1
|
Madhuri V, Ramesh S, Goos A, Paul TV, Nidugala Kesava S, Mathews V, Walther-Jallow L, Götherström C. Evaluation of safety and efficacy of multiple intravenous and intraosseous doses of foetal liver-derived mesenchymal stem cells in children with severe osteogenesis imperfecta : the BOOST2B clinical trial protocol. Bone Jt Open 2025; 6:361-372. [PMID: 40122106 PMCID: PMC11930377 DOI: 10.1302/2633-1462.63.bjo-2024-0115.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Aims Current off-label bisphosphonate treatment for osteogenesis imperfecta (OI) does not induce healthy bone formation. Therefore, novel strategies to stimulate osteogenesis and reduce fractures are needed to meet the medical needs of these patients. Preclinical data and case studies show that multiple intravenous (IV) administrations of mesenchymal stem cells (MSCs) provide promising outcomes in the treatment of OI. In the Boost to Brittle Bones (BOOST2B) trial, we aim to assess the safety and tolerability of multiple IV and intraosseous (IO) administrations of foetal liver-derived MSCs in children aged one to five years diagnosed with severe OI. Methods A total of 15 children will receive four doses of foetal MSCs IV (3 × 106 cells per kg of body weight) and IO (0.1 × 106 cells per kg of body weight per long bone) at four-month intervals. As a secondary endpoint, the therapeutic effect of the four MSC doses will be assessed based on the annual fracture rate, time to first fracture, bone mineral density, growth, clinical status of OI, and biochemical bone turnover in peripheral blood. Exploratory parameters include quality of life and donor cell engraftment. Conclusion The BOOST2B trial has been approved by the regulatory agencies in India and is ongoing. It is the first clinical trial designed to evaluate IO administration of MSCs as a potential therapy for OI. Here, we describe the BOOST2B clinical trial protocol. The long-term data on safety and efficacy will be reported once completed.
Collapse
Affiliation(s)
- Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, India
- Center for Stem Cell Research, (a unit of inStem, Bengaluru, Christian Medical College), Vellore, India
- Department of Orthopaedics, Amara Hospital, Tirupati, India
| | - Sowmya Ramesh
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, India
- Center for Stem Cell Research, (a unit of inStem, Bengaluru, Christian Medical College), Vellore, India
| | - Annika Goos
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas V. Paul
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
2
|
Chaugule S, Constantinou CK, John AA, Micha D, Eekhoff M, Gravallese E, Gao G, Shim JH. Comprehensive Review of Osteogenesis Imperfecta: Current Treatments and Future Innovations. Hum Gene Ther 2025; 36:597-617. [PMID: 39932815 DOI: 10.1089/hum.2024.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by bone fragility due to reduced bone quality, often accompanied by low bone mass, recurrent fractures, hearing loss, skeletal abnormalities, and short stature. Pathogenic variants in over 20 genes lead to clinical and genetic variability in OI, resulting in diverse symptoms and severity. Current management involves a multidisciplinary approach, including antiresorptive medications, physiotherapy, occupational therapy, and orthopedic surgery, which provide symptomatic relief but no cure. Advancements in gene therapy technologies and stem cell therapies offer promising prospects for long-lasting or permanent solutions. This review provides a comprehensive overview of OI's classification, pathogenesis, and current treatment options. It also explores emerging biotechnologies for stem cells and gene-targeted therapies in OI. The potential of these innovative therapies and their clinical implementation challenges are evaluated, focusing on their imminent success in treating bone disorders.
Collapse
Affiliation(s)
- Sachin Chaugule
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Aijaz Ahmad John
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine, Section Endocrinology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development Amsterdam, Amsterdam, Netherlands
| | - Ellen Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Sagar R, David AL. Fetal therapies - (Stem cell transplantation; enzyme replacement therapy; in utero genetic therapies). Best Pract Res Clin Obstet Gynaecol 2024; 97:102542. [PMID: 39298891 DOI: 10.1016/j.bpobgyn.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Advances in ultrasound and prenatal diagnosis are leading an expansion in the options for parents whose fetus is identified with a congenital disease. Obstetric diseases such as pre-eclampsia and fetal growth restriction may also be amenable to intervention to improve maternal and neonatal outcomes. Advanced Medicinal Therapeutic Products such as stem cell, gene, enzyme and protein therapies are most commonly being investigated as the trajectory of treatment for severe genetic diseases moves toward earlier intervention. Theoretical benefits include prevention of in utero damage, smaller treatment doses compared to postnatal intervention, use of fetal circulatory shunts and induction of immune tolerance. New systematic terminology can capture adverse maternal and fetal adverse events to improve safe trial conduct. First-in-human clinical trials are now beginning to generate results with a focus on safety first and efficacy second. If successful, these trials will transform the care of fetuses with severe early-onset congenital disease.
Collapse
Affiliation(s)
- Rachel Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK.
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK; National Institute for Health and Care Research, University College London Hospitals NHS Foundation Trust Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, UK.
