1
|
Maisha N, Kulkarni C, Pandala N, Zilberberg R, Schaub L, Neidert L, Glaser J, Cannon J, Janeja V, Lavik EB. PEGylated Polyester Nanoparticles Trigger Adverse Events in a Large Animal Model of Trauma and in Naı̈ve Animals: Understanding Cytokine and Cellular Correlations with These Events. ACS NANO 2022; 16:10566-10580. [PMID: 35822898 DOI: 10.1021/acsnano.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.
Collapse
Affiliation(s)
| | | | | | | | - Leasha Schaub
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Leslie Neidert
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jacob Glaser
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jeremy Cannon
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
2
|
Charbe NB, Castillo F, Tambuwala MM, Prasher P, Chellappan DK, Carreño A, Satija S, Singh SK, Gulati M, Dua K, González-Aramundiz JV, Zacconi FC. A new era in oxygen therapeutics? From perfluorocarbon systems to haemoglobin-based oxygen carriers. Blood Rev 2022; 54:100927. [PMID: 35094845 DOI: 10.1016/j.blre.2022.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 02/09/2023]
|
3
|
Cao M, Zhao Y, He H, Yue R, Pan L, Hu H, Ren Y, Qin Q, Yi X, Yin T, Ma L, Zhang D, Huang X. New Applications of HBOC-201: A 25-Year Review of the Literature. Front Med (Lausanne) 2021; 8:794561. [PMID: 34957164 PMCID: PMC8692657 DOI: 10.3389/fmed.2021.794561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
If not cured promptly, tissue ischemia and hypoxia can cause serious consequences or even threaten the life of the patient. Hemoglobin-based oxygen carrier-201 (HBOC-201), bovine hemoglobin polymerized by glutaraldehyde and stored in a modified Ringer's lactic acid solution, has been investigated as a blood substitute for clinical use. HBOC-201 was approved in South Africa in 2001 to treat patients with low hemoglobin (Hb) levels when red blood cells (RBCs) are contraindicated, rejected, or unavailable. By promoting oxygen diffusion and convective oxygen delivery, HBOC-201 may act as a direct oxygen donor and increase oxygen transfer between RBCs and between RBCs and tissues. Therefore, HBOC-201 is gradually finding applications in treating various ischemic and hypoxic diseases including traumatic hemorrhagic shock, hemolysis, myocardial infarction, cardiopulmonary bypass, perioperative period, organ transplantation, etc. However, side effects such as vasoconstriction and elevated methemoglobin caused by HBOC-201 are major concerns in clinical applications because Hbs are not encapsulated by cell membranes. This study summarizes preclinical and clinical studies of HBOC-201 applied in various clinical scenarios, outlines the relevant mechanisms, highlights potential side effects and solutions, and discusses the application prospects. Randomized trials with large samples need to be further studied to better validate the efficacy, safety, and tolerability of HBOC-201 to the extent where patient-specific treatment strategies would be developed for various clinical scenarios to improve clinical outcomes.
Collapse
Affiliation(s)
- Min Cao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhao
- Anesthesiology, Southwest Medicine University, Luzhou, China
| | - Hongli He
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Hu
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingjie Ren
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Qin
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueliang Yi
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yin
- Surgical Department, Chengdu Second People's Hospital, Chengdu, China
| | - Lina Ma
- Health Inspection and Quarantine, Chengdu Medical College, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Maisha N, Coombs T, Lavik E. Development of a Sensitive Assay to Screen Nanoparticles in vitro for Complement Activation. ACS Biomater Sci Eng 2020; 6:4903-4915. [PMID: 33313396 DOI: 10.1021/acsbiomaterials.0c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomedicines are often recognized by the innate immune system as a threat, leading to unwanted clearance due to complement activation. This adverse reaction not only alters the bioavailability of the therapeutic but can also cause cardiopulmonary complications and death in a portion of the population. There is a need for tools for assessing complement response in the early stage of development of nanomedicines. Currently, quantifying complement-mediated response in vitro is limited due to differences between in vitro and in vivo responses for the same precursors, differences in the complement systems in different species, and lack of highly sensitive tools for quantifying the changes. Hence, we have worked on developing complement assay conditions and sample preparation techniques that can be highly sensitive in assessing the complement-mediated response in vitro mimicking the in vivo activity. We are screening the impact of incubation time, nanoparticle dosage, anticoagulants, and species of the donor in both blood and blood components. We have validated the optimal assay conditions by replicating the impact of zeta potential seen in vivo on complement activation in vitro. As observed in our previous in vivo studies, where nanoparticles with neutral zeta-potential were able to suppress complement response, the change in the complement biomarker was least for the neutral nanoparticles as well through our developed guidelines. These assay conditions provide a vital tool for assessing the safety of intravenously administered nanomedicines.
Collapse
Affiliation(s)
- Nuzhat Maisha
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Tobias Coombs
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Erin Lavik
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| |
Collapse
|
5
|
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, Uppal N, Shoffstall A, Ustin J, Lavik E. Engineering Intravenously Administered Nanoparticles to Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of Trauma. Bioconjug Chem 2018; 29:2436-2447. [PMID: 29965731 DOI: 10.1021/acs.bioconjchem.8b00335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bleeding from traumatic injury is the leading cause of death for young people across the world, but interventions are lacking. While many agents have shown promise in small animal models, translating the work to large animal models has been exceptionally difficult in great part because of infusion-associated complement activation to nanomaterials that leads to cardiopulmonary complications. Unfortunately, this reaction is seen in at least 10% of the population. We developed intravenously infusible hemostatic nanoparticles that were effective in stopping bleeding and improving survival in rodent models of trauma. To translate this work, we developed a porcine liver injury model. Infusion of the first generation of hemostatic nanoparticles and controls 5 min after injury led to massive vasodilation and exsanguination even at extremely low doses. In naïve animals, the physiological changes were consistent with a complement-associated infusion reaction. By tailoring the zeta potential, we were able to engineer a second generation of hemostatic nanoparticles and controls that did not exhibit the complement response at low and moderate doses but did at the highest doses. These second-generation nanoparticles led to cessation of bleeding within 10 min of administration even though some signs of vasodilation were still seen. While the complement response is still a challenge, this work is extremely encouraging in that it demonstrates that when the infusion-associated complement response is managed, hemostatic nanoparticles are capable of rapidly stopping bleeding in a large animal model of trauma.
Collapse
Affiliation(s)
- Chimdiya Onwukwe
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Nuzhat Maisha
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Mark Holland
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Matt Varley
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Rebecca Groynom
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - DaShawn Hickman
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Nishant Uppal
- Harvard Medical School , 25 Shattuck Street , Boston , Massachusetts 02115 , United States
| | - Andrew Shoffstall
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey Ustin
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Erin Lavik
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| |
Collapse
|
6
|
Kellum JA, Cerda J, Kaplan LJ, Nadim MK, Palevsky PM. Fluids for Prevention and Management of Acute Kidney Injury. Int J Artif Organs 2018; 31:96-110. [DOI: 10.1177/039139880803100204] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluids are the only known method of attenuating renal injury. Furthermore, whether for hydration, resuscitation or renal replacement therapy, fluid prescriptions must be tailored to the fluid and electrolyte, cardiovascular status and residual renal function of the patient. Different fluids have significantly different effects both on volume expansion as well as on the electrolyte and acid-base balance; while controversial, different fluids may even influence renal function differently. This systematic review focuses on fluids for prevention and management of acute kidney injury. We have reviewed the available evidence and have made recommendations for clinical practice and future studies.
Collapse
Affiliation(s)
- J. A. Kellum
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania - USA
| | - J. Cerda
- Division of Nephrology, Albany Medical College and Capital District Renal Physicians, Albany, New York - USA
| | - L. J. Kaplan
- Department of Surgery, Section of Trauma, Surgical Critical Care and Surgical Emergencies, Yale University School of Medicine, New Haven, Connecticut - USA
| | - M. K. Nadim
- Division of Nephrology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California - USA
| | - P. M. Palevsky
- VA Pittsburgh Healthcare System, University Drive Division, Pittsburgh, Pennsylvania - USA
| |
Collapse
|
7
|
Storage of nitroglycerin (NTG) admixed with HBOC-201 for 30 days in polyolefin plastic bags: a pilot study. Drug Deliv Transl Res 2017; 7:674-682. [PMID: 28744782 DOI: 10.1007/s13346-017-0411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hemorrhaged animals have benefited from resuscitation with the hemoglobin-based oxygen carrier (HBOC-201). Co-infusion of nitric oxide (NO) via separate intravascular lines is effective in attenuating HBOC-induced elevation of blood pressure. We tested whether nitroglycerin (NTG) and HBOC-201 can be packaged together as a single drug for resuscitation. Since NTG binds easily to plastics such as polyvinylchloride, we assessed the stability of this combination in oxygen barrier double-layer ethylene-vinyl alcohol/polyolefin bags over a 30-day period. Outcome measures indicative of the stability of HBOC/NTG were reported as changes in levels of hemoglobin (Hb), methemoglobin (MetHb), NTG, and nitrite over time. Individual tightly sealed small aliquots of HBOC/NTG were prepared under nitrogen and analyzed in a timely fashion from 0 to 30 days using hematology instruments, HPLC, FPLC, and chemiluminescence. The level of NTG in the HBOC/NTG mixture was reduced significantly over time whereas it was stable in control mixtures of NTG/saline. The level of total Hb in the HBOC/NTG and HBOC/saline mixtures remained stable over time. MetHb formed and increased to 6% up to day 1 and then slowly decreased in the HBOC/NTG mixture whereas it remained unchanged in the HBOC/saline mixture. Nitrite was produced in the HBOC/NTG group upon mixing, was increased at day 1, and then became undetectable. The reaction between HBOC-201 and NTG occurring upon mixing and developing over time in polyolefin bags makes the long-term storage of this mixed combination inappropriate.
