1
|
Pecchiari M, Pontikis K, Alevrakis E, Vasileiadis I, Kompoti M, Koutsoukou A. Cardiovascular Responses During Sepsis. Compr Physiol 2021; 11:1605-1652. [PMID: 33792902 DOI: 10.1002/cphy.c190044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605-1652, 2021.
Collapse
Affiliation(s)
- Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Emmanouil Alevrakis
- 4th Department of Pulmonary Medicine, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Ioannis Vasileiadis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Maria Kompoti
- Intensive Care Unit, Thriassio General Hospital of Eleusis, Magoula, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| |
Collapse
|
2
|
Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. Eur Respir J 2020; 56:13993003.01298-2019. [PMID: 32299854 DOI: 10.1183/13993003.01298-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a key feature in the pathogenesis of sepsis and acute respiratory distress syndrome (ARDS). Sepsis and ARDS continue to be associated with high mortality. A key contributory factor is the rudimentary understanding of the early events in pulmonary and systemic inflammation in humans, which are difficult to study in clinical practice, as they precede the patient's presentation to medical services. Lipopolysaccharide (LPS), a constituent of the outer membrane of Gram-negative bacteria, is a trigger of inflammation and the dysregulated host response in sepsis. Human LPS models deliver a small quantity of LPS to healthy volunteers, triggering an inflammatory response and providing a window to study early inflammation in humans. This allows biological/mechanistic insights to be made and new therapeutic strategies to be tested in a controlled, reproducible environment from a defined point in time. We review the use of human LPS models, focussing on the underlying mechanistic insights that have been gained by studying the response to intravenous and pulmonary LPS challenge. We discuss variables that may influence the response to LPS before considering factors that should be considered when designing future human LPS studies.
Collapse
Affiliation(s)
- Daniel Brooks
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Barr
- Dept of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel F McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Anthony J Rostron
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Experimental human endotoxemia as a model of systemic inflammation. Biochimie 2018; 159:99-106. [PMID: 29936295 DOI: 10.1016/j.biochi.2018.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
Systemic inflammation plays a pivotal role in a multitude of conditions, including sepsis, trauma, major surgery and burns. However, comprehensive analysis of the pathophysiology underlying this systemic inflammatory response is greatly complicated by variations in the immune response observed in critically ill patients, which is a result of inter-individual differences in comorbidity, comedication, source of infection, causative pathogen, and onset of the inflammatory response. During experimental human endotoxemia, human subjects are challenged with purified endotoxin (lipopolysaccharide) intravenously which induces a short-lived, well-tolerated and controlled systemic inflammatory response, similar to that observed during sepsis. The human endotoxemia model can be conducted in a highly standardized and reproducible manner, using a carefully selected homogenous study population. As such, the experimental human endotoxemia model does not share the aforementioned clinical limitations and enables us to investigate both the mechanisms of systemic inflammation, as well as to evaluate novel (pharmacological) interventions in humans in vivo. The present review provides a detailed overview of the various designs, organ-specific changes, and strengths and limitations of the experimental human endotoxemia model, with the main focus on its use as a translational model for sepsis research.
Collapse
|
4
|
Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care 2014; 29:500-11. [DOI: 10.1016/j.jcrc.2014.03.028] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 12/28/2022]
|
5
|
Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, Huertos-Ranchal MJ. Sepsis-induced cardiomyopathy. Curr Cardiol Rev 2013; 7:163-83. [PMID: 22758615 PMCID: PMC3263481 DOI: 10.2174/157340311798220494] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 01/20/2023] Open
Abstract
Myocardial dysfunction is one of the main predictors of poor outcome in septic patients, with mortality rates next to 70%. During the sepsis-induced myocardial dysfunction, both ventricles can dilate and diminish its ejection fraction, having less response to fluid resuscitation and catecholamines, but typically is assumed to be reversible within 7-10 days. In the last 30 years, It´s being subject of substantial research; however no explanation of its etiopathogenesis or effective treatment have been proved yet. The aim of this manuscript is to review on the most relevant aspects of the sepsis-induced myocardial dysfunction, discuss its clinical presentation, pathophysiology, etiopathogenesis, diagnostic tools and therapeutic strategies proposed in recent years.
Collapse
Affiliation(s)
- Francisco J Romero-Bermejo
- Intensive Care Unit, Critical Care and Emergency Department, Puerto Real University Hospital, Cadiz, Spain.
| | | | | | | |
Collapse
|
6
|
Hochstadt A, Meroz Y, Landesberg G. Myocardial dysfunction in severe sepsis and septic shock: more questions than answers? J Cardiothorac Vasc Anesth 2011; 25:526-35. [PMID: 21296000 DOI: 10.1053/j.jvca.2010.11.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Aviram Hochstadt
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
7
|
Jianhui L, Rosenblatt-Velin N, Loukili N, Pacher P, Feihl F, Waeber B, Liaudet L. Endotoxin impairs cardiac hemodynamics by affecting loading conditions but not by reducing cardiac inotropism. Am J Physiol Heart Circ Physiol 2010; 299:H492-501. [PMID: 20525873 PMCID: PMC2930391 DOI: 10.1152/ajpheart.01135.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/03/2010] [Indexed: 12/25/2022]
Abstract
Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.
Collapse
Affiliation(s)
- Li Jianhui
- Department of Intensive Care Medicine, and
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China; and
| | - Nathalie Rosenblatt-Velin
- Division of Clinical Pathophysiology, University Hospital Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | | | - Pal Pacher
- Laboratory of Physiologic Studies, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - François Feihl
- Division of Clinical Pathophysiology, University Hospital Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Bernard Waeber
- Division of Clinical Pathophysiology, University Hospital Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lucas Liaudet
- Department of Intensive Care Medicine, and
- Division of Clinical Pathophysiology, University Hospital Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| |
Collapse
|
8
|
Remick DG. What's new in Shock, April 2006? Shock 2006; 25:319-20. [PMID: 16670631 DOI: 10.1097/01.shk.0000223843.86511.6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Daniel G Remick
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|