (T1w) and T2-weighted (T2w) MRI images was developed. METHODS The combined image (CI) was calculated as CI = (T1w - sT2w)/(T1w + sT2w), where sT2w is the scaled T2-weighted image. The scaling factor was calculated to adjust the gray- matter (GM) voxel intensities in the T2w image so that their median value equaled that of the GM voxel intensities in the T1w image. The image intensity homogeneity within a tissue and the discriminability between tissues in the CI versus the separate T1w and T2w images were evaluated using the segmentation by the FMRIB Software Library (FSL) and FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital, Boston, MA) software. RESULTS The combined image significantly improved homogeneity in the white matter (WM) and GM compared to the T1w images alone. The discriminability between WM and GM also improved significantly by applying the CI approach. Significant enhancements to the homogeneity and discriminability also were achieved in most subcortical nuclei tested, with the exception of the amygdala and the thalamus. CONCLUSION The tissue discriminability enhancement offered by the CI potentially enables more accurate neuromorphometric analyses of brain structures.
Collapse
Affiliation(s)
- Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,Faculty of Community Medicine, University of Tulsa, Tulsa, Oklahoma, USA
| | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | - Han Yuan
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,Janssen Pharmaceuticals, LCC, of Johnson & Johnson, Inc., Titusville, New Jersey, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,College of Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| |
Collapse
|
15
|
Guo LF, Geng J, Qiu MH, Mao CH, Liu C, Cui L. Quantification of Phase Values of Cerebral Microbleeds in Hypertensive Patients Using ESWAN MRI. Clin Neuroradiol 2013; 23:197-205. [PMID: 23334227 DOI: 10.1007/s00062-012-0196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE The presence of cerebral microbleeds (CMBs) may have predictive and diagnostic value for cerebrovascular diseases. The purpose of our study was to measure the phase values (PVs) of CMBs by phase maps. METHODS We retrospectively analyzed 75 patients with hypertension who had CMBs using enhanced T2*-weighted angiography (ESWAN). The PVs of CMBs were measured and documented. The mean PVs of CMBs were correlated with demographic features and the grade of white matter lesions for seven brain regions. RESULTS A total of 275 CMBs were found. Their mean PV was - 1.39 ± 0.29 radians. The mean PV of CMBs in seven brain regions was significantly lower than that of red nucleus and substantia nigra of healthy controls (P < .05). The mean PV of CMBs in the basal ganglia gray matter was significantly lower than that of the brainstem, subcortical white matter, and cerebellum (P < 0.05). In subcortical white matter, the PVs were significantly lower in patients with hypertension < 10 years than for those patients with hypertension ≥ 10 years (P < 0.05). In basal ganglia gray matter, the PVs were significantly lower in men than in women (P < 0.05). There was no significant correlation between the PVs of CMBs and the demographic features addressed or the grade of white matter lesions. CONCLUSIONS Measurement of the PV of phase maps using ESWAN sequence provides quantitative information for detection of CMBs. The measurement data reported herein will provide a reference for a longitudinal study of CMBs in the future.
Collapse
Affiliation(s)
- L F Guo
- Shandong Medical Imaging Research Institute, Shandong University, Jing-wu Road No. 324, 250021, Jinan, Shandong, P.R. China,
| | | | | | | | | | | |
Collapse
|
16
|
Daugherty A, Raz N. Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis. Neuroimage 2012; 70:113-21. [PMID: 23277110 DOI: 10.1016/j.neuroimage.2012.12.040] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/03/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023] Open
Abstract
Accumulation of non-heme iron in the brain has been proposed as a biomarker of the progressive neuroanatomical and cognitive declines in healthy adult aging. Postmortem studies indicate that iron content and lifespan differences therein are regionally specific, with a predilection for the basal ganglia. However, the reported in vivo estimates of adult age differences in iron content within subcortical nuclei are highly variable. We present a meta-analysis of 20 in vivo magnetic resonance imaging (MRI) studies that estimated iron content in the caudate nucleus, globus pallidus, putamen, red nucleus, and substantia nigra. The results of the analyses support a robust association between advanced age and high iron content in the substantia nigra and striatum, with a smaller effect noted in the globus pallidus. The magnitude of age differences in estimated iron content of the caudate nucleus and putamen partially depended on the method of estimation, but not on the type of design (continuous age vs. extreme age groups).