Collapse
|
8
|
Brockman EC, Jackson TC, Dixon CE, Bayɪr H, Clark RSB, Vagni V, Feldman K, Byrd C, Ma L, Hsia C, Kochanek PM. Polynitroxylated Pegylated Hemoglobin-A Novel, Small Volume Therapeutic for Traumatic Brain Injury Resuscitation: Comparison to Whole Blood and Dose Response Evaluation. J Neurotrauma 2017; 34:1337-1350. [PMID: 27869558 PMCID: PMC5385578 DOI: 10.1089/neu.2016.4656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Resuscitation with polynitroxylated pegylated hemoglobin (PNPH), a pegylated bovine hemoglobin decorated with nitroxides, eliminated the need for fluid administration, reduced intracranial pressure (ICP) and brain edema, and produced neuroprotection in vitro and in vivo versus Lactated Ringer's solution (LR) in experimental traumatic brain injury (TBI) plus hemorrhagic shock (HS). We hypothesized that resuscitation with PNPH would improve acute physiology versus whole blood after TBI+HS and would be safe and effective across a wide dosage range. Anesthetized mice underwent controlled cortical impact and severe HS to mean arterial pressure (MAP) of 25-27 mm Hg for 35 min, then were resuscitated with PNPH, autologous whole blood, or LR. Markers of acute physiology, including mean arterial blood pressure (MAP), heart rate (HR), blood gases/chemistries, and brain oxygenation (PbtO2), were monitored for 90 min on room air followed by 15 min on 100% oxygen. In a second experiment, the protocol was repeated, except mice were resuscitated with PNPH with doses between 2 and 100 mL/kg. ICP and 24 h %-brain water were evaluated. PNPH-resuscitated mice had higher MAP and lower HR post-resuscitation versus blood or LR (p < 0.01). PNPH-resuscitated mice, versus those resuscitated with blood or LR, also had higher pH and lower serum potassium (p < 0.05). Blood-resuscitated mice, however, had higher PbtO2 versus those resuscitated with LR and PNPH, although PNPH had higher PbtO2 versus LR (p < 0.05). PNPH was well tolerated across the dosing range and dramatically reduced fluid requirements in all doses-even 2 or 5 mL/kg (p < 0.001). ICP was significantly lower in PNPH-treated mice for most doses tested versus in LR-treated mice, although %-brain water did not differ between groups. Resuscitation with PNPH, versus resuscitation with LR or blood, improved MAP, HR, and ICP, reduced acidosis and hyperkalemia, and was well tolerated and effective across a wide dosing range, supporting ongoing pre-clinical development of PNPH for TBI resuscitation.
Collapse
Affiliation(s)
- Erik C. Brockman
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hülya Bayɪr
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
- Pittsburgh Center for Free Radical and Antioxidant Health, Pittsburgh, Pennsylvania
| | - Robert S. B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Vincent Vagni
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
| | - Keri Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
| | - Catherine Byrd
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
| | - Li Ma
- Department of Physics, Georgia Southern University, Statesboro, Georgia
| | | | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pennsylvania
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Lashof-Sullivan M, Shoffstall A, Lavik E. Intravenous hemostats: challenges in translation to patients. NANOSCALE 2013; 5:10719-28. [PMID: 24088870 PMCID: PMC4238379 DOI: 10.1039/c3nr03595f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Excessive bleeding and the resulting complications are a leading killer of young people globally. There are many successful methods to halt bleeding in the extremities, including compression, tourniquets, and dressings. However, current treatments for internal hemorrhage (including from head or truncal injuries), termed non-compressible bleeding, are inadequate. For these non-compressible injuries, blood transfusions are the current treatment standard. However, they must be refrigerated, may potentially transfer disease, and are of limited supply. In addition, time is of the essence for halting hemorrhage, since more than a third of civilian deaths due to hemorrhage from trauma occur before the patient even reaches the hospital. As a result, particles that can cross-link activated platelets through the glycoprotein IIb/IIIa receptor expressed on activated platelets are being investigated as an alternative treatment for non-compressible bleeding. Ideally, these particles would interact specifically with platelets to stabilize the platelet plug. Initial designs used biologically derived microparticles with red blood cell fragment or albumin cores decorated with RGD or fibrinogen, which bind to GPIIb/IIIa. More recently there has been research into the use of fully synthetic nanoparticles with liposomal or polymer cores that crosslink platelets through a targeting peptide bound to the surface. Some of the challenges for the development of these particles include appropriate sizing to prevent blocking the capillaries of the lungs, immune system evasion to prevent strong reactions and increase circulation time, and storage and resuspension so that first responders can easily use the particles. In addition, the effectiveness of the variety of animal bleeding models in predicting outcomes must be examined before test results can be fully understood. Progress has been made in the development of particles to combat hemorrhage, but issues of immune sensitivity and storage must be resolved before these types of particles can be translated for human use.
Collapse
|
10
|
Early detection of subclinical organ dysfunction by microdialysis of the rectus abdominis muscle in a porcine model of critical intra-abdominal hypertension. Shock 2013; 38:420-8. [PMID: 22683730 DOI: 10.1097/shk.0b013e31825ef7e7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate microdialysis of the rectus abdominis muscle (RAM) for early detection of subclinical organ dysfunction in a porcine model of critical intra-abdominal hypertension (IAH). Microdialysis catheters for analyses of lactate, pyruvate, and glycerol levels were placed in cervical muscles (control), gastric and jejunal wall, liver, kidney, and RAM of 30 anesthetized mechanically ventilated pigs. Catheters for venous lactate and interleukin 6 samples were placed in the jugular, portal, and femoral vein. Intra-abdominal pressure (IAP) was increased to 20 mmHg (IAH20 group, n = 10) and 30 mmHg (IAH30, n = 10) for 6 h by controlled CO2 insufflation, whereas sham animals (n = 10) exhibited a physiological IAP. In contrast to 20 mmHg, an IAH of 30 mmHg induced pathophysiological alterations consistent with an abdominal compartment syndrome. Microdialysis showed significant increase in the lactate/pyruvate ratio in the RAM of the IAH20 group after 6 h. In the IAH30 group, the strongest increase in lactate/pyruvate ratio was detected in the RAM and less pronounced in the liver and gastric wall. Glycerol increased in the RAM only. After 6 h, there was a significant increase in venous interleukin 6 of the IAH30 group compared with baseline. Venous lactate was increased compared with baseline and shams in the femoral vein of the IAH30 group only. Intra-abdominal pressure-induced ischemic metabolic changes are detected more rapidly and pronounced by microdialysis of the RAM when compared with intra-abdominal organs. Thus, the RAM represents an important and easily accessible site for the early detection of subclinical organ dysfunction during critical IAH.
Collapse
|
11
|
Teranishi K, Scultetus A, Haque A, Stern S, Philbin N, Rice J, Johnson T, Auker C, McCarron R, Freilich D, Arnaud F. Traumatic brain injury and severe uncontrolled haemorrhage with short delay pre-hospital resuscitation in a swine model. Injury 2012; 43:585-93. [PMID: 21036354 DOI: 10.1016/j.injury.2010.09.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/02/2010] [Accepted: 09/14/2010] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Unavailability of blood (and oxygen delivery) for pre-hospital resuscitation in haemorrhagic shock patients are major problems, supporting the importance for novel resuscitation strategies. In a combined polytrauma model of uncontrolled haemorrhage and traumatic brain injury (TBI) in swine, we investigated if pre-hospital administration of the haemoglobin based oxygen carrier HBOC-201 will improve tissue oxygenation and physiologic parameters compared to Lactated Ringer's (LR) solution. MATERIALS AND METHODS Anaesthetised Yorkshire swine underwent fluid-percussion TBI and Grade III liver laceration. During a 30-min pre-hospital phase, the animals were resuscitated with a single infusion of HBOC-201, LR solution, or nothing (NON). Upon hospital arrival, the animals were given blood or normal saline as needed. Surviving animals were euthanised 6h post-injury. Cerebral blood flow was measured by microsphere injection, and pathology was assessed by gross observation and immunohistochemical analysis. RESULTS Mean TBI force (2.4±0.1atm) (means±standard error of the mean) and blood loss (22.5±1.7mL/kg) were similar between groups. Survival at the 6h endpoint was similar in all groups (∼50%). Cerebral perfusion pressure (CPP) and brain tissue oxygen tension were significantly greater in HBOC-201 as compared with LR animals (p<0.005). Mean arterial pressure (MAP) and mean pulmonary artery pressure (MPAP) were not significantly different amongst groups. Blood transfusion requirements were delayed in HBOC-201 animals. Animals treated with HBOC-201 or LR showed no immunohistopathological differences in glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP-2). Severity of subarachnoid and intraparenchymal haemorrhages were similar for HBOC and LR groups. CONCLUSION In this polytrauma swine model of uncontrolled haemorrhage and TBI with a 30-min delay to hospital arrival, pre-hospital resuscitation with one bolus of HBOC-201 indicated short term benefits in systemic and cerebrovascular physiological parameters. True clinical benefits of this strategy need to be confirmed on TBI and haemorrhagic shock patients.
Collapse
Affiliation(s)
- Kohsuke Teranishi
- Department of NeuroTrauma, Naval Medical Research Center, Silver Spring, MD 20910, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Moon-Massat P, Scultetus A, Arnaud F, Brown A, Haque A, Saha B, Kim B, Sagini E, McGwin G, Auker C, McCarron R, Freilich D. The effect HBOC-201 and sodium nitrite resuscitation after uncontrolled haemorrhagic shock in swine. Injury 2012; 43:638-47. [PMID: 21094491 DOI: 10.1016/j.injury.2010.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND Development of Haemoglobin-based oxygen carriers (HBOCs) as blood substitutes has reached an impasse due to clinically adverse outcomes attributed to vasoconstriction secondary to nitric oxide (NO) scavenging. Studies suggest haemoglobin exhibits nitrite reductase activity that generates NO and N(2)O(3); harnessing this property may offset NO scavenging. Therefore, the effects of concomitantly infusing sodium nitrite (NaNO(2)) with HBOC-201 were investigated. METHODS Swine underwent uncontrolled liver haemorrhage before receiving up to three 10min 10ml/kg infusions of HBOC-201 (HBOC) with or without concurrent NaNO(2) (5.4μmol/kg [LD NaNO(2)] or 10.8μmol/kg [HD NaNO(2)]) or 6% Hetastarch (HEX) with or without HD NaNO(2) during "prehospital" resuscitation (15, 30 and 45min after injury). Definitive surgical care occurred at 75min; anaesthetic recovery at 120min. Animals were euthanised at 72h. RESULTS NaNO(2) temporarily reduced systemic and pulmonary blood pressure increases from HBOC in a dose-dependent fashion. There was no significant effect between groups in indices of tissue oxygenation or survival. Adverse clinical signs requiring humane euthanasia occurred with highest frequency after HBOC+HD NaNO(2) (3 of 4 pigs) and HBOC+LD NaNO(2) (2 of 4 pigs). Gross evidence of pulmonary congestion was observed in 5 of 8 swine receiving a HBOC and NaNO(2) combination compared to 1 of 16 swine receiving HBOC alone, HEX alone, or HEX+NaNO(2). Gross lesions correlated with histological evidence of pulmonary oedema and congestion, and in 2 of 4 HBOC+HD NaNO(2) pigs, pulmonary fibrin thrombi also were found. No other pig had similar evidence of thrombi. Asymmetric pre-resuscitation cardiac index was a potential confounder. CONCLUSIONS A significant interaction between NaNO(2) and HBOC-201 ameliorated HBOC-201 vasoconstrictive effects, consistent with HBOC possessing a nitrite reductase activity that generates vasodilator NO equivalents. Results were relatively equivalent in survival and markers of tissue oxygenation. The highest dose of NaNO(2) was the most effective in reducing HBOC-associated pulmonary and systemic vasoactivity but also with the highest incidence of adverse events. In this model, the transient nature of NaNO(2) in off-setting HBOC-201 vasoconstriction makes it less clinically promising than anticipated and the combination of NaNO(2) and HBOC appear to increase the risk of pulmonary complications in a dose-dependent fashion independently of haemodilutional effects on haemostatic components.
Collapse
Affiliation(s)
- Paula Moon-Massat
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD 20910-7500, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Arnaud F, Scultetus AH, Haque A, Saha B, Kim B, Auker C, Moon-Massat P, McCarron R, Freilich D. Sodium nitroprusside ameliorates systemic but not pulmonary HBOC-201-induced vasoconstriction: an exploratory study in a swine controlled haemorrhage model. Resuscitation 2012; 83:1038-45. [PMID: 22286048 DOI: 10.1016/j.resuscitation.2012.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/07/2012] [Accepted: 01/12/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Vasoconstriction is a side effect that may prevent the use of haemoglobin based oxygen carrier (HBOC) as blood substitute. Therefore, we tested the hypothesis that the NO donor, sodium nitroprusside (SNP), would mitigate systemic and pulmonary hypertension associated with HBOC-201 in a simple controlled haemorrhage swine model. METHODS After 55% estimated blood volume withdrawal through a venous catheter, invasively anesthetized and instrumented animals were resuscitated with three 10 ml/kg infusions of either HBOC-201 or Hextend (HEX) with or without 0.8 μg/kg/min SNP (infused concomitantly via different lines). Haemodynamics, direct and indirect measures of tissue oxygenation, and coagulation were measured for 2h. RESULTS Haemorrhage caused a state of shock manifested by hypotension and base deficit. HBOC-201 resuscitation resulted in higher systemic (p<0.0001) and pulmonary (p<0.002) blood pressure than with HEX. Elevation of systemic (p<0.0001) but not pulmonary (p>0.05) arterial pressure was attenuated by co-infusion of SNP, without significant group differences in haemodynamics, tissue oxygenation, platelet function, coagulation, methaemoglobin, or survival (p>0.05). CONCLUSION In swine with haemorrhagic shock, co-administration of the NO donor, SNP, effectively and safely reduces HBOC-201-related systemic but not pulmonary vasoactivity. Interestingly, co-administration of the vasodilator SNP with HEX had no deleterious effects in comparison with HEX alone.
Collapse
Affiliation(s)
- Françoise Arnaud
- Naval Medical Research Center, NeuroTrauma Department, Silver Spring, MD 20910-7500, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Haque A, Arnaud F, Teranishi K, Okada T, Kim B, Moon-Massat PF, Auker C, McCarron R, Freilich D, Scultetus AH. Pre-hospital resuscitation with HBOC-201 and rFVIIa compared to HBOC-201 alone in uncontrolled hemorrhagic shock in swine. ACTA ACUST UNITED AC 2011; 40:44-55. [PMID: 21806503 DOI: 10.3109/10731199.2011.585615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a previous dose escalation study our group found that combining 90μg/kg rFVIIa with HBOC-201 reduced blood loss and improved physiologic parameters compared to HBOC alone. In this follow-up study in a swine liver injury model, we found that while there were no adverse hematology effects and trends observed in the previous study were confirmed, statistical significance could not be reached. Additional pre-clinical studies are indicated to identify optimal components of a multifunctional blood substitute for clinical use in trauma.
Collapse
Affiliation(s)
- Ashraful Haque
- Naval Medical Research Center, Operational and Undersea Medicine Directorate, NeuroTrauma Department, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Arnaud F, McCarron R, Freilich D. Amylase and Lipase Detection in Hemorrhaged Animals Treated with HBOC-201. ACTA ACUST UNITED AC 2010; 39:155-61. [DOI: 10.3109/10731199.2010.516260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Arnaud F, Scultetus AH, Kim B, Haque A, Saha B, Nigam S, Moon-Massat P, Auker C, McCarron R, Freilich D. Dose response of sodium nitrite on vasoactivity associated with HBOC-201 in a swine model of controlled hemorrhage. ACTA ACUST UNITED AC 2010; 39:195-205. [PMID: 21133651 DOI: 10.3109/10731199.2010.533126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sodium nitrite (NaNO(2)) was evaluated in a 55% EBV hemorrhage swine model to mitigate the increased blood pressure due to HBOC-201. Animals were resuscitated by three 10 ml/kg infusions of either HBOC-201 or Hextend with and without NaNO(2). All vital signs, coagulation and blood chemistry were measured for 2 hr. HBOC-201-vasoconstriction was attenuated only after the first 10.8 μmol/kg NaNO(2) infusion. Complete abolition was obtained with the highest 3 NaNO(2) dose, but side effects were observed. There was no reduction in platelet function due to NaNO(2). NaNO(2) ability to reduce HBOC-201 vasoactivity was transient and 10.8 μmol/kg NaNO(2) seems an acceptable dose for further investigation.
Collapse
Affiliation(s)
- Françoise Arnaud
- Naval Medical Research Center, Operational and Undersea Medicine, NeuroTrauma Department, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Scultetus A, Arnaud F, Kaplan L, Shander A, Philbin N, Rice J, McCarron R, Freilich D. Hemoglobin-based oxygen carrier (HBOC-201) and escalating doses of recombinant factor VIIa (rFVIIa) as a novel pre-hospital resuscitation fluid in a swine model of severe uncontrolled hemorrhage. ACTA ACUST UNITED AC 2010; 39:59-68. [PMID: 20645681 DOI: 10.3109/10731199.2010.501755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exsanguinating hemorrhage and unavailability of blood are major problems in pre-hospital trauma care. We investigated if combining rFVIIa with HBOC-201 reduces blood loss and improves physiologic parameters compared to HBOC alone. Swine underwent liver injury and were resuscitated with HBOC-201 alone or HBOC+90, 180 or 360 μg/kg rFVIIa before hospital arrival at 240 min; animals survived to 72 hours. Blood loss was reduced; MAP, CI, transcutaneous oxygen saturation, and 72-hour survival improved in the 90 and 180 μg/kg rFVIIa groups. Lactate was cleared faster in the HBOC+rFVIIa 90 μg/kg group. Verification in a large, well-powered study is indicated.
Collapse
Affiliation(s)
- Anke Scultetus
- Operational and Undersea Medicine Directorate, NeuroTrauma Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Diaspirin cross-linked hemoglobin infusion did not influence base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation. ACTA ACUST UNITED AC 2010; 68:1158-71. [PMID: 20145575 DOI: 10.1097/ta.0b013e3181bbfaac] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diaspirin cross-linked hemoglobin (DCLHb) has demonstrated a pressor effect that could adversely affect traumatic hemorrhagic shock patients through diminished perfusion to vital organs, causing base deficit (BD) and lactate abnormalities. METHODS Data from two parallel, multicenter traumatic hemorrhagic shock clinical trials from 17 US Emergency Departments and 27 European Union prehospital services using DCLHb, a hemoglobin-based resuscitation fluid. RESULTS In the 219 patients, the mean age was 37.3 years, 64% of the patients sustained a blunt injury, 48% received DCLHb resuscitation, and the overall 28-day mortality rate was 36.5%. BD data did not differ by treatment group (DCLHb vs. normal saline [NS]) at any time point. Study entry BD was higher in patients who died when compared with survivors in both studies (US: -14.7 vs. -9.3 and European Union: -11.1 vs. -4.1 mEq/L, p < 0.003) and at the first three time points after resuscitation. No differences in BD based on treatment group were observed in either those who survived or those who died from the hemorrhagic shock. US lactate data did not differ by treatment group (DCLHb vs. NS) at any time point. Study entry lactates were higher in US patients who ultimately died when compared with survivors (82.4 vs. 56.1 mmol/L, p < 0.003) and at all five postresuscitation time points. No lactate differences were observed between DCLHb and NS survivors or in those who died based on treatment group. CONCLUSIONS Although patients who died had more greatly altered perfusion than those who survived, DCLHb treatment of traumatic hemorrhagic shock patients was not associated with BD or lactate abnormalities that would indicate poor perfusion.
Collapse
|
19
|
Boomer L, Jones W, Davis B, Williams S, Barber A. Optimal fluid resuscitation: timing and composition of intravenous fluids. Surg Infect (Larchmt) 2010; 10:379-87. [PMID: 19630503 DOI: 10.1089/sur.2008.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recent data suggest that the timing of fluid resuscitation and the type of fluid used to treat hemorrhagic shock contribute to the inflammatory response as well as cell death. METHODS Rats were bled of 40% of their total blood volume and then resuscitated in either early or delayed fashion. Treatment was assigned randomly and consisted of lactated Ringer's solution, normal saline, bicarbonate Ringer's solution, hypertonic saline, or no resuscitation. The first four groups were subdivided into early and late resuscitation. After a 5-h observation period, lung and liver samples were evaluated for apoptosis, and blood was collected for measurements of the cytokines interleukin (IL)-6, IL-10, and IL-1beta. RESULTS The rats that were not resuscitated had significantly more apoptosis in liver tissue. In the lung, bicarbonate Ringer's solution, when given early, was associated with significantly less apoptosis. Non-resuscitated rats had significantly higher IL-6 concentrations than all other groups. Animals receiving hypertonic saline early had significantly higher IL-6 concentrations than those given any other fluid. The concentration of IL-1beta was significantly higher in the non-resuscitated rats than in those receiving bicarbonate Ringer's, lactated Ringer's, or normal saline for early resuscitation. Interleukin-10 was elevated significantly in non-resuscitated rats. CONCLUSIONS Cellular destruction and a pro-inflammatory response follow hemorrhagic shock. Early resuscitation with isotonic crystalloid fluids decreases these responses.
Collapse
Affiliation(s)
- Laura Boomer
- Department of Surgery, University of Nevada School of Medicine, Las Vegas, Nevada 89102, USA
| | | | | | | | | |
Collapse
|
20
|
Kim HW, Hai CM, Greenburg AG. Relative roles of heme-irons and globin-thiols in the genesis of acellular hemoglobin mediated vasoconstriction. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2010; 38:5-12. [PMID: 20047515 DOI: 10.3109/10731190903495694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In addition to heme-irons, reactive (beta-globin thiols (betaCys93s) of hemoglobin (Hb) also have been shown to interact with endogenous nitric oxide (NO) thereby contributing to vascular tone regulation. What relative roles do these NO binding sites contribute to the overall Hb-mediated vasoactivity? Several test Hbs with either or both the NO binding sites preliganded or blocked were prepared and tested in a rat thoracic aortic ring model. Hbs tested were: NEM-Hb (ferrous Hb with masked thiols), HbNO (ferrous Hb preliganded with NO), Hb(+)CN (ferric Hb liganded with CN(-)), NEM-HbNO and NEM-Hb(+)CN (Hbs with both heme-iron and cysteine sites preliganded or blocked). Typically, >0.2 microM control Hb significantly increased isometric tension in agonist stimulated vessel rings (58.1 +/-7.0% over baseline). At comparable concentrations, NEM-Hb also caused a significant contraction (50.7+/-9.5%) while HbNO and Hb(+)CN did not (-5.5+/-6.0% and -3.7+/-4.6%, respectively). For these Hbs, masking thiols as well did not significantly alter respective vascular effects. Ferrous sperm whale myoglobin (Mb), which has no reactive thiol, elicited a significant contraction (55.1+/-13.2%) while metMb did not (-0.8+/-3.2%), suggesting the relative importance of heme-iron ligand and oxidation state in Hb vasoactivity. Additionally, ferrous or ferric equine heart cytochrome-C, a heme protein with no readily available heme-iron and cysteine binding sites, did not elicit notable contraction. Human Hb variants in which (betaCys93s are deleted or substituted with non-cysteine residues did not reveal any documented significant hemodynamic abnormalities. These results indicate that reactive globin-thiols do not appear to play a prominent role relative to heme-irons in Hb-mediated vasoconstriction.
Collapse
Affiliation(s)
- Hae Won Kim
- Department of Molecular Pharmacology, Physiology and Biotechnology Brown University, 171 Meeting Street, Providence, RI 02912, USA.
| | | | | |
Collapse
|
21
|
Zapletal C, Bode A, Lorenz MW, Gebhard MM, Golling M. Effects of hemodilution with a hemoglobin-based oxygen carrier (HBOC-201) on ischemia/reperfusion injury in a model of partial warm liver ischemia of the rat. Microvasc Res 2009; 78:386-92. [PMID: 19715706 DOI: 10.1016/j.mvr.2009.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/17/2009] [Accepted: 08/17/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury is an unavoidable complication in liver surgery and transplantation. Hemodilution with colloids can reduce postischemic injury but limits oxygen transport. Hemoglobin-based oxygen carriers have been evaluated as blood substitute and provide a plasma-derived oxygen transport. It was the aim of our study to evaluate the combined benefits of hemodilution with a better oxygen supply to reperfused liver tissue by the use of HBOC-201 (Hemopure). MATERIAL AND METHODS A model of partial warm liver ischemia in the rat was used. One group served as untreated control, the other groups were hemodiluted either with Ringer's lactate, Dextran-70, HBOC-201 or a mixture of Dextran and HBOC-201. After reperfusion, intravital microscopy studies were done and tissue pO(2) levels and transaminases measured. Statistical analysis was done by one- and two-way ANOVA, followed by pairwise comparison. RESULTS Hemodilution with Ringer's lactate did not show any improvement compared to the control group. Dextran and HBOC group were superior to the Ringer and control animals in all parameters studied. Leucocyte adherence in postsinusoidal venules improved from 569.03+/-171.87 and 364.52+/-167.32 in control and Ringer group to 131.68+/-58.34 and 68.44+/-20.31/mm(2) endothelium in Dextran and HBOC group (p<0.001). Concerning tissue pO(2) levels, HBOC (23.4+/-5.0 mmHg) proved to be superior to Dextran (7.9+/-4.4 mmHg; p=0.007). CONCLUSION HBOC was equivalent to Dextran in reducing I/R injury in the liver, but improved oxygenation of postreperfusion liver tissue.