| |
Collapse
|
4
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Sagar RL, Åström E, Chitty LS, Crowe B, David AL, DeVile C, Forsmark A, Franzen V, Hermeren G, Hill M, Johansson M, Lindemans C, Lindgren P, Nijhuis W, Oepkes D, Rehberg M, Sahlin NE, Sakkers R, Semler O, Sundin M, Walther-Jallow L, Verweij EJTJ, Westgren M, Götherström C. An exploratory open-label multicentre phase I/II trial evaluating the safety and efficacy of postnatal or prenatal and postnatal administration of allogeneic expanded fetal mesenchymal stem cells for the treatment of severe osteogenesis imperfecta in infants and fetuses: the BOOSTB4 trial protocol. BMJ Open 2024; 14:e079767. [PMID: 38834319 PMCID: PMC11163617 DOI: 10.1136/bmjopen-2023-079767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION Severe osteogenesis imperfecta (OI) is a debilitating disease with no cure or sufficiently effective treatment. Mesenchymal stem cells (MSCs) have good safety profile, show promising effects and can form bone. The Boost Brittle Bones Before Birth (BOOSTB4) trial evaluates administration of allogeneic expanded human first trimester fetal liver MSCs (BOOST cells) for OI type 3 or severe type 4. METHODS AND ANALYSIS BOOSTB4 is an exploratory, open-label, multiple dose, phase I/II clinical trial evaluating safety and efficacy of postnatal (n=15) or prenatal and postnatal (n=3, originally n=15) administration of BOOST cells for the treatment of severe OI compared with a combination of historical (1-5/subject) and untreated prospective controls (≤30). Infants<18 months of age (originally<12 months) and singleton pregnant women whose fetus has severe OI with confirmed glycine substitution in COL1A1 or COL1A2 can be included in the trial.Each subject receives four intravenous doses of 3×106/kg BOOST cells at 4 month intervals, with 48 (doses 1-2) or 24 (doses 3-4) hours in-patient follow-up, primary follow-up at 6 and 12 months after the last dose and long-term follow-up yearly until 10 years after the first dose. Prenatal subjects receive the first dose via ultrasound-guided injection into the umbilical vein within the fetal liver (16+0 to 35+6 weeks), and three doses postnatally.The primary outcome measures are safety and tolerability of repeated BOOST cell administration. The secondary outcome measures are number of fractures from baseline to primary and long-term follow-up, growth, change in bone mineral density, clinical OI status and biochemical bone turnover. ETHICS AND DISSEMINATION The trial is approved by Competent Authorities in Sweden, the UK and the Netherlands (postnatal only). Results from the trial will be disseminated via CTIS, ClinicalTrials.gov and in scientific open-access scientific journals. TRIAL REGISTRATION NUMBERS EudraCT 2015-003699-60, EUCT: 2023-504593-38-00, NCT03706482.
Collapse
Affiliation(s)
- Rachel L Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Eva Åström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Belinda Crowe
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Catherine DeVile
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Göran Hermeren
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Melissa Hill
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mats Johansson
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Caroline Lindemans
- Department of Pediatrics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Lindgren
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Wouter Nijhuis
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick Oepkes
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirko Rehberg
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Nils-Eric Sahlin
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Ralph Sakkers
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - O Semler
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Section of Pediatic Hematology, Immunology and HCT, Karolinska University Hospital, Stockholm, Sweden
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - E J T Joanne Verweij
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Magnus Westgren
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Kumar A, Ramesh S, Walther-Jallow L, Goos A, Kumar V, Ekblad Å, Madhuri V, Götherström C. Successful transport across continents of GMP-manufactured and cryopreserved culture-expanded human fetal liver-derived mesenchymal stem cells for use in a clinical trial. Regen Ther 2024; 26:324-333. [PMID: 39027723 PMCID: PMC11255121 DOI: 10.1016/j.reth.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Cell therapy has been increasingly considered to treat diseases, but it has been proven difficult to manufacture the same product at multiple manufacturing sites. Thus, for a wider implementation an alternative is to have one manufacturing site with a wide distribution to clinical sites. To ensure administration of a good quality cell therapy product with maintained functional characteristics, several obstacles must be overcome, which includes for example transfer of knowledge, protocols and procedures, site assessment, transportation and preparation of the product. Methods As the preparatory work for a clinical trial in India using fetal mesenchymal stem cells (fMSCs) developed and manufactured in Sweden, we performed a site assessment of the receiving clinical site, transferred methods, developed procedures and provided training of operators for handling of the cell therapy product. We further developed a Pharmacy Manual to cover the management of the product, from ordering it from the manufacturer, through transport, reconstitution, testing and administration at the clinical site. Lastly, the effect of long-distance transport on survival and function of, as well as the correct handling of the cell therapy product, was evaluated according to the pre-determined and approved Product Specification. Results Four batches of cryopreserved human fetal liver-derived fMSCs manufactured according to Good Manufacturing Practice and tested according to predetermined release criteria in Sweden, were certified and transported in a dry shipper at -150 °C to the clinical site in India. The transport was temperature monitored and took three-seven days to complete. The thawed and reconstituted cells showed more than 80% viability up to 3 h post-thawing, the cell recovery was more than 94%, the cells displayed the same surface protein expression pattern, differentiated into bone, had stable chromosomes and were sterile, which conformed with the data from the manufacturing site in Sweden. Conclusions Our study shows the feasibility of transferring necessary knowledge and technology to be able to carry out a clinical trial with a cell therapy product in distant country. It also shows that it is possible to transport a cryopreserved cell therapy product over long distances and borders with retained quality. This extends the use of cryopreserved cell therapy products in the future.
Collapse
Affiliation(s)
- Ashis Kumar
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Sowmya Ramesh
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
| | - Lilian Walther-Jallow
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Goos
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vignesh Kumar
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
| | - Åsa Ekblad
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Cecilia Götherström
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Dinulescu A, Păsărică AS, Carp M, Dușcă A, Dijmărescu I, Pavelescu ML, Păcurar D, Ulici A. New Perspectives of Therapies in Osteogenesis Imperfecta-A Literature Review. J Clin Med 2024; 13:1065. [PMID: 38398378 PMCID: PMC10888533 DOI: 10.3390/jcm13041065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Osteogenesis imperfecta (OI) is a rare skeletal dysplasia characterized as a heterogeneous disorder group with well-defined phenotypic and genetic features that share uncommon bone fragility. The current treatment options, medical and orthopedic, are limited and not efficient enough to improve the low bