1
|
Marzhoseyni Z, Mousavi MJ, Saffari M, Ghotloo S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023; 163:156135. [PMID: 36724716 DOI: 10.1016/j.cyto.2023.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The infection caused by P. aeruginosa still is dangerous throughout the world. This is partly due to its immune escape mechanisms considerably increasing the bacterial survival in the host. By escape from recognition by TLRs, interference with complement system activation, phagocytosis inhibition, production of ROS, inhibition of NET production, interference with the generation of cytokines, inflammasome inhibition, reduced antigen presentation, interference with cellular and humoral immunity, and induction of apoptotic cell death and MDSc, P. aeruginosa breaks down the barriers of the immune system and causes lethal infections in the host. Recognition of other immune escape mechanisms of P. aeruginosa may provide a basis for the future treatment of the infection. This manuscript may provide new insights and information for the development of new strategies to combat P. aeruginosa infection. In the present manuscript, the escape mechanisms of P. aeruginosa against immune response would be reviewed.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Mohammed A, Alghetaa HK, Zhou J, Chatterjee S, Nagarkatti P, Nagarkatti M. Protective effects of Δ 9 -tetrahydrocannabinol against enterotoxin-induced acute respiratory distress syndrome are mediated by modulation of microbiota. Br J Pharmacol 2020; 177:5078-5095. [PMID: 32754917 PMCID: PMC7436585 DOI: 10.1111/bph.15226] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Staphylococcal enterotoxin‐B (SEB) is one of the most potent bacterial superantigens that exerts profound toxic effects by inducing a cytokine storm. Inhaled SEB can cause acute respiratory distress syndrome (ARDS), which is often fatal and with no effective treatments. Experimental Approach Efficacy of Δ9‐tetrahydrocannabinol (THC) was tested in a mouse model of SEB‐mediated ARDS, in which lung inflammation, alterations in gut/lung microbiota and production of short‐chain fatty acids (SCFAs) was measured. Gene dysregulation of lung epithelial cells was studied by transcriptome arrays. Faecal microbiota transplantation (FMT) was performed to confirm the role of microbiota in suppressing ARDS. Key Results While SEB triggered ARDS and 100% mortality in mice, THC protected the mice from fatality. Pyrosequencing analysis revealed that THC caused significant and similar alterations in microbiota in the lungs and gut of mice exposed to SEB. THC significantly increased the abundance of beneficial bacterial species, Ruminococcus gnavus, but decreased pathogenic microbiota, Akkermansia muciniphila. FMT confirmed that THC‐mediated reversal of microbial dysbiosis played crucial role in attenuation of SEB‐mediated ARDS. THC treatment caused an increase in SCFA, of which propionic acid was found to inhibit the inflammatory response. Transcriptome array showed that THC up‐regulated several genes like lysozyme1 and lysozyme2, β‐defensin‐2, claudin, zonula‐1, occludin‐1, Mucin2 and Muc5b while down‐regulating β‐defensin‐1. Conclusion and Implications The study demonstrates for the first time that THC attenuates SEB‐mediated ARDS and toxicity by altering the microbiota in the lungs and the gut as well as promoting antimicrobial and anti‐inflammatory pathways.
Collapse
Affiliation(s)
- Amira Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Hasan K Alghetaa
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Juhua Zhou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Pathological Role and Diagnostic Value of Endogenous Host Defense Peptides in Adult and Neonatal Sepsis: A Systematic Review. Shock 2018; 47:673-679. [PMID: 27941592 DOI: 10.1097/shk.0000000000000815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sepsis is a systemic host response to an infection leading to organ failure. This is associated with dynamic expression of endogenous host defense peptides. Dysregulation of these peptides is associated with septic morbidity and mortality. METHODS We performed a systematic search of articles indexed in PubMed, ISI Web of Knowledge, EmBase, and Scopus database from inception to October 2016. Both preclinical and clinical studies investigating the role of host defense peptides in pathogenesis and as biomarkers for sepsis were included. RESULTS Of the available literature, cathelicidin, defensin, and hepcidin are among the best-characterized peptides. These regulate immune response, and crosstalk with pyroptosis and coagulation cascades. The applicability of these peptides as septic biomarkers has been investigated in vitro and in vivo studies. However, numerous studies were based on endotoxemia without an infection, jeopardizing interpretation of the outcomes. Cathelicidin and defensin were frequently reported in adult sepsis while hepcidin in neonatal sepsis. The expression level of these peptides is significantly associated with septic condition. Most of the studies employed a cross-sectional design, precluding the establishment of a temporal relationship between candidate peptide biomarkers and sepsis. CONCLUSIONS Innate defense peptides have been insufficiently evaluated as either diagnostic or prognostic biomarkers. In the future, evaluation of host defense peptides as septic biomarkers may employ a longitudinal design and consider a panel of multiple peptides.
Collapse
|
4
|
Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol 2018; 11:21-34. [PMID: 28812547 PMCID: PMC5738267 DOI: 10.1038/mi.2017.71] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Lung epithelial cells are increasingly recognized to be active effectors of microbial defense, contributing to both innate and adaptive immune function in the lower respiratory tract. As immune sentinels, lung epithelial cells detect diverse pathogens through an ample repertoire of membrane-bound, endosomal, and cytosolic pattern-recognition receptors (PRRs). The highly plastic epithelial barrier responds to detected threats via modulation of paracellular flux, intercellular communications, mucin production, and periciliary fluid composition. Epithelial PRR stimulation also induces production of cytokines that recruit and sculpt leukocyte-mediated responses, and promotes epithelial generation of antimicrobial effector molecules that are directly microbicidal. The epithelium can alternately enhance tolerance to pathogens, preventing tissue damage through PRR-induced inhibitory signals, opsonization of pathogen-associated molecular patterns, and attenuation of injurious leukocyte responses. The inducibility of these protective responses has prompted attempts to therapeutically harness epithelial defense mechanisms to protect against pneumonias. Recent reports describe successful strategies for manipulation of epithelial defenses to protect against a wide range of respiratory pathogens. The lung epithelium is capable of both significant antimicrobial responses that reduce pathogen burdens and tolerance mechanisms that attenuate immunopathology. This manuscript reviews inducible lung epithelial defense mechanisms that offer opportunities for therapeutic manipulation to protect vulnerable populations against pneumonia.
