1
|
El-Serafi I, Remberger M, El-Serafi A, Benkessou F, Zheng W, Martell E, Ljungman P, Mattsson J, Hassan M. The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation. Sci Rep 2018; 8:8293. [PMID: 29844459 PMCID: PMC5974141 DOI: 10.1038/s41598-018-26033-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
Busulphan (Bu) is a myeloablative drug used for conditioning prior to hematopoietic stem cell transplantation. Bu is predominantly metabolized through glutathione conjugation, a reaction that consumes the hepatic glutathione. N-acetyl-l-cysteine (NAC) is a glutathione precursor used in the treatment of acetaminophen hepatotoxicity. NAC does not interfere with the busulphan myeloablative effect. We investigated the effect of NAC concomitant treatment during busulphan conditioning on the liver enzymes as well as the clinical outcome. Prophylactic NAC treatment was given to 54 patients upon the start of busulphan conditioning. These patients were compared with 54 historical matched controls who did not receive NAC treatment. In patients treated with NAC, aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were significantly (P < 0.05) decreased after conditioning compared to their start values. Within the NAC-group, liver enzymes were normalized in those patients (30%) who had significantly high start values. No significant decrease in enzyme levels was observed in the control group. Furthermore, NAC affected neither Bu kinetics nor clinical outcome (sinusoidal obstruction syndrome incidence, graft-versus-host disease and/or graft failure). In conclusion: NAC is a potential prophylactic treatment for hepatotoxicity during busulphan conditioning. NAC therapy did not alter busulphan kinetics or affect clinical outcome.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- ECM, KFC, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mats Remberger
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed El-Serafi
- ECM, KFC, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,College of Medicine, University of Sharjah, Sharjah, UAE
| | - Fadwa Benkessou
- ECM, KFC, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wenyi Zheng
- ECM, KFC, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Martell
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Per Ljungman
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Mattsson
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- ECM, KFC, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. .,Experimental Cancer Medicine, Clinical Research Center, Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
2
|
Induced pluripotent stem cells without c-Myc reduce airway responsiveness and allergic reaction in sensitized mice. Transplantation 2014; 96:958-65. [PMID: 23989473 DOI: 10.1097/tp.0b013e3182a53ef7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergic disorders have increased substantially in recent years. Asthma is characterized by airway damage and remodeling. Reprogramming induced pluripotent stem cells (iPSCs) from adult somatic cells transfected by Oct-4/Sox-2/Klf-4, but not c-Myc, has shown the potential of embryonic-like cells. These cells have potential for multilineage differentiation and provide a resource for stem cell-based utility. However, the therapeutic potential of iPSCs without c-Myc (iPSC-w/o-c-Myc) in allergic diseases and airway hyperresponsiveness has not been investigated. The aim of this study was to evaluate the therapeutic effect of iPSC-w/o-c-Myc transplantation in a murine asthma model. METHODS BALB/c mice were sensitized with alum-adsorbed ovalbumin (OVA) and then challenged with aerosolized OVA. Phosphate-buffered saline or iPSC-w/o-c-Myc was then intravenously injected after inhalation. Serum allergen-specific antibody levels, airway hyperresponsiveness, cytokine levels in spleen cells and bronchoalveolar lavage fluid (BALF), and cellular distribution in BALF were then examined. RESULTS Treatment with iPSC-w/o-c-Myc effectively suppressed both Th1 and Th2 antibody responses, which was characterized by reduction in serum allergen-specific IgE, IgG, IgG1, and IgG2a levels as well as in interleukin-5 and interferon-γ levels in BALF and in OVA-incubated splenocytes. Meanwhile, regulatory cytokine, interleukin-10, was enhanced. Transplantation of iPSC-w/o-c-Myc also significantly attenuated cellular infiltration in BALF and allergic airway hyperresponsiveness. However, no tumor formation was observed 6 months after transplantation. CONCLUSIONS Administration of iPSC-w/o-c-Myc not only inhibited Th1 inflammatory responses but also had therapeutic effects on systemic allergic responses and airway hyperresponsiveness. iPSC-w/o-c-Myc transplantation may be a potential modality for treating allergic reactions and bronchial asthma.
Collapse
|
3
|
Xi Y, Yuan Z, Zhang H, Guan H, Kong F, Liu N, Liang F, Cui J, Guo S, Sun Y, Xi C. Molecular construction and characterization of a novel exotoxin fusion protein that selectively blocks the B7:CD28 costimulatory signal system. J Immunother 2006; 29:586-95. [PMID: 17063121 DOI: 10.1097/01.cji.0000211300.67750.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An important strategy for specifically preventing and treating graft-versus-host and host-versus-graft diseases is to selectively block the B7:CD28/cytotoxic T-lymphocyte A4 costimulatory signal system for induced immune tolerance. In this study, a novel recombinant B7-2-L-PE40KDEL fusion protein was created to target the B7:CD28 system. We used a flexible linker sequence (Gly4Ser)4 and overlapping sequence extension to link the cDNAs encoding a human B7-2 extracellular domain and a mutant truncated form of Pseudomonas exotoxin A (PE), PE40KDEL. This B7-2-L-PE40KDEL fusion gene was then inserted into the pTYB4 expression vector, expressed in Escherichia coli, and purified through Ni-NTA mealty affinity-->MonoQ anion exchange-->Superdex75 gel filtration chromatography 3-step purification protocols. Western blotting demonstrated that the B7-2-L-PE40KDEL fusion protein specifically bound antihuman B7-2 monoclonal antibody and anti-pseudomonas exotoxin A antiserum. We used the Antheprot nucleic acid and protein analyzing software to predict the characteristics of this fusion protein, and showed that the fusion did not confer new antigenicities to the fusion protein. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests demonstrated that at doses ranging from 0.2 to 2 microg/mL, this fusion protein specifically killed CD28-overexpressing Jurkat cells but even at doses of 2 microg did not kill CD28-negative Hut28 cells. The results of a one-way mixed lymphocyte reaction demonstrated that the fusion protein has a range of suppressive effects on HLA class I and II matched related donors and recipients, and HLA class I and II mismatched unrelated donors. Taken together, these results demonstrate that we have developed a novel recombinant human B7-2-L-PE40KDEL exotoxin fusion protein that specifically blocks the B7:CD28 costimulatory signal system in a manner that may be of significant importance in preventing and treating graft-versus-host or host-versus-graft diseases.
Collapse
Affiliation(s)
- Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, Beijing 307 Hospital, Affiliated to Academy of Medical Sciences, No. 8, Dongda Avenue, Fengtai District, Beijing 100071, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Bone marrow transplantation for lysosomal storage disorders has been used for the past 25 years. The early allure of a promising new therapy has given way to more realistic expectations, as it has become clear that bone marrow transplantation is not a cure, but merely ameliorates the clinical phenotype. The results in some disorders are more acceptable than in others. Significant challenges have emerged, particularly the poor mesenchymal and neurological responses. Important recent advances in lysosomal biology, both in health and disease, have helped us to better understand the results of bone marrow transplantation, and to rationalize its role in the treatment of lysosomal storage disorders alongside newer therapies. At the same time, they have helped researchers to explore new therapeutic applications of bone marrow cells, such as gene and stem cell therapy.
Collapse
Affiliation(s)
- Ashok Vellodi
- a Consultant Paediatrician and Honorary Reader, Great Ormond Street Hospital for Children, Metabolic Unit, NHS Trust, Great Ormond Street, London WC1N 3JH, UK.
| |
Collapse
|
5
|
Vanclée A, Lutgens LCHW, Oving EBH, Deutz NEP, Gijbels MJJ, Schouten HC, Bos GMJ. Keratinocyte growth factor ameliorates acute graft-versus-host disease in a novel nonmyeloablative haploidentical transplantation model. Bone Marrow Transplant 2005; 36:907-15. [PMID: 16151417 DOI: 10.1038/sj.bmt.1705157] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Allogeneic stem cell transplantations (SCT) are currently being used as a therapy for hematological malignancies, some solid tumors and nonmalignant bone marrow deficiencies. Nevertheless, clinical applicability is limited due to toxicity of conditioning regimens, graft-versus-host disease (GVHD) and the scarcity of HLA-identical family donors. New concepts are based on nonmyeloablative conditioning to reduce toxicity, prevention or amelioration of GVHD and the use of haploidentical donors to increase donor availability. To combine these requirements, we have developed a nonmyeloablative conditioning regimen, consisting of low-dose total body irradiation and cyclophosphamide-based chemotherapy. In a haploidentical F1 --> F1 mouse model, this nonmyeloablative transplantation protocol resulted in stable full donor chimerism, but also in the development of severe GVHD. Administration of keratinocyte growth factor (KGF) reduced GVHD, evident as reduced weight loss and a lesser degree of dermatitis, compared to saline-treated controls. KGF preserved plasma citrulline and tumor necrosis factor-alpha levels, both indicative for reduced injury to the gastrointestinal tract. This was confirmed by histological findings. At 6 months after transplantation, survival rates were significantly higher in KGF-treated animals as compared to phosphate buffered saline-treated controls. These results indicate that KGF preserves gut integrity and might therefore contribute substantially to reduction of lethal GVHD in (nonmyeloablative) haploidentical transplantation.
Collapse
Affiliation(s)
- A Vanclée
- Department of Internal Medicine, Division of Hematology and Oncology, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|