Collapse
Affiliation(s)
- Christina Zapletal
- Department of Surgery, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
22
|
Hall C, Malkevich N, Handrigan M, Vandermolen C, Aranaud F, Hong J, Dong F, Rice J, Philbin N, Ahlers S, McCarron R, Freilich D, McGwin G, Flournoy WS, Pearce LB. Innate Immune Responses in Swine Resuscitated from Severe Traumatic Hemorrhagic Shock with Hemoglobin-Based Oxygen Carrier-201. ACTA ACUST UNITED AC 2009; 35:259-74. [PMID: 17573626 DOI: 10.1080/10731190701378568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hemoglobin-based oxygen carrier-201 transports oxygen and improves survival in swine with hemorrhagic shock, but has potential to be immune activating. Herein, we evaluated HBOC-201's immune effects in swine with more severe hemorrhagic shock due to soft tissue injury and 55% blood volume catheter withdrawal over 15 minutes followed by fluid resuscitation at 20 minutes with HBOC-201, Hextend, or no treatment (NON) before hospital arrival. Survival rates were similar with HBOC-201 and Hextend (p > 0.05), but were higher than in (p = 0.007). There were no significant group differences in blood cell count, percentages of leukocyte sub-populations and immunophenotype (CD4:CD8 ratio), adhesion markers expression (neutrophil CD11b; monocyte or neutrophil CD49d) and apoptosis. There was a trend to higher plasma IL-10 in HBOC-201 and groups vs. Hextend. We conclude that in swine with severe controlled HS and soft tissue injury, immune responses are similar with resuscitation with HBOC-201 and Hextend.
Collapse
Affiliation(s)
- C Hall
- Naval Medical Research Center, Combat Casualty Care Directorate, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVE Hemoglobin-based oxygen carriers (HBOC) of several types scavenge nitric oxide from the vasculature resulting in vasoconstriction and hypertension, both systemic and pulmonary. Phosphodiesterase-5 (PDE5) inhibitors promote nitric oxide activity and enhance vasodilation. The purpose of this study was to determine whether combined therapy of glutaraldehyde-polymerized bovine hemoglobin (HBOC) with a PDE5 inhibitor would counter the negative hemodynamic consequences of HBOC therapy alone, resulting in improved hemodynamics and oxygen delivery. DESIGN A controlled, experimental study. SETTING A research laboratory at a university. SUBJECTS Conscious male Sprague-Dawley rats. INTERVENTIONS Glutaraldehyde-polymerized bovine hemoglobin (HBOC), sildenafil (PDE5 inhibitor), and lactated Ringer's solution (control). MEASUREMENTS AND MAIN RESULTS Infusion of the HBOC resulted in significant (p < 0.05) systemic and pulmonary vasoconstriction, with reduced cardiac output and reduced oxygen delivery to the periphery. Infusion of lactated Ringer's demonstrated no changes in the measured variables. Infusion of sildenafil alone reduced systemic and pulmonary artery blood pressure, while maintaining cardiac output and oxygen delivery. Combined HBOC and sildenafil infusion resulted in stable systemic blood pressure, cardiac output, and oxygen delivery. However, the addition of sildenafil to HBOC did not fully ameliorate the pulmonary vasoconstriction caused by HBOC. CONCLUSION The HBOC used in this study resulted in pulmonary and systemic hypertension, reduced cardiac output, and oxygen delivery. These negative consequences of HBOC treatment can be largely overcome by combing HBOC treatment with a PDE5 inhibitor (sildenafil). Thus, these data support the continued investigation of combined HBOC and PDE5 inhibitor treatment in circumstances in which HBOC therapy is being considered.
Collapse
|
24
|
Abstract
Clinical and preclinical studies have revealed a diverse array of indications in which the effectiveness of HBOC-201 has been demonstrated or appears likely. Included among these are indications involving cardiac and peripheral ischaemia in which this oxygen therapeutic may prove to be an important tool in the armamentarium of the cardiologist and surgeon. Preclinical studies and clinical trials are under way to further delineate and optimise the role of HBOC-201 as an oxygen therapeutic in cardiovascular medicine.
Collapse
Affiliation(s)
- Gregory P Dubé
- Cardiovascular Research, Biopure Corporation, Cambridge, Massachusetts 02141, USA.
| | | | | |
Collapse
|
25
|
HBOC-201 Vasoactivity in a Phase III Clinical Trial in Orthopedic Surgery Subjects—Extrapolation of Potential Risk for Acute Trauma Trials. ACTA ACUST UNITED AC 2009; 66:365-76. [DOI: 10.1097/ta.0b013e3181820d5c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
RESUSCITATION WITH THE HEMOGLOBIN-BASED OXYGEN CARRIER, HBOC-201, IN A SWINE MODEL OF SEVERE UNCONTROLLED HEMORRHAGE AND TRAUMATIC BRAIN INJURY. Shock 2009; 31:64-79. [DOI: 10.1097/shk.0b013e3181778dc3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Hematologic effects of recombinant factor VIIa combined with hemoglobin-based oxygen carrier-201 for prehospital resuscitation of swine with severe uncontrolled hemorrhage due to liver injury. Blood Coagul Fibrinolysis 2008; 19:669-77. [DOI: 10.1097/mbc.0b013e3283089198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Abstract
OBJECTIVE To review current knowledge of hemorrhagic shock and reperfusion injury. SUMMARY BACKGROUND DATA Patients with hemorrhagic shock require optimal resuscitation and cessation of ongoing bleeding. Often our resuscitative measures, while necessary, cause a wide range of detrimental physiologic effects. Research continues to answer questions regarding measurable endpoints and optimal fluids used in resuscitation. Elucidation and understanding of the complex metabolic pathways involved in reperfusion injury are areas of intense current investigative effort. METHODS A literature review was performed using MEDLINE and key words related to experimental and clinical studies concerning shock and reperfusion. RESULTS Experimental studies have shown that resuscitation with colloid and crystalloid show no difference in outcomes in critically ill patients. Laboratory studies are showing promising results with immunomodulation of response to injury. However, no clinical trials have shown significance yet. CONCLUSIONS It is unlikely that a single treatment modality or "magic bullet" will be able to substantially block such a complex regulated process unless performed before feedback mechanisms known to be in place. Ongoing translational research will inevitably have a major impact on patient care.
Collapse
|
29
|
The effects of decreasing low-molecular weight hemoglobin components of hemoglobin-based oxygen carriers in swine with hemorrhagic shock. ACTA ACUST UNITED AC 2008; 64:1240-57. [PMID: 18469646 DOI: 10.1097/ta.0b013e318058245e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Some hemoglobin-based oxygen carriers (HBOCs) improve outcome in animal models of hemorrhagic shock (HS) in comparison with standard asanguinous resuscitation fluids. Nevertheless, concern about intrinsic vasoactivity, linked in part to low-molecular weight (MW) hemoglobin (Hb), has slowed HBOC development. We assessed the impact of decreasing the low-MW Hb component of bovine HBOC on vasoactivity in severe HS. METHODS Anesthetized invasively monitored swine were hemorrhaged 55% blood volume and resuscitated with bovine HBOC containing 31% (31 TD [HBOC-301]), 2% (2 TD [HBOC-201]), or 0.4% (0.4 TD) low-MW Hb. Pigs received four 10 mL/kg infusions over 60 minutes, hospital arrival was simulated at 75 minutes, organ blood flow (BF) was evaluated by microsphere injection, and monitoring was continued for 4 hours followed by complete necrotic evaluation. RESULTS There were few differences between 2 TD and 0.4 TD. Thirty-one TD pigs had higher systemic and pulmonary blood pressure (BP), systemic vascular resistance index, and pulmonary artery wedge pressure, compared with 2 TD or 0.4 TD (p < 0.01); however, pigs in all groups had at least mildly elevated BP. Transcutaneous tissue oxygenation, base excess, and mixed venous oxygen saturation were similar across groups; lactate and methemoglobin were highest with 0.4 TD (p < 0.03). There were no group differences in BF. Over time, myocardial BF increased and hepatic BF decreased in all groups (for 31 TD, p < 0.05); renal BF was unchanged in all groups. There were no group differences in heart, lung, or liver histopathology, and survival. CONCLUSIONS Although purification from 31% to 2% low-MW Hb content significantly decreased vasoactive responses, further purification to 0.4% had no additional clinically measurable effects in severe HS. If further diminution in HBOC vasoactivity is desired for use in HS, additional technical approaches may be required.