Collapse
Affiliation(s)
- Miguel M. Leiva-Juárez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
5
|
Guillon A, Brea D, Morello E, Tang A, Jouan Y, Ramphal R, Korkmaz B, Perez-Cruz M, Trottein F, O'Callaghan RJ, Gosset P, Si-Tahar M. Pseudomonas aeruginosa proteolytically alters the interleukin 22-dependent lung mucosal defense. Virulence 2017; 8:810-820. [PMID: 27792459 PMCID: PMC5626239 DOI: 10.1080/21505594.2016.1253658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022] Open
Abstract
The IL-22 signaling pathway is critical for regulating mucosal defense and limiting bacterial dissemination. IL-22 is unusual among interleukins because it does not directly regulate the function of conventional immune cells, but instead targets cells at outer body barriers, such as respiratory epithelial cells. Consequently, IL-22 signaling participates in the maintenance of the lung mucosal barrier by controlling cell proliferation and tissue repair, and enhancing the production of specific chemokines and anti-microbial peptides. Pseudomonas aeruginosa is a major pathogen of ventilator-associated pneumonia and causes considerable lung tissue damage. A feature underlying the pathogenicity of this bacterium is its capacity to persist and develop in the host, particularly in the clinical context of nosocomial lung infections. We aimed to investigate the ability of P. auruginosa to disrupt immune-epithelial cells cross-talk. We found that P. aeruginosa escapes the host mucosal defenses by degrading IL-22, leading to severe inhibition of IL-22-mediated immune responses. We demonstrated in vitro that, protease IV, a type 2 secretion system-dependent serine protease, is responsible for the degradation of IL-22 by P. aeruginosa. Moreover, the major anti-proteases molecules present in the lungs were unable to inhibit protease IV enzymatic activity. In addition, tracheal aspirates of patients infected by P. aeruginosa contain protease IV activity which further results in IL-22 degradation. This so far undescribed cleavage of IL-22 by a bacterial protease is likely to be an immune-evasion strategy that contributes to P. aeruginosa-triggered respiratory infections.
Collapse
Affiliation(s)
- Antoine Guillon
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Deborah Brea
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Eric Morello
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Aihua Tang
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Youenn Jouan
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Reuben Ramphal
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Brice Korkmaz
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
| | - Magdiel Perez-Cruz
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Francois Trottein
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Richard J. O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Philippe Gosset
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| |
Collapse
|
6
|
Miller LA. The best defense is a good (Protease) offense: How Pseudomonas aeruginosa evades mucosal immunity in the lung. Virulence 2017; 8:625-627. [PMID: 28102763 DOI: 10.1080/21505594.2016.1278335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Lisa A Miller
- a Department of Anatomy , Physiology, and Cell Biology, UC Davis School of Veterinary Medicine & California National Primate Research Center , Davis , CA , USA
| |
Collapse
|
7
|
Chen C, Zhao D, Fang S, Chen Q, Cheng B, Fang X, Shu Q. TRIM22-Mediated Apoptosis is Associated with Bak Oligomerization in Monocytes. Sci Rep 2017; 7:39961. [PMID: 28079123 PMCID: PMC5228056 DOI: 10.1038/srep39961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Monocyte apoptosis is a key mechanism that orchestrates host immune responses during sepsis. TRIM22 is constitutively expressed at high levels in monocytes and plays important roles in the antiviral response and inflammation. Overexpression of TRIM22 interferes with the clonogenic growth of monocytic cells, suggesting that TRIM22 may regulate monocyte survival. However, the effect of TRIM22 on monocyte apoptosis remains unknown. In the present report, lipopolysaccharides (LPS)-primed human peripheral blood monocytes expressing higher levels of TRIM22 were more sensitive to apoptosis. This phenomenon was also observed in TRIM22-overexpressing THP-1 monocytes and was associated with the activation of caspase-9 and caspase-3, as well as the increased expression and oligomerization of the pro-apoptotic protein Bak. Similar expression patterns of TRIM22 and Bak were also observed in LPS-primed, apoptotic human peripheral blood monocytes. In addition, the deletion of either the RING domain or the SPRY domain of TRIM22 significantly attenuated TRIM22-mediated monocyte apoptosis and decreased Bak expression and oligomerization. Furthermore, in monocytes from septic patients, TRIM22 levels were down-regulated and positively correlated with Bak levels. Taken together, these results indicate that TRIM22 plays a critical role in monocyte apoptosis by regulating Bak oligomerization and may have a potential function in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Chi Chen
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, School of Medicine, Zhejiang University, and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou 310052, China
| | - DongYan Zhao
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, School of Medicine, Zhejiang University, and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou 310052, China
| | - Shu Fang
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, School of Medicine, Zhejiang University, and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou 310052, China
| | - QiXing Chen
- Clinical Research Center, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - BaoLi Cheng
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - XiangMing Fang
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, School of Medicine, Zhejiang University, and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou 310052, China
| |
Collapse
|
8
|
Cheng X, He S, Yuan J, Miao S, Gao H, Zhang J, Li Y, Peng W, Wu P. Lipoxin A4 attenuates LPS-induced mouse acute lung injury via Nrf2-mediated E-cadherin expression in airway epithelial cells. Free Radic Biol Med 2016; 93:52-66. [PMID: 26845617 DOI: 10.1016/j.freeradbiomed.2016.01.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 01/04/2023]
Abstract
A fundamental element of acute lung injury (ALI) is the inflammation that is part of the body's immune response to a variety of local or systemic stimuli. Lipoxins (LXs) are important endogenous lipids that mediate resolution of inflammation. Previously, we demonstrated that LXA4 reduced the LPS inhalation-induced pulmonary edema, neutrophil infiltration and TNF-α production in mice. With the same model, the current investigation focused on the role of the airway epithelium, a first-line barrier and a prime target of inhaled toxicants. We report that LXA4 strongly inhibited LPS-induced ALI in mice, in part by protecting the airway epithelium and preserving the E-cadherin expression and airway permeability. Using a cryo-imaging assay and fluorescence detection, LXA4 was shown to block LPS-induced ROS generation and preserve mitochondrial redox status both in vivo and in vitro. To further assess whether and how NF-E2-related factor 2 (Nrf2) was involved in the protective effect of LXA4, fluorescence resonance energy transfer (FRET) analysis was employed in human epithelial cell line (16HBE), to determine the relative distance between Nrf2 and its negative regulator or cytosolic inhibitor, Kelch-like ECH-associated protein 1 (Keap1). It provided us the evidence that LXA4 further promoted the dissociation of Nrf2 and Keap1 in LPS-treated 16HBE cells. The results also showed that LXA4 activates Nrf2 by phosphorylating it on Ser40 and triggering its nuclear translocation. Moreover, when the plasmid expression dominant negative mutation of Nrf2 was transfected as an inhibitor of wild-type Nrf2, the protective effect of LXA4 on E-cadherin expression was almost completely blocked. These results provide a new mechanism by which LXA4 inhibits LPS-induced ALI through Nrf2-mediated E-cadherin expression.
Collapse
Affiliation(s)
- Xue Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Songqing He
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin 541001, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Miao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hongyu Gao
- Department of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingnong Zhang
- Department of Emergency, Union Hospital, Huanzhong University of Science and Technology, Wuhan 430022, China
| | - Yang Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Peng
- Heart and Lung Institute of Utah, Murray, UT 84107, United States
| | - Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
9
|
Moon SK, Lim DJ. Intratympanic Gene Delivery of Antimicrobial Molecules in Otitis Media. Curr Allergy Asthma Rep 2015; 15:14. [PMID: 26130474 DOI: 10.1007/s11882-015-0517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Otitis media (OM) in children is clinically important because of its detrimental effects on the development of language and motor coordination and is the most common reason for prescription of antibiotics. A recent bacteriological change in OM pathogens such as emergence of antibiotic resistance and vaccination-mediated pathogenic shift urges us to develop a new non-antibiotic strategy. The middle ear epithelium abundantly secretes a variety of antimicrobial molecules suppressing the viability of the common OM pathogens. Recently, we have demonstrated that the adenoviral vector is able to deliver the β-defensin 2 gene to the middle ear epithelial cells in vitro and in vivo, and adenovirus-mediated overexpression of β-defensin 2 is protective for experimental OM. There are many hurdles limiting successful clinical application of gene delivery to the respiratory epithelium of the tubotympanum; however, intratympanic gene therapy with β-defensin 2 is a promising alternative or adjuvant strategy for the management of OM.
Collapse
Affiliation(s)
- Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, 2100 W. 3rd Street, Los Angeles, CA, 90057, USA,
| | | |
Collapse
|
10
|
Martin L, van Meegern A, Doemming S, Schuerholz T. Antimicrobial Peptides in Human Sepsis. Front Immunol 2015; 6:404. [PMID: 26347737 PMCID: PMC4542572 DOI: 10.3389/fimmu.2015.00404] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1-3 and human beta-defensins (HBDs) 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1-3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1-3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Anne van Meegern
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Sabine Doemming
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| |
Collapse
|
11
|
Guo L, Li S, Zhao Y, Qian P, Ji F, Qian L, Wu X, Qian G. Silencing Angiopoietin-Like Protein 4 (ANGPTL4) Protects Against Lipopolysaccharide-Induced Acute Lung Injury Via Regulating SIRT1 /NF-kB Pathway. J Cell Physiol 2015; 230:2390-402. [PMID: 25727991 DOI: 10.1002/jcp.24969] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Liang Guo
- Institute of Respiratory Disease; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - Shaoying Li
- Institute of Respiratory Disease; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - Yunfeng Zhao
- Department of Respiratory Medicine; Pudong New Area Gongli Hospital; Shanghai China
| | - Pin Qian
- Institute of Field Internal Medicine; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - Fuyun Ji
- Institute of Respiratory Disease; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - Lanlan Qian
- Institute of Respiratory Disease; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - Xueling Wu
- Institute of Respiratory Disease; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - Guisheng Qian
- Institute of Respiratory Disease; Xinqiao Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
12
|
Li Y, Wu XB, Li JG, Lin YJ, Chen HL, Song H, Liu ZH, Peng JS. Enteral supplementation of alanyl–glutamine attenuates the up-regulation of beta-defensin-2 protein in lung injury induced by intestinal ischemia reperfusion in rats. Int J Surg 2014; 12:1181-6. [DOI: 10.1016/j.ijsu.2014.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/27/2014] [Accepted: 08/03/2014] [Indexed: 01/09/2023]
|
13
|
Defensins and sepsis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:180109. [PMID: 25210703 PMCID: PMC4151856 DOI: 10.1155/2014/180109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/08/2014] [Accepted: 06/16/2014] [Indexed: 01/12/2023]
Abstract
Sepsis is a leading cause of mortality and morbidity in the critical illness. Multiple immune inflammatory processes take part in the pathogenesis of sepsis. Defensins are endogenous antimicrobial peptides with three disulphide bonds created by six cysteine residues. Besides the intrinsic microbicidal properties, defensins are active players which modulate both innate and adaptive immunity against various infections. Defensins can recruit neutrophils, enhance phagocytosis, chemoattract T cells and dendritic cells, promote complement activation, and induce IL-1β production and pyrotosis. Previous publications have documented that defensins play important roles in a series of immune inflammatory diseases including sepsis. This review aims to briefly summarize in vitro, in vivo, and genetic studies on defensins' effects as well as corresponding mechanisms within sepsis and highlights their promising findings which may be potential targets in future therapies of sepsis.