Collapse
Affiliation(s)
- Ana Daugherty
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
17
|
Antharam V, Collingwood JF, Bullivant JP, Davidson MR, Chandra S, Mikhaylova A, Finnegan ME, Batich C, Forder JR, Dobson J. High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease: quantitative imaging and correlation with iron. Neuroimage 2012; 59:1249-60. [PMID: 21867761 PMCID: PMC3690369 DOI: 10.1016/j.neuroimage.2011.08.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 11/21/2022] Open
Abstract
We report R(2) and R(2) in human hippocampus from five unfixed post-mortem Alzheimer's disease (AD) and three age-matched control cases. Formalin-fixed tissues from opposing hemispheres in a matched AD and control were included for comparison. Imaging was performed in a 600MHz (14T) vertical bore magnet at MR microscopy resolution to obtain R(2) and R(2) (62 μm×62 μm in-plane, 80 μm slice thickness), and R(1) at 250 μm isotropic resolution. R(1), R(2) and R(2) maps were computed for individual slices in each case, and used to compare subfields between AD and controls. The magnitudes of R(2) and R(2) changed very little between AD and control, but their variances in the Cornu Ammonis and dentate gyrus were significantly higher in AD compared for controls (p<0.001). To investigate the relationship between tissue iron and MRI parameters, each tissue block was cryosectioned at 30 μm in the imaging plane, and iron distribution was mapped using synchrotron microfocus X-ray fluorescence spectroscopy. A positive correlation of R(2) and R(2)* with iron was demonstrated. While studies with fixed tissues are more straightforward to conduct, fixation can alter iron status in tissues, making measurement of unfixed tissue relevant. To our knowledge, these data represent an advance in quantitative imaging of hippocampal subfields in unfixed tissue, and the methods facilitate direct analysis of the relationship between MRI parameters and iron. The significantly increased variance in AD compared for controls warrants investigation at lower fields and in-vivo, to determine if this parameter is clinically relevant.
Collapse
Affiliation(s)
- Vijay Antharam
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qin Y, Zhu W, Zhan C, Zhao L, Wang J, Tian Q, Wang W. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2′ mapping. ACTA ACUST UNITED AC 2011; 31:578. [DOI: 10.1007/s11596-011-0493-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Indexed: 12/13/2022]
|
19
|
Walimuni IS, Hasan KM. Atlas-based investigation of human brain tissue microstructural spatial heterogeneity and interplay between transverse relaxation time and radial diffusivity. Neuroimage 2011; 57:1402-10. [PMID: 21658457 DOI: 10.1016/j.neuroimage.2011.05.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 05/16/2011] [Accepted: 05/21/2011] [Indexed: 01/05/2023] Open
Abstract
Microstructural metrics obtained using magnetic resonance imaging (MRI) such as transverse relaxation time and radial diffusivity have been used as in vivo markers of human brain tissue integrity. Considering the sensitivity of these parameters to some common biophysical contributors and their structural and spatial heterogeneity, we hypothesized that strong inter and intra-regional associations exist between these variables providing evidence to possible interplay between transverse relaxation time and radial diffusivity. To validate our hypothesis we obtained high resolution anatomical T1-weighted data and fused it with T2-relaxometry and diffusion tensor imaging (DTI) data on a cohort of healthy adults. The anatomical data were parcellated using FreeSurfer and then coaligned and fused with the T2 and DTI maps. Our data reveal some association between transverse relaxation and radial diffusivity that may help toward the interpretation and modeling of the biophysical contributors to the measured MRI metrics.
Collapse
Affiliation(s)
- Indika S Walimuni
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston-Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
20
|
Whole brain quantitative T2 MRI across multiple scanners with dual echo FSE: applications to AD, MCI, and normal aging. Neuroimage 2010; 52:508-14. [PMID: 20441797 DOI: 10.1016/j.neuroimage.2010.04.255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/22/2022] Open
Abstract
The ability to pool data from multiple MRI scanners is becoming increasingly important with the influx in multi-site research studies. Fast spin echo (FSE) dual spin echo sequences are often chosen for such studies based principally on their short acquisition time and the clinically useful contrasts they provide for assessing gross pathology. The practicality of measuring FSE-T2 relaxation properties has rarely been assessed. Here, FSE-T2 relaxation properties are examined across the three main scanner vendors (General Electric (GE), Philips, and Siemens). The American College of Radiology (ACR) phantom was scanned on four 1.5T platforms (two GE, one Philips, and one Siemens) to determine if the dual echo pulse sequence is susceptible to vendor-based variance. In addition, data from 85 subjects spanning the spectrum of normal aging, mild cognitive impairment (MCI), and Alzheimer's disease (AD) was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to affirm the presence of any phantom based between vendor variance and determine the relationship between this variance and disease. FSE-T2 relaxation properties, including peak FSE-T2 and histogram width, were calculated for each phantom and human subject. Direct correspondence was found between the phantom and human subject data. Peak FSE-T2 of Siemens scanners was consistently at least 20ms prolonged compared to GE and Philips. Siemens scanners showed broader FSE-T2 histograms than the other scanners. Greater variance was observed across GE scanners than either Philips or Siemens. FSE-T2 differences were much greater with scanner vendor than between diagnostic groups, as no significant changes in peak FSE-T2 or histogram width between normal aged, MCI, and AD subject groups were observed. These results indicate that whole brain histogram measures are not sensitive enough to detect FSE-T2 changes between normal aging, MCI, and AD and that FSE-T2 is highly variable across scanner vendors.