Collapse
|
30
|
Innate Immune Response After Resuscitation With Hemoglobin-Based Oxygen Carrier and Recombinant Factor VIIA in Uncontrolled Hemorrhagic Shock in a Swine Model. ACTA ACUST UNITED AC 2008; 64:1498-510. [DOI: 10.1097/ta.0b013e3181454a05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
VanderMolen C, Malkevich N, Philbin N, Rice J, Collier S, Hall C, Ahlers S, McCarron R, Freilich D, McGwin G, Pearce LB. Immune effects of decreasing low-molecular weight hemoglobin components of hemoglobin-based oxygen carriers (HBOC) in a swine model of severe controlled hemorrhagic shock. ACTA ACUST UNITED AC 2008; 35:507-17. [PMID: 17922315 DOI: 10.1080/10731190701586228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hemoglobin-based oxygen carriers (HBOCs) show potential as safe, efficacious, pre-hospital resuscitation fluids. The major criticism of HBOC-201 is its vasoactive property, attributed partially to low-molecular weight (low-MW) tetrameric/dimeric (TD) hemoglobin (Hb) in HBOC solution. Here we sought to determine whether resuscitation with decreasing concentrations of low-MW Hb component of HBOC affects immune responses in hemorrhagic swine. 28 anesthetized swine underwent a soft muscle crush and controlled hemorrhage of 55% blood volume, followed by resuscitation with HBOC containing 31%, 2%, or 0.4% low-MW Hb in four 10 ml/kg infusions at 20, 30, 45 and 60 minutes before hospital arrival at 75 minutes. IL-10, cell activation and adhesion markers and CD4:CD8 ratio remained unchanged in all 3 groups compared to baseline. Leukocyte apoptosis was equally elevated across all groups. Purification from 31% to 0.4% low-MW Hb in HBOC solution did not alter immune effects in a swine model of severe controlled hemorrhagic shock.
Collapse
Affiliation(s)
- C VanderMolen
- Naval Medical Research Center, Combat Casualty Department, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Resuscitation from hemorrhagic shock comparing standard hemoglobin-based oxygen carrier (HBOC)-201 versus 7.5% hypertonic HBOC-201. ACTA ACUST UNITED AC 2008; 63:1113-9. [PMID: 17993959 DOI: 10.1097/ta.0b013e3181561157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hemoglobin-based oxygen carrier (HBOC) resuscitation has been associated with increased systemic and pulmonary vascular resistances (SVR, PVR), which may result in reduced blood flow and severe pulmonary hypertension. The physiologic and immunologic properties of 7.5% hypertonic saline solution (HTS), such as reduction of SVR and PVR, as well as inhibition of neutrophil and endothelial activation may be beneficial in reducing some of these undesirable effects of HBOCs. The aim of this study was to evaluate the hemodynamic effects of the HBOC and HBOC-201 suspended in 7.5% hypertonic saline solution (HT-HBOC) when compared with standard HBOC resuscitation. METHODS Thirty-two domestic crossbred pigs (50-60 kg) were hemorrhaged to a mean arterial pressure (MAP) of 35 mm Hg +/- 5 mm Hg for 45 minutes and resuscitated to a baseline mean arterial pressure using the following groups: (1) sham, no hemorrhage; (2) shed blood + lactated Ringer's solution; (3) standard HBOC-201; (4) hypertonic saline 7.5%; (5) hypertonic 7.5% HBOC-201. After resuscitation, observation was continued for 4 hours. Hemodynamic variables, oxygen consumption, and arterial blood gases were monitored continuously. Data were analyzed using analysis of variance. RESULTS SVR (p = 0.001), PVR (p = 0.001), and MPAP (p = 0.01) were significantly reduced in the HT-HBOC group compared with the standard HBOC group. CONCLUSION In this model of hemorrhagic shock, hypertonic HBOC-201- resuscitated pigs had significantly reduced SVR and PVR, as well as mean pulmonary artery pressure (MPAP) and increased cardiac output. HT-HBOC may be beneficial in reducing the undesirable effects of standard HBOC-201. The mechanisms of these beneficial effects need to be investigated.
Collapse
|
33
|
Arnaud F, Fasipe D, Philbin N, Rice J, Flournoy W, Ahlers S, McCarron R, Freilich D. Hematology patterns after hemoglobin-based oxygen carrier resuscitation from severe controlled hemorrhage with prolonged delayed definitive care. Transfusion 2007; 47:2098-109. [DOI: 10.1111/j.1537-2995.2007.01435.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Philbin N, Handrigan M, Rice J, McNickle K, McGwin G, Williams R, Warndorf M, Arnaud F, Malkevich N, McCarron R, Freilich D. Resuscitation following severe, controlled hemorrhage associated with a 24 h delay to surgical intervention in swine using a hemoglobin based oxygen carrier as an oxygen bridge to definitive care. Resuscitation 2007; 74:332-43. [PMID: 17383073 DOI: 10.1016/j.resuscitation.2006.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To test our hypothesis that the hemoglobin based oxygen carrier HBOC-201 would have similar or superior efficacy to 6% hetastarch (HEX) as a pre-hospital 'bridging' fluid for hemorrhagic shock when delay to definitive medical care is prolonged to 24h. METHODS Twenty-four pigs were anesthetized, instrumented, given a soft tissue injury, and bled 55% estimated blood volume. Pigs were randomized to receive HBOC-201, HEX, or no resuscitation fluids (NON). At 4h post-injury, surgical sites were repaired and pigs were recovered from anesthesia. Animals were non-invasively monitored, administered blood for anemia or saline for hypotension at 24 and 48h, and monitored for 72h. RESULTS Survival to 72h was 87.5% (7/8) in HBOC-201 and HEX pigs compared to 25% (2/8) in NON pigs (p=0.01). Increased mean arterial pressure was observed in the HBOC-201 group (p<0.0001). Cardiac index was highest in HEX pigs (overall p<0.001, HBOC-201 versus HEX p=0.002). Transcutaneous tissue oxygenation was higher with HBOC-201 (overall p=0.04, HBOC-201 versus HEX p<0.01). HBOC-201 and HEX pigs had comparable heart rates, pulmonary pressures, pre-hospital fluid requirements, venous O(2) saturation, base deficit, and lactic acid. Hemoglobin was decreased with HEX (overall p<0.0001, HBOC-201 versus HEX p<0.0002). At 24h, 14.3% (1/7) HBOC-201 pigs required blood transfusions versus 100% HEX (7/7) and NON (2/2) pigs (p>0.001). CONCLUSIONS HBOC-201 restored hemodynamics, maintained tissue oxygenation, and decreased blood transfusions in comparison to HEX in severe controlled HS with 24h delay to simulated hospital care. These results support the potential use of HBOC-201 as a bridging resuscitation fluid for HS.
Collapse
Affiliation(s)
- Nora Philbin
- Naval Medical Research Center, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rice J, Philbin N, Handrigan M, Hall C, McGwin G, Ahlers S, Pearce LB, Arnaud F, McCarron R, Freilich D. Vasoactivity of Bovine Polymerized Hemoglobin (HBOC-201) in Swine With Traumatic Hemorrhagic Shock With and Without Brain Injury. ACTA ACUST UNITED AC 2006; 61:1085-99. [PMID: 17099513 DOI: 10.1097/01.ta.0000236640.62893.fa] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND We previously reported that bovine polymerized hemoglobin (HBOC- 201) improved outcome in swine with hemorrhagic shock (HS) with and without traumatic brain injury (TBI). Herein, we add analyses of blood pressure (BP) responses, associated physiologic data, and HS fluid infusion guidelines. METHODS HBOC-201 versus standard fluid resuscitation was compared in four anesthetized invasively monitored swine models: moderate controlled HS, severe controlled HS, severe uncontrolled HS (liver injury), and severe uncontrolled HS/TBI (liver/parietal brain injuries). Pigs received fluid for hypotension and tachycardia, and were followed up to 6 (HS alone) or 72 hours (HS/TBI). The change in mean arterial pressure (DeltaMAP) response severity was stratified and analyzed based on infusion number and HS severity, using Student's t and Fisher's exact tests. RESULTS HBOC-201 vasoactivity resulted in higher MAP in all studies. Among HBOC-201 pigs, DeltaMAP responses were significant for the first two infusions and inversely related to HS severity. Among controls, DeltaMAP responses remained significant through the fourth infusion in controlled HS models, and through the first in severe uncontrolled HS/TBI; none were significant in severe uncontrolled HS. DeltaMAP was higher with HBOC-201 through the first infusion in moderate controlled HS, the fifth in severe uncontrolled HS, and the second in severe uncontrolled HS/TBI; there were no group differences in severe controlled HS. No severe MAP responses occurred. Higher DeltaMAP severity did not impact outcome. Hypotension satisfied fluid reinfusion criteria less consistently than tachycardia. Overall, HBOC-201 improved physiologic parameters and survival without causing hypoperfusion; in severe HS, perfusion improved. CONCLUSIONS In swine with HS +/- TBI, HBOC-201 had mild to moderate vasoactivity, resulting in significant DeltaMAP responses mainly after initial infusions, no severe/adverse responses, and improved outcome. Our data suggest that use of physiologic parameters (e.g., tachycardia), in addition to hypotension to guide fluid reinfusion during HS resuscitation with HBOC-201, will minimize hypoperfusion risk and maximize potential benefit.