Collapse
|
14
|
Chen QX, Song SW, Chen QH, Zeng CL, Zheng X, Wang JL, Fang XM. Silencing airway epithelial cell-derived hepcidin exacerbates sepsis induced acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:470. [PMID: 25096529 PMCID: PMC4243715 DOI: 10.1186/s13054-014-0470-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/22/2014] [Indexed: 02/08/2023]
Abstract
Introduction The production of antimicrobial peptides by airway epithelial cells is an important component of the innate immune response to pulmonary infection and inflammation. Hepcidin is a β-defensin-like antimicrobial peptide and acts as a principal iron regulatory hormone. Hepcidin is mostly produced by hepatocytes, but is also expressed by other cells, such as airway epithelial cells. However, nothing is known about its function in lung infections and inflammatory diseases. We therefore sought to investigate the role of airway epithelial cell-derived hepcidin in sepsis-induced acute lung injury. Methods Acute lung injury was induced by polymicrobial sepsis via cecal ligation and puncture (CLP) surgery. Adenovirus-mediated short hairpin RNA specific for the mouse hepcidin gene hepc1 and control adenovirus were intratracheally injected into mice. The adenovirus-mediated knockdown of hepcidin in airway epithelial cells was evaluated in vivo. Lung injury and the seven-day survival rate were assessed. The levels of hepcidin-related iron export protein ferroportin were measured, and the iron content and function of alveolar macrophages were evaluated. Results The hepcidin level in airway epithelial cells was upregulated during polymicrobial sepsis. The knockdown of airway epithelial cell-derived hepcidin aggravated the polymicrobial sepsis-induced lung injury and pulmonary bacterial infection and increased mortality (53.33% in Ad-shHepc1-treated mice versus 12.5% in Ad-shNeg-treated mice, P <0.05). The knockdown of hepcidin in airway epithelial cells also led to reduced ferroportin degradation and a low intracellular iron content in alveolar macrophages. Moreover, alveolar macrophages form the airway epithelial cell-derived hepcidin knockdown mice showed impaired phagocytic ability than those from the control mice. Conclusions Airway epithelial cell-derived hepcidin plays an important role in CLP-induced acute lung injury. The severe lung injury in the airway epithelial cell-derived hepcidin knockdown mice is at least partially related to the altered intracellular iron level and function of alveolar macrophages.
Collapse
|
15
|
Abstract
Identifying single nucleotide polymorphisms (SNPs) in the genes involved in sepsis may help to clarify the pathophysiology of neonatal sepsis. The aim of this study was to evaluate the relationships between sepsis in pre-term neonates and genes potentially involved in the response to invasion by infectious agents. The study involved 101 pre-term neonates born between June 2008 and May 2012 with a diagnosis of microbiologically confirmed sepsis, 98 pre-term neonates with clinical sepsis and 100 randomly selected, otherwise healthy pre-term neonates born during the study period. During the study, 47 SNPs in 18 candidate genes were genotyped on Guthrie cards using an ABI PRISM 7900 HT Fast real-time and MAssARRAY for nucleic acids instruments. Genotypes CT and TT of rs1143643 (the IL1β gene) and genotype GG of rs2664349GG (the MMP-16 gene) were associated with a significantly increased overall risk of developing sepsis (p = 0.03, p = 0.05 and p = 0.03), whereas genotypes AG of rs4358188 (the BPI gene) and CT of rs1799946 (the DEFβ1 gene) were associated with a significantly reduced risk of developing sepsis (p = 0.05 for both). Among the patients with bacteriologically confirmed sepsis, only genotype GG of rs2664349 (the MMP-16 gene) showed a significant association with an increased risk (p = 0.02). Genotypes GG of rs2569190 (the CD14 gene) and AT of rs4073 (the IL8 gene) were associated with a significantly increased risk of developing severe sepsis (p = 0.05 and p = 0.01). Genotype AG of rs1800629 (the LTA gene) and genotypes CC and CT of rs1341023 (the BPI gene) were associated with a significantly increased risk of developing Gram-negative sepsis (p = 0.04, p = 0.04 and p = 0.03). These results show that genetic variability seems to play a role in sepsis in pre-term neonates by influencing susceptibility to and the severity of the disease, as well as the risk of having disease due to specific pathogens.
Collapse
|
16
|
Supp DM, Neely AN. Cutaneous antimicrobial gene therapy: engineering human skin replacements to combat wound infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.1.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Mear JB, Gosset P, Kipnis E, Faure E, Dessein R, Jawhara S, Fradin C, Faure K, Poulain D, Sendid B, Guery B. Candida albicans airway exposure primes the lung innate immune response against Pseudomonas aeruginosa infection through innate lymphoid cell recruitment and interleukin-22-associated mucosal response. Infect Immun 2014; 82:306-15. [PMID: 24166952 PMCID: PMC3911865 DOI: 10.1128/iai.01085-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/21/2013] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are two pathogens frequently encountered in the intensive care unit microbial community. We have demonstrated that C. albicans airway exposure protected against P. aeruginosa-induced lung injury. The goal of the present study was to characterize the cellular and molecular mechanisms associated with C. albicans-induced protection. Airway exposure by C. albicans led to the recruitment and activation of natural killer cells, innate lymphoid cells (ILCs), macrophages, and dendritic cells. This recruitment was associated with the secretion of interleukin-22 (IL-22), whose neutralization abolished C. albicans-induced protection. We identified, by flow cytometry, ILCs as the only cellular source of IL-22. Depletion of ILCs by anti-CD90.2 antibodies was associated with a decreased IL-22 secretion and impaired survival after P. aeruginosa challenge. Our results demonstrate that the production of IL-22, mainly by ILCs, is a major and inducible step in protection against P. aeruginosa-induced lung injury. This cytokine may represent a clinical target in Pseudomonas aeruginosa-induced lung injury.