Collapse
|
21
|
McAuley G, Schrag M, Sipos P, Sun SW, Obenaus A, Neelavalli J, Haacke EM, Holshouser B, Madácsi R, Kirsch W. Quantification of punctate iron sources using magnetic resonance phase. Magn Reson Med 2010; 63:106-15. [PMID: 19953510 DOI: 10.1002/mrm.22185] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Iron-mediated tissue damage is present in cerebrovascular and neurodegenerative diseases and neurotrauma. Brain microbleeds are often present in these maladies and are assuming increasing clinical importance. Because brain microbleeds present a source of pathologic iron to the brain, the noninvasive quantification of this iron pool is potentially valuable. Past efforts to quantify brain iron have focused on content estimation within distributed brain regions. In addition, conventional approaches using "magnitude" images have met significant limitations. In this study, a technique is presented to quantify the iron content of punctate samples using phase images. Samples are modeled as magnetic dipoles and phase shifts due to local dipole field perturbations are mathematically related to sample iron content and radius using easily recognized geometric features in phase images. Phantoms containing samples of a chitosan-ferric oxyhydroxide composite (which serves as a mimic for hemosiderin) were scanned with a susceptibility-weighted imaging sequence at 11.7 T. Plots relating sample iron content and radius to phase image features were compared to theoretical predictions. The primary result is the validation of the technique by the excellent agreement between theory and the iron content plot. This research is a potential first step toward quantification of punctate brain iron sources such as brain microbleeds.
Collapse
Affiliation(s)
- Grant McAuley
- Neurosurgery Center for Research, Training and Education, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saito N, Sakai O, Ozonoff A, Jara H. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns. Magn Reson Imaging 2009; 27:895-906. [PMID: 19520539 DOI: 10.1016/j.mri.2009.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/23/2009] [Accepted: 05/06/2009] [Indexed: 11/17/2022]
Abstract
The objective of this study was to determine the T1, T2 and secular-T2 relaxo-volumetric brain aging patterns using multispectral quantitative magnetic resonance imaging, both globally and regionally, and covering an age range approaching the full human lifespan. Fifty-one subjects (28 males, 23 females; age range: 0.5-87 years) were studied consisting of 18 healthy volunteers and 33 patients. Patients were selected after carefully reviewing their radiology reports to have either normal-by-MRI findings (25 patient subjects) or small focal pathology less than 6 mm in size (eight patient subjects). All subjects were MR imaged at 1.5 T with the mixed turbo spin echo pulse sequence. The soft tissues inside the cranial vault, termed intracranial matter (ICM), were segmented using a dual-clustering segmentation algorithm. ICM segments were further divided into six subsegments: bilateral anterior cerebral, posterior cerebral and cerebellar subsegments. T1, T2 and secular-T2 relaxation time histograms of all segments were generated and modeled with Gaussian functions. For each segment, the volumes of white matter, gray matter and cerebrospinal fluid were calculated from the T1 histograms. The age-related tendencies of three quantitative MRI parameters (T1, T2 and secular-T2) and the fractional tissue volumes showed four distinct periods of life, specifically a maturation period (0-2 years), a development period (2-20 years), an adulthood period (20-60 years) and a senescence period (60 years and older). For all ages, the anterior cerebral subsegment exhibited consistently longer gray matter T1s and shorter white matter T1s than the posterior cerebral and cerebellar subsegments. Volumetric age-related changes of the cerebellar subsegment were more gradual than in the cerebral subsegments. This study shows that relaxometric and volumetric age-related changes are synchronized and define the same four periods of brain evolution both globally and regionally.
Collapse
Affiliation(s)
- Naoko Saito
- Department of Radiology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
23
|
Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study. Neuroimage 2009; 47:1545-57. [PMID: 19501655 DOI: 10.1016/j.neuroimage.2009.05.084] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/21/2009] [Accepted: 05/26/2009] [Indexed: 11/21/2022] Open
Abstract
MRI-based estimates of cerebral morphometric properties, e.g. cortical thickness, are pivotal to studies of normal and pathological brain changes. These measures are based on automated or manual segmentation procedures, which utilize the tissue contrast between gray and white matter on T(1)-weighted MR images. Tissue contrast is unlikely to remain a constant property across groups of different age and health. An important question is therefore how the sensitivity of cortical thickness estimates is influenced by variability in WM/GM contrast. The effect of adjusting for variability in WM/GM contrast on age sensitivity of cortical thickness was tested in 1189 healthy subjects from six different samples, enabling evaluation of consistency of effects within and between sites and scanners. Further, the influence of Alzheimer's disease (AD) diagnosis on cortical thickness with and without correction for contrast was tested in an additional sample of 96 patients. In healthy controls, regional increases in the sensitivity of the cortical thickness measure to age were found after correcting for contrast. Across samples, the strongest effects were observed in frontal, lateral temporal and parietal areas. Controlling for contrast variability also increased the cortical thickness estimates' sensitivity to AD, thus replicating the finding in an independent clinical sample. The results showed increased sensitivity of cortical estimates to AD in areas earlier reported to be compromised in AD, including medial temporal, inferior and superior parietal regions. In sum, the findings indicate that adjusting for contrast can increase the sensitivity of MR morphometry to variables of interest.
Collapse
|