Collapse
Affiliation(s)
- Jennifer Rice
- Combat Casualty Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910-7500, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arnaud F, Handrigan M, Hammett M, Philbin N, Rice J, Dong F, Pearce LB, McCarron R, Freilich D. Coagulation patterns following haemoglobin-based oxygen carrier resuscitation in severe uncontrolled haemorrhagic shock in swine. Transfus Med 2006; 16:290-302. [PMID: 16879158 DOI: 10.1111/j.1365-3148.2006.00678.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Massive blood loss due to penetrating trauma and internal organ damage can cause severe haemorrhagic shock (HS), leading to a severely compromised haemostatic balance. This study evaluated the effect of bovine polymerized haemoglobin (Hb) (Hb-based oxygen carrier, HBOC) resuscitation on haemostasis in a swine model of uncontrolled HS. Following liver injury/HS, swine received HBOC (n= 8), Hextend (HEX) (n= 8) or no resuscitation (NON) (n= 8). Fluids were infused to increase mean arterial pressure above 60 mmHg and to reduce heart rate to baseline. At 4 h, the animals were eligible for blood transfusions. Prothrombin time (PT), activated partial thromboplastin time, fibrinogen, thromboelastography (TEG) and platelet function analyser closure time (PFA-CT) were compared by using mixed statistical model. At 4 h, blood loss (% estimated blood volume) was comparable for HBOC (65.5 +/- 18.5%) and HEX (80.8 +/- 14.4%) and less for NON (58.7 +/- 10.1%; P < 0.05). Resuscitation-induced dilutional coagulopathy was observed with HBOC and HEX, as indicated by reduced haematocrit, platelets and fibrinogen (P < 0.05). At 4 h, PT was higher in HEX than in HBOC groups (P < 0.01). In the early hospital phase, a trend to increased TEG reaction time and PFA-CT indicates that dilutional effects persist in HBOC and HEX groups. PFA-CT returned to baseline later with HBOC than with HEX (48 vs. 24 h) following blood transfusion. At 4 h, all surviving HEX animals (n= 3) required transfusion, in contrast to no HBOC (n= 7) or NON (n= 1) animals. In this severe uncontrolled HS model, successful resuscitation with HBOC produced haemodilutional coagulopathy less than or similar to that produced by resuscitation with HEX.
Collapse
Affiliation(s)
- F Arnaud
- Trauma and Resuscitative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Johnson T, Arnaud F, Dong F, Philbin N, Rice J, Asher L, Arrisueno M, Warndorf M, Gurney J, McGwin G, Kaplan L, Flournoy WS, Apple FS, Pearce LB, Ahlers S, McCarron R, Freilich D. Bovine polymerized hemoglobin (hemoglobin-based oxygen carrier-201) resuscitation in three swine models of hemorrhagic shock with militarily relevant delayed evacuation--effects on histopathology and organ function. Crit Care Med 2006; 34:1464-74. [PMID: 16540964 DOI: 10.1097/01.ccm.0000215824.85190.89] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To test our hypothesis that hemoglobin-based oxygen carrier (HBOC)-201 resuscitation in hemorrhagic shock (HS) will not lead to increased organ injury and dysfunction. DESIGN Three swine HS models simulating military-relevant delayed evacuation: a) moderate controlled HS, b) severe controlled HS, and c) severe uncontrolled HS. SETTING Military research laboratory. SUBJECTS Swine. INTERVENTIONS Swine were anesthetized/intubated and instrumented. To induce HS, in two controlled hemorrhage experiments, 40% (moderate controlled HS) or 55% (severe controlled HS) of blood volume was withdrawn; in an uncontrolled HS experiment, the liver was crushed/lacerated. During a 4-hr "prehospital phase," pigs were resuscitated with HBOC-201 (HBOC) or Hextend (HEX) or were nonresuscitated (NON). Upon "hospital arrival," liver injury was repaired (severe uncontrolled HS), blood or saline was infused, hemodynamics were monitored, and blood was collected. Upon animal death and/or 72 hrs, necropsy was followed by histopathologic evaluation of organ injury (hematoxylin and eosin, electron microscopy) and immunohistochemistry of oxidative potential (3-nitrotyrosine). Significance (p < .05) was assessed by Kruskal-Wallis, analysis of variance/Bonferroni, and mixed procedure tests. MEASUREMENTS AND MAIN RESULTS Survival was significantly higher with HBOC than HEX only with severe uncontrolled HS (p = .002). Myocardial necrosis/fibroplasia, fluid requirements, cardiac output, and cardiac enzymes were generally similar or lower in HBOC than HEX pigs, but creatine kinase-MB (but not creatine kinase-MB/creatine kinase ratio) was higher with HBOC in moderate controlled HS. Alveolar/interstitial pulmonary edema was similar with HBOC and HEX, but Po2 was higher with HBOC in severe uncontrolled HS. Jejunal villar epithelial and hepatocellular necrosis were similarly minimal to moderate in all groups. Minimal biliary changes occurred exclusively with HBOC. Aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase were generally higher with HBOC than HEX. Mild renal papillary injury occurred more frequently with HBOC, but consistent patterns for urine output, blood urea nitrogen, and creatinine, were not seen. The 3-nitrotyrosine staining intensity was not different. CONCLUSIONS In comparison with hetastarch, HBOC-201 resuscitation of swine with HS increased survival (with severe HS), did not increase evidence of oxidative potential, and had histopathologic and/or functional effects on organs that were clinically equivocal (myocardium, lungs, hepatic parenchyma, jejunum, and renal cortex/medulla) and potentially adverse (hepatobiliary and renal papilla). The effects of HBOC-201-resuscitation in HS should be corroborated in controlled clinical trials.
Collapse
Affiliation(s)
- Todd Johnson
- Naval Medical Research Center, Research Services and Combat Casualty Directorates, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dong F, Hall CH, Golech SA, Philbin NB, Rice JP, Gurney J, Arnaud FG, Hammett M, Ma X, Flournoy WS, Hong J, Kaplan LJ, Pearce LB, McGwin G, Ahlers S, McCarron R, Freilich D. Immune effects of resuscitation with HBOC-201, a hemoglobin-based oxygen carrier, in swine with moderately severe hemorrhagic shock from controlled hemorrhage. Shock 2006; 25:50-5. [PMID: 16369186 DOI: 10.1097/01.shk.0000187982.56030.94] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HBOC-201, a hemoglobin-based oxygen carrier, improved physiologic parameters and survival in hemorrhagic shock (HS) animal models. However, resuscitation from HS and the properties of different fluids influence immune responses. The aim of this study was to determine if HBOC-201 significantly alters immune function in traumatic HS. Anesthetized pigs underwent soft tissue injury, controlled hemorrhage of 40% of blood volume, and resuscitation with HBOC-201 or Hextend, or no resuscitation. Sequential whole-blood samples were collected for analyses of leukocyte differential (hematology analyzer), T-lymphocyte subsets (CD3, CD4, and CD8) (FACS), lymphocyte adhesion marker CD49d (alpha4-integrin) expression (FACS), plasma cytokines-tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-10-(ELISA), and lymphocyte apoptosis (annexin-V/propidium iodide staining) (FACS). Statistical analyses were performed by the mixed procedure. Total WBC counts decreased posthemorrhage in both resuscitation groups. Lymphocyte percentages decreased and PMN percentages increased around 4 h posthemorrhage in all groups. CD3 cells decreased in all groups, but CD4 and CD8 cells decreased only in the resuscitation groups. TNF-alpha levels were not detectable in any groups. IL-6 levels were similar across treatment groups (P > 0.05); however, IL-10 levels were higher in the HBOC group, as early as 1 h posthemorrhage (P = 0.04). Increases in lymphocytic CD49d expression levels and apoptosis occurred only in nonresuscitation and Hextend groups, respectively (P < or = 0.01). In comparison with Hextend, HBOC-201 had no significant adverse or beneficial effects on immune function in this model of moderately severe HS in swine, suggesting that it may be safe as a resuscitation fluid in HS patients.
Collapse
Affiliation(s)
- Feng Dong
- Naval Medical Research Center, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arnaud F, Hammett M, Asher L, Philbin N, Rice J, Dong F, Pearce B, Flournoy WS, Nicholson C, McCarron R, Freilich D. Effects of bovine polymerized hemoglobin on coagulation in controlled hemorrhagic shock in swine. Shock 2005; 24:145-52. [PMID: 16044085 DOI: 10.1097/01.shk.0000170354.18437.2f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HBOC-201, a bovine polymerized hemoglobin, has been proposed as a novel oxygen-carrying resuscitative fluid for patients with hemorrhagic shock (HS). Herein, we evaluated the hemostatic effects of HBOC-201 in an animal model of HS. A 40% blood loss-controlled hemorrhage and soft tissue injury were performed in 24 invasively monitored Yucatan mini-pigs. Pigs were resuscitated with HBOC-201 (HBOC) or hydroxyethyl starch (HEX), or were not resuscitated (NON) based on cardiac parameters during a 4-h prehospital phase. Afterward, animals received simulated hospital care for 3 days with blood or saline transfusions. Hemostasis measurements included in vivo bleeding time (BT), thromboelastography (TEG), in vitro bleeding time (platelet function; PFA-CT), prothrombin time (PT), and partial thromboplastin time (PTT). Serum lactate was measured and lung sections were evaluated for microthrombi by electron microscopy. During the prehospital phase, BT remained unchanged in the HBOC group. TEG reaction time increased in HBOC pigs during the late prehospital phase and was greater than in NON or HEX pigs at 24 h (P = 0.03). TEG maximum amplitude was similar for the two fluid-resuscitated groups. PFA-CT increased in both resuscitated groups but less with HBOC (P = 0.02) in the prehospital phase; this effect was reversed by 24 h (P = 0.02). In the hospital phase, PT decreased (P < 0.02), whereas PTT increased above baseline (P < 0.01). Lactic acidosis in HBOC and HEX groups was similar. Aspartate aminotransferase was relatively elevated in the HBOC group at 24 h. Electron microscopy showed no evidence of platelet/fibrin clots or microthrombi in any of the animals. Twenty-four-hour group differences mainly reflected the fact that all HEX animals (8/8) received blood transfusions compared with only one HBOC animal (1/8). In swine with HS, HBOC resuscitation induced less thrombopathy than HEX during the prehospital phase. Mild delayed effects on platelet and clot formation during the hospital phase are transient and likely related to fewer blood transfusions. In swine with HS, HBOC resuscitation induced less thrombopathy than HEX during the prehospital phase but more thrombopathy in the hospital phase. The delayed effects on platelet and clot formation during the hospital phase are transient and may be related to the need for fewer blood transfusions.
Collapse
Affiliation(s)
- Françoise Arnaud
- Naval Medical Research Center, RMD Hematomimetics Program, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Masuno T, Moore EE, Cheng AM, Moore PK, Grant AR, Johnson JL. Prehospital hemoglobin-based oxygen carrier resuscitation attenuates postinjury acute lung injury. Surgery 2005; 138:335-41. [PMID: 16153445 DOI: 10.1016/j.surg.2005.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Crystalloid infusion has been the standard prehospital fluid resuscitation in the United States for the past 35 years, but the emergence of a safe and effective hemoglobin-based oxygen carrier (HBOC) may change that practice. The purpose of this in vivo study is to simulate an existing multicenter prehospital trial of HBOC versus crystalloid to determine the effects in a controlled 2-event construct of postinjury multiple organ failure. METHODS Rats underwent hemorrhagic shock (30 mm Hg x 45 min) and were resuscitated over 2 hours in a clinically relevant design: 2 x volume of shed blood (SB) using normal saline (NS) in the first 30 minutes; 1/2 volume of SB in the next 30 minutes; another 2 x SB volume with NS over the remaining 60 minutes. Study groups represented alternative fluid strategies during the first hour of resuscitation: (1) Inhospital SB (standard resuscitation), (2) Inhospital HBOC, (3) Prehospital SB, and (4) Prehospital HBOC. Global physiologic response was assessed via tissue oxygenation (near infrared spectroscopy) and arterial base deficit, and pulmonary response, via lung polymorphonuclear neutrophil accumulation and vascular permeability. RESULTS Prehospital HBOC resuscitation provided the most efficient recovery of tissue oxygenation and correction of base deficit, had the greatest reduction in pulmonary polymorphonuclear neutrophil accumulation, and abrogated acute lung injury. Prehospital SB and Inhospital HBOC regimens afforded intermediate lung protection, compared with standard resuscitation. CONCLUSIONS The findings in this controlled in vivo study suggest prehospital HBOC resuscitation improves the recovery from postshock oxygen debt and reduces postinjury organ dysfunction.
Collapse
Affiliation(s)
- Tomohiko Masuno
- Department of Surgery, Denver Health Medical Center, CO 80204, USA
| | | | | | | | | | | |
Collapse
|
41
|
Philbin N, Rice J, Gurney J, McGwin G, Arnaud F, Dong F, Johnson T, Flournoy WS, Ahlers S, Pearce LB, McCarron R, Freilich D. A hemoglobin-based oxygen carrier, bovine polymerized hemoglobin (HBOC-201) versus hetastarch (HEX) in a moderate severity hemorrhagic shock swine model with delayed evacuation. Resuscitation 2005; 66:367-78. [PMID: 16081200 DOI: 10.1016/j.resuscitation.2005.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the efficacy of HBOC-201 for resuscitation of hemorrhagic shock in a swine model incorporating soft tissue injury and delayed evacuation. METHODS A muscle crush injury and 40% estimated blood volume controlled hemorrhage was completed in 24 Yucatan mini-pigs. Pigs were untreated or resuscitated with HBOC-201 or 6% hetastarch (HEX) at 20 min. Invasive hemodynamics and clinical variables were monitored for 4 h (pre-hospital phase) and subsequent fluid infusions were administered for severe hypotension or tachycardia. Animals were recovered from anesthesia and monitored non-invasively to 72 h (hospital phase). RESULTS 100% (8/8) of HBOC-201-, 88% (7/8) of HEX-, and 63% (5/8) of non-resuscitated pigs, survived to 72 h (p=0.27). Mean arterial pressure, mean pulmonary arterial pressure and systemic vascular resistance index were higher in HBOC-201 pigs. By 90 min, cardiac index was restored to baseline in the HBOC-201 group and was 1.4-fold greater than baseline in the HEX group. HBOC-201 pigs had lower fluid requirements than HEX pigs (18.8+/-1.8 and 29.9+/-1.1 ml/kg, p<0.001) in the pre-hospital phase and required fewer blood transfusions (1.3+/-1.3 and 9.4+/-0.6 ml/kg, respectively, p<0.001) in the hospital phase. Urine output and blood creatinine were comparable in HBOC-201 and HEX pigs. Tissue oxygenation levels were highest in the HBOC-201 group. CONCLUSIONS As HBOC-201 restored hemodynamics and tissue oxygenation and decreased fluid requirements, in comparison with HEX, HBOC-201 was at least as efficacious and possibly a superior resuscitative fluid in a military-relevant delayed evacuation hemorrhagic shock swine model.
Collapse
Affiliation(s)
- Nora Philbin
- Naval Medical Research Center, Combat Casualty Care, 2N77 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Handrigan MT, Bentley TB, Oliver JD, Tabaku LS, Burge JR, Atkins JL. Choice of fluid influences outcome in prolonged hypotensive resuscitation after hemorrhage in awake rats. Shock 2005; 23:337-43. [PMID: 15803057 DOI: 10.1097/01.shk.0000156667.04628.1f] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypotensive resuscitation (Hypo) has been considered an alternate resuscitation strategy in clinical settings that prevent the application of standard Advanced Trauma Life Support care. However, validation of this approach when used for prolonged periods of time remains to be demonstrated. The purpose of this study was to evaluate prolonged Hypo as an alternative to standard resuscitation using various currently available resuscitative fluids. Unanesthetized, male Sprague-Dawley rats underwent computer-controlled hemorrhagic shock and resuscitation. There were six experimental groups; nonhemorrhage (NH), nonresuscitated control (C), Hypo with lactated Ringer's (HypoLR), Hypo with Hextend, 6% hydroxyethyl starch in a balanced salt solution (HEX), Hypo with PolyHeme, a polymerized hemoglobin solution (HBOC), or standard resuscitation with LR (StandLR). Animals were bled over 15 min to a mean arterial blood pressure (MAP) of 40 mmHg where the blood pressure (BP) was held for 30 min. Hypo groups were resuscitated to 60 mmHg for 4 h followed by further resuscitation to 80 mmHg. StandLR rats were resuscitated to 80 mmHg immediately after the hemorrhage period. Animals were monitored until death or they were sacrifice at 24 h. Prolonged Hypo with HEX or LR resulted in a trend toward improved 24-h survival compared with C (71%, 65%, and 48%, respectively), and performed at least as well as StandLR (58% survival). HEX required significantly less intravenous fluid (0.7x total estimated blood volume [EBV]) compared with HypoLR (1.9x EBV) and StandLR (3.2x EBV) (P < 0.05). Although HBOC required the smallest fluid volume (0.4x EBV), survival was no better than C and it resulted in the most significant acidosis. These results support the decision to use Hextend for Hypo, a strategy currently being applied on the battlefield.
Collapse
Affiliation(s)
- Michael T Handrigan
- Division of Military Casualty Research, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | |
Collapse
|