Collapse
Affiliation(s)
- Jean Baptiste Mear
- Host-Pathogen Translational Research Group, Faculté de Médecine de Lille UDSL–Université Lille Nord de France, Lille, France
| | - Philippe Gosset
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, Lille, France
- Institut Fédératif de Recherche, Lille, France
| | - Eric Kipnis
- Host-Pathogen Translational Research Group, Faculté de Médecine de Lille UDSL–Université Lille Nord de France, Lille, France
| | - Emmanuel Faure
- Host-Pathogen Translational Research Group, Faculté de Médecine de Lille UDSL–Université Lille Nord de France, Lille, France
| | - Rodrigue Dessein
- Host-Pathogen Translational Research Group, Faculté de Médecine de Lille UDSL–Université Lille Nord de France, Lille, France
| | - Samir Jawhara
- INSERM U995, Regulation of Candida Cell Wall Glycan-Host Interface, Faculté de Médecine de Lille, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Chantal Fradin
- INSERM U995, Regulation of Candida Cell Wall Glycan-Host Interface, Faculté de Médecine de Lille, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Karine Faure
- Host-Pathogen Translational Research Group, Faculté de Médecine de Lille UDSL–Université Lille Nord de France, Lille, France
| | - Daniel Poulain
- INSERM U995, Regulation of Candida Cell Wall Glycan-Host Interface, Faculté de Médecine de Lille, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Boualem Sendid
- INSERM U995, Regulation of Candida Cell Wall Glycan-Host Interface, Faculté de Médecine de Lille, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Benoit Guery
- Host-Pathogen Translational Research Group, Faculté de Médecine de Lille UDSL–Université Lille Nord de France, Lille, France
| |
Collapse
|
18
|
Chen Q, Zhang K, Jin Y, Zhu T, Cheng B, Shu Q, Fang X. Triggering receptor expressed on myeloid cells-2 protects against polymicrobial sepsis by enhancing bacterial clearance. Am J Respir Crit Care Med 2013; 188:201-12. [PMID: 23721075 DOI: 10.1164/rccm.201211-1967oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and monocyte-derived cells. TREM-2 not only functions as a regulator of inflammatory response, but also serves as a phagocytic receptor for bacteria. However, the role of TREM-2 in sepsis remains unknown. OBJECTIVES To investigate whether TREM-2 plays a role in sepsis. METHODS The manner of expression of TREM-2 was evaluated in patients with sepsis and in polymicrobial septic mouse model induced by the cecum ligation and puncture approach. Recombinant mouse TREM-2 was used to block the effect of TREM-2. Bone marrow-derived myeloid cells (BMMCs) that overexpress TREM-2 were administrated into septic mice at various times after cecum ligation and puncture. MEASUREMENTS AND MAIN RESULTS The expression levels of TREM-2 were up-regulated in patients with sepsis and septic mice. The kinetics of TREM-2 expression in polymicrobial sepsis was comparable with that of bacteria burden in peritoneal lavage fluid. Blocking the effect of TREM-2 resulted in markedly increased mortality and bacterial burden in polymicrobial sepsis. Administration of TREM-2-overexpressing BMMCs significantly reduced the mortality, even when it was administered 4 hours after the initiation of sepsis. However, injection of TREM-2-overexpressing BMMCs into LPS-challenged endotoxemia mice did not improve the survival rate. The protective effect of TREM-2 in polymicrobial sepsis was not associated with its antiinflammatory properties, but it enhanced bacterial clearance in vivo. Furthermore, administration of TREM-2-overexpressing BMMCs improved the organ injury. CONCLUSIONS TREM-2 plays an important role in the host defense response to sepsis by enhancing bacterial clearance.
Collapse
Affiliation(s)
- QiXing Chen
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Activation of Triggering Receptor Expressed on Myeloid Cells-1 Protects Monocyte from Apoptosis through Regulation of Myeloid Cell Leukemia-1. Anesthesiology 2013; 118:1140-9. [DOI: 10.1097/aln.0b013e31828744a5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Background:
Triggering receptor expressed on myeloid cells-1 (TREM-1) can amplify the proinflammatory response and may contribute to the pathogenesis of inflammatory disease such as sepsis. However, the role of TREM-1 in monocyte fate and the detailed molecular mechanisms evoked by TREM-1 are unknown.
Methods:
Adenoviruses overexpressing TREM-1 were constructed and transfected into a monocytic cell line. After activation of TREM-1 by agonist antibody with or without lipopolysaccharide, apoptosis was induced and assayed using flow cytometry. The signaling pathways downstream of TREM-1 were illustrated by inhibitory experiments. Proapoptotic/antiapoptotic protein levels were measured using immunoblot. In addition, the relationship between the expression levels of TREM-1 in monocytes and the magnitude of monocyte apoptosis were analyzed in septic patients.
Results:
Activation of TREM-1 protected monocytes from staurosporine-induced apoptosis. This characteristic was also obtained under lipopolysaccharide stimulation. The protection of TREM-1 against monocyte apoptosis was abrogated after inhibition of extracellular signal–regulated kinase or v-akt murine thymoma viral oncogene homologue signaling. Cross-linking of TREM-1 remarkably up-regulated myeloid cell leukemia-1 protein level, and inhibition of extracellular signal–regulated kinase or v-akt murine thymoma viral oncogene homologue resulted in the reduction of myeloid cell leukemia-1 expression. Inhibition of myeloid cell leukemia-1 abolished the antiapoptotic effect of TREM-1. Furthermore, in septic patients, TREM-1 levels were inversely correlated to the magnitude of apoptosis in monocyte.
Conclusions:
TREM-1 played an important role in apoptosis in monocytes. Activation of TREM-1 protected monocytic cells from apoptosis through activation of both extracellular signal–regulated kinase and v-akt murine thymoma viral oncogene homologue pathways and increased expression of myeloid cell leukemia-1 protein. These findings provide a novel additional mechanism for TREM-1–mediated hyperinflammatory response in monocytes.
Collapse
|
20
|
Zhang W, Guo Y, Yu S, Wei J, Jin J. Effects of edaravone on the expression of β-defensin-2 mRNA in lung tissue of rats with myocardial ischemia reperfusion. Mol Med Rep 2013; 7:1683-7. [PMID: 23525405 DOI: 10.3892/mmr.2013.1393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/01/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects of edaravone on lung injury caused by myocardial ischemia reperfusion (I/R) in rats. Wistar rats (n=24) were randomly divided into 4 groups: the sham operation (S group) and myocardial I/R groups (C group) and two edaravone‑treated groups (E1 and E2 groups). Rats in the E1 and E2 groups were injected with 3 or 10 mg/kg edaravone, respectively, 1 min before reperfusion. The rats were sacrificed and the lung tissue, bronchoalveolar lavage (BAL) fluid and serum were obtained. The concentration of serum creatine kinase isoenzyme (CK-MB) was determined, the lung permeability index (PPI) was calculated and β-defensin-2 (BD-2) mRNA expression in the lung tissue and BD-2 and TNF-α protein content levels were determined. Serum CK-MB activity and the PPI were increased, while BD-2 mRNA and BD‑2 and TNF-α protein levels in the lung tissue were upregulated in the C, E1 and E2 groups compared with the S group. The above‑mentioned indicators were decreased in the E1 and E2 groups compared with the IR group. The level of the decrease for indicators in the E2 group was significantly different compared with that in the E1 group. In conclusion, edaravone reduced the lung injury caused by myocardial I/R in rats. Its mechanism of action was not only oxygen free radical scavenging, but was also associated with a suppression of the inflammatory response of the lung tissue.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | | | | | | | | |
Collapse
|
21
|
Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 2013; 229:145-56. [PMID: 23097158 DOI: 10.1002/path.4124] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
Danger-associated molecular patterns (DAMPs) are host-derived molecules that can function to regulate the activation of pathogen recognition receptors (PRRs). These molecules play a critical role in modulating the lung injury response. DAMPs originate from multiple sources, including injured and dying cells, the extracellular matrix, or exist as immunomodulatory proteins within the airspace and interstitium. DAMPs can function as either toll-like receptor (TLR) agonists or antagonists, and can modulate both TLR and nod-like receptor (NLR) signalling cascades. Collectively, this diverse group of molecules may represent important therapeutic targets in the prevention and/or treatment of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Leslie B Tolle
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | |
Collapse
|
22
|
Osherov N. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells. Front Microbiol 2012; 3:346. [PMID: 23055997 PMCID: PMC3458433 DOI: 10.3389/fmicb.2012.00346] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/08/2012] [Indexed: 02/02/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.
Collapse
Affiliation(s)
- Nir Osherov
- Department of Clinical Microbiology and Immunology, Aspergillus and Antifungal Research Laboratory, Sackler School of Medicine, Tel-Aviv University Ramat-Aviv, Tel-Aviv, Israel
| |
Collapse
|
23
|
Williams WM, Castellani RJ, Weinberg A, Perry G, Smith MA. Do β-defensins and other antimicrobial peptides play a role in neuroimmune function and neurodegeneration? ScientificWorldJournal 2012; 2012:905785. [PMID: 22606066 PMCID: PMC3346844 DOI: 10.1100/2012/905785] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/26/2011] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that the brain responds to mechanical trauma and development of most neurodegenerative diseases with an inflammatory sequelae that was once thought exclusive to systemic immunity. Mostly cationic peptides, such as the β-defensins, originally assigned an antimicrobial function are now recognized as mediators of both innate and adaptive immunity. Herein supporting evidence is presented for the hypothesis that neuropathological changes associated with chronic disease conditions of the CNS involve abnormal expression and regulatory function of specific antimicrobial peptides. It is also proposed that these alterations exacerbate proinflammatory conditions within the brain that ultimately potentiate the neurodegenerative process.
Collapse
Affiliation(s)
- Wesley M Williams
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
24
|
Choi KY, Chow LNY, Mookherjee N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 2012; 4:361-70. [PMID: 22739631 DOI: 10.1159/000336630] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/18/2012] [Indexed: 12/21/2022] Open
Abstract
Host defence peptides (HDPs) are innate immune effector molecules found in diverse species. HDPs exhibit a wide range of functions ranging from direct antimicrobial properties to immunomodulatory effects. Research in the last decade has demonstrated that HDPs are critical effectors of both innate and adaptive immunity. Various studies have hypothesized that the antimicrobial property of certain HDPs may be largely due to their immunomodulatory functions. Mechanistic studies revealed that the role of HDPs in immunity is very complex and involves various receptors, signalling pathways and transcription factors. This review will focus on the multiple functions of HDPs in immunity and inflammation, with special reference to cathelicidins, e.g. LL-37, certain defensins and novel synthetic innate defence regulator peptides. We also discuss emerging concepts of specific HDPs in immune-mediated inflammatory diseases, including the potential use of cationic peptides as therapeutics for immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Ka-Yee Choi
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine and Immunology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
25
|
Foster N, Berndt A, Lalmanach AC, Methner U, Pasquali P, Rychlik I, Velge P, Zhou X, Barrow P. Emergency and therapeutic vaccination--is stimulating innate immunity an option? Res Vet Sci 2011; 93:7-12. [PMID: 22015261 DOI: 10.1016/j.rvsc.2011.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/08/2011] [Accepted: 05/24/2011] [Indexed: 01/22/2023]
Abstract
There is increasing evidence that activation of innate immunity, in animals and man, by live vaccines, sub-unit vaccines or synthetic or non-synthetic stimulants can induce a profound and rapidly induced resistance to pathogens, including infectious agents that are unrelated to the stimulating antigen or agent. We review the evidence for this phenomenon and present the proposition that this approach might be used to stimulate immunity during the life of the animal when susceptibility to infection is high and when normal vaccination procedures may be inappropriate.
Collapse
Affiliation(s)
- N Foster
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Devaney J, Contreras M, Laffey JG. Clinical review: gene-based therapies for ALI/ARDS: where are we now? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:224. [PMID: 21699743 PMCID: PMC3218971 DOI: 10.1186/cc10216] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) confer substantial morbidity and mortality, and have no specific therapy. The accessibility of the distal lung epithelium via the airway route, and the relatively transient nature of ALI/ARDS, suggest that the disease may be amenable to gene-based therapies. Ongoing advances in our understanding of the pathophysiology of ALI/ARDS have revealed multiple therapeutic targets for gene-based approaches. Strategies to enhance or restore lung epithelial and/or endothelial cell function, to strengthen lung defense mechanisms against injury, to speed clearance of infection and to enhance the repair process following ALI/ARDS have all demonstrated promise in preclinical models. Despite three decades of gene therapy research, however, the clinical potential for gene-based approaches to lung diseases including ALI/ARDS remains to be realized. Multiple barriers to effective pulmonary gene therapy exist, including the pulmonary architecture, pulmonary defense mechanisms against inhaled particles, the immunogenicity of viral vectors and the poor transfection efficiency of nonviral delivery methods. Deficits remain in our knowledge regarding the optimal molecular targets for gene-based approaches. Encouragingly, recent progress in overcoming these barriers offers hope for the successful translation of gene-based approaches for ALI/ARDS to the clinical setting.
Collapse
Affiliation(s)
- James Devaney
- Lung Biology Group, Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, Orbsen Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | | | | |
Collapse
|
27
|
Deng LX, Wu GX, Cao Y, Fan B, Gao X, Tang XH, Huang N. The Chromosomal Protein HMGN2 Mediates the LPS-Induced Expression of β-Defensins in Mice. Inflammation 2011; 35:456-73. [DOI: 10.1007/s10753-011-9335-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Zhao J, Wang Z, Chen X, Wang J, Li J. Effects of intravesical liposome-mediated human beta-defensin-2 gene transfection in a mouse urinary tract infection model. Microbiol Immunol 2011; 55:217-23. [DOI: 10.1111/j.1348-0421.2011.00315.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Dybvig T, Facci M, Gerdts V, Wilson HL. Biological roles of host defense peptides: lessons from transgenic animals and bioengineered tissues. Cell Tissue Res 2010; 343:213-25. [PMID: 21088855 DOI: 10.1007/s00441-010-1075-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/08/2010] [Indexed: 12/18/2022]
Abstract
Host defense peptides (HDPs) have long been recognized as microbicidal agents, but their roles as modulators of innate and adaptive immunity have only more recently been appreciated. The study of transgenic animal and tissue models has provided platforms to improve our understanding of the immune modulatory functions of HDPs. Here, the characterization of transgenic animals or tissue models that over-express and/or are deficient for specific HDPs is reviewed. We also attempt to reconcile this data with evidence from human studies monitoring HDP expression at constitutive levels and/or in conjunction with inflammation, infection models, or disease states. We have excluded activities ascribed to HDPs derived exclusively from in vitro experiments. An appreciation of the way that HDPs promote innate immunity or influence the adaptive immune response is necessary in order to exploit their therapeutic or adjuvant potential and to open new perspectives in understanding the basis of immunity. The potential applications for HDPs are discussed.
Collapse
Affiliation(s)
- Tova Dybvig
- Vaccine & Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | |
Collapse
|
30
|
Abstract
The development of organ failure determines the course and prognosis of the septic patient. Although several successful clinical trials in recent years have raised the enthusiasm of intensivists, severe sepsis and septic shock still have an increasing incidence with more or less unchanged mortality. Recent sepsis research, including progress made in definitions, epidemiology, pathophysiology, diagnosis, standard and adjunctive therapy, and experimental approaches, is encouraging. This includes genomic information for stratifying subgroups of patients, a broader field of laboratory diagnostics due to clinical studies, and basic research on the cellular mechanisms of inflammation and organ dysfunction. Furthermore, new findings in pathogenesis and therapeutic approaches to organ failure merit attention. In this review, state-of-the-art publications are presented to elucidate the possible impact of sepsis-induced organ failure on clinical routine.
Collapse
Affiliation(s)
- Herwig Gerlach
- Vivantes-Klinikum Neukoelln, Klinik für Anaesthesie, operative Intensivmedizin und Schmerztherapie, Rudower Strasse 48, D-12313 Berlin, Germany.
| | | |
Collapse
|
31
|
Hu Q, Zuo P, Shao B, Yang S, Xu G, Lan F, Lu X, Xiong W, Xu Y, Xiong S. Administration of nonviral gene vector encoding rat beta-defensin-2 ameliorates chronic Pseudomonas aeruginosa lung infection in rats. J Gene Med 2010; 12:276-86. [PMID: 20131335 DOI: 10.1002/jgm.1435] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Beta-defensin-2 (BD-2) plays an important role in host defense against pathogenic microbe challenge by its direct antimicrobial activity and immunomodulatory functions. The present study aimed to determine whether genetic up-regulation of rat BD-2 (rBD-2) could ameliorate chronic Pseudomonas aeruginosa lung infection in rats. METHODS Plasmid-encoding rBD-2 was delivered to lungs in vivo using linear polyethylenimine at 48 h before challenging with seaweed alginate beads containing P. aeruginosa. Macroscopic and histopathological changes of the lungs, bacterial loads, inflammatory infiltration, and the levels of cytokines/chemokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, kertinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2)] were measured at 3 and 7 days post-infection (p.i.). RESULTS The overexpression of rBD-2 resulted in a significant increase in animal survival rate (at 3 days p.i.), a significant decrease in bacterial loads in the lungs (at 3 and 7 days p.i.), and significantly milder lung pathology. In addition, the overexpression of rBD-2 led to increased infiltration of polymorphonuclear neutrophils (PMN), and elevated protein expression of cytokines/chemokines (IL-1beta, TNF-alpha, KC and MIP-2) at the early stage of infection (at 3 days p.i.), at the same time as being dramatically decreased at the later stage of infection (at 7 days p.i.). CONCLUSIONS Genetic up-regulation of rBD-2 increased animal survival rate, and reduced bacterial loads in lungs after bacterial infection. The overexpression of rBD-2 also modulated the production of several cytokines/chemokines and increased PMN recruitment at the early stage of infection. Our findings indicate that the enhancement of BD-2 may be an efficacious intervention for chronic P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory Medicine, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun 2009; 77:5300-10. [PMID: 19805527 DOI: 10.1128/iai.00501-09] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of pneumonia, and many components of the innate immune system have been proposed to exert important effects in preventing lung infection. However, a vigorous experimental system to identify an overriding, key effector mediating innate immunity to lung infection has not been utilized. As many of the important components of innate immunity are involved in recruitment and activation of polymorphonuclear neutrophils (PMNs) to infected tissues, we hypothesized that the cells and factors needed for their proper recruitment to the lung comprised the major mediators of innate immunity. In neutropenic mice, intranasal (i.n.) doses of P. aeruginosa as low as 10 to 100 CFU/mouse produced a fatal lung infection, compared with 10(7) to >10(8) CFU for nonneutropenic mice. There was only a very modest increased mortality in mice lacking mature lymphocytes and no increased mortality in mice depleted of alveolar macrophages when administered i.n. P. aeruginosa. Recombinant mouse granulocyte colony-stimulating factor increased survival of neutropenic mice after i.n. P. aeruginosa inoculation. MyD88(-/-) mice, which cannot recruit PMNs to the lungs, were highly susceptible to fatal P. aeruginosa lung infection, with bacterial doses of <120 CFU being lethal. Activation of a MyD88-independent pathway for PMN recruitment to the lungs in MyD88(-/-) mice resulted in enhanced protection against P. aeruginosa lung infection. Overall, in the absence of PMNs, mice cannot resist P. aeruginosa lung infection from extremely small bacterial doses. There is an inescapable requirement for local PMN recruitment and activation to mediate innate immunity to P. aeruginosa lung infection.
Collapse
|
33
|
Liu KX, Chen SQ, Zhang H, Guo JY, Li YS, Huang WQ. Intestinal ischaemia/reperfusion upregulates beta-defensin-2 expression and causes acute lung injury in the rat. Injury 2009; 40:950-5. [PMID: 19486970 DOI: 10.1016/j.injury.2009.01.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/12/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Human beta-defensin-2 (BD-2) is a positive ion antimicrobial peptide. We investigated the effects of intestinal ischaemia/reperfusion (II/R) on rat BD-2 mRNA and protein expressions in rat lung to address the potential role of BD-2 in acute lung injury (ALI) induced by II/R. METHODS Rats were randomly divided into two groups (n=36 each). (i) Sham control and (ii) II/R group (1h superior mesenteric artery clamping, followed by reperfusion of different durations). In II/R group, 6 animals were sacrificed at 0min, 15min, 30min, 60min, 3h and 6h after reperfusion, and serum, lung tissue and bronchoalveolar lavage fluid were harvested. Samples were taken at the corresponding time points in the sham group. Lung histological changes were observed under microscope and the pulmonary permeability index (PPI) was calculated. The lung tissue levels of TNFalpha were detected by ELISA. BD-2 mRNA and protein expressions were examined by RT-PCR and western blotting techniques, respectively. RESULTS ALI induced by II/R was confirmed by pathological examination and significantly increased PPI (P<0.05 or 0.01). II/R significantly increased the lung TNFalpha levels and upregulated the expressions of BD-2 mRNA and protein expressions (P<0.05 or 0.01). BD-2 mRNA expression was significantly positively correlated to the lung TNFalpha level (r=0.823, P<0.01) and negatively correlated to PPI (r=-0.615, P<0.05). CONCLUSION II/R can upregulate BD-2 mRNA and protein expressions in rat lung. BD-2 could be an innate protective factor against II/R-induced lung injury.
Collapse
Affiliation(s)
- Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Dorothy M Supp
- University of Cincinnati, Shriners Hospitals for Children, Department of Surgery, College of Medicine, 3229 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
35
|
Mookherjee N, Rehaume LM, Hancock REW. Cathelicidins and functional analogues as antisepsis molecules. Expert Opin Ther Targets 2007; 11:993-1004. [PMID: 17665972 DOI: 10.1517/14728222.11.8.993] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The emergence of antibiotic-resistant bacteria together with the limited success of sepsis therapeutics has lead to an urgent need for the development of alternative strategies for the treatment of systemic inflammatory response syndrome and related disorders. Immunomodulatory compounds that do not target the pathogen directly (therefore limiting the development of pathogen resistance), and target multiple inflammatory mediators, are attractive candidates as novel therapeutics. Cationic host defence peptides such as cathelicidins have been demonstrated to be selectively immunomodulatory in that they can confer anti-infective immunity and modulate the inflammatory cascade through multiple points of intervention. The human cathelicidin LL-37, for example, has modest direct antimicrobial activity under physiological conditions, but has been demonstrated to have potent antiendotoxin activity in animal models, as well as the ability to resolve certain bacterial infections. A novel synthetic immunomodulatory peptide, IDR-1, built on this same theme has no direct antimicrobial activity, but is effective in restricting many types of infection, while limiting pro-inflammatory responses. The ability of these peptides to selectively suppress harmful pro-inflammatory responses, while maintaining beneficial infection-fighting components of host innate defences makes them a good model for antisepsis therapies that merit further investigation.
Collapse
Affiliation(s)
- Neeloffer Mookherjee
- University of British Columbia, Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, Vancouver, BC, Canada
| | | | | |
Collapse
|
36
|
Menendez A, Brett Finlay B. Defensins in the immunology of bacterial infections. Curr Opin Immunol 2007; 19:385-91. [PMID: 17702560 DOI: 10.1016/j.coi.2007.06.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/15/2007] [Accepted: 06/29/2007] [Indexed: 12/31/2022]
Abstract
Defensins are a component of the host response against bacterial infections. Multiple studies suggest a linked upregulation of beta-defensins and pro-inflammatory cytokines expression in various tissues, as well as the possibility of mutual induction. Recent data demonstrate the importance of nucleotide-binding oligomerization proteins for the expression of defensins, and associate low levels of alpha-defensins expression by intestinal Paneth cells with susceptibility to Crohn's disease of the ileum. A novel anti-toxin activity has been identified for several alpha- and theta-defensins, expanding the repertoire of the antimicrobial functions of defensins. It has been shown that bacterial proteins can inactivate the action of defensins, and that pathogen type III secretion systems (T3SS) manipulate defensins expression via T3SS-mediated inhibition of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Alfredo Menendez
- Michael Smith Laboratories, The University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
37
|
Chen QX, Lv C, Huang LX, Cheng BL, Xie GH, Wu SJ, Fang XM. Genomic variations within DEFB1 are associated with the susceptibility to and the fatal outcome of severe sepsis in Chinese Han population. Genes Immun 2007; 8:439-43. [PMID: 17508030 DOI: 10.1038/sj.gene.6364401] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sepsis is a systemic inflammatory response syndrome to infection. Human beta-defensin 1 (DEFB1) is a multifunctional mediator in infection and inflammation, which has been largely explored in ex vivo studies. The present case-control study was designed to investigate whether DEFB1 genomic variations are associated with the susceptibility to and the outcome of severe sepsis in 211 patients with severe sepsis and 157 ethnic-matched healthy controls. After correcting for multiple testing, the -44G/C was the only polymorphism found to show significant associations with both the susceptibility to and the fatal outcome of severe sepsis (P=0.0049, odd ratio (OR) 1.971 and P=0.002, OR 2.406, respectively). Haplotype -20A/-44C/-52G showed a protective role against severe sepsis (P=0.0066, OR 0.6751), whereas haplotype -20G/-44G/-52G served as a risk factor for the fatal outcome of severe sepsis (P=0.0052, OR 2.427). These findings provide further evidence that beta-defensin 1 may play a role in the pathogenesis of severe sepsis.
Collapse
Affiliation(s)
- Q-X Chen
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
38
|
WHAT'S NEW IN SHOCK, OCTOBER 2006? Shock 2006. [DOI: 10.1097/01.shk.0000235129.05235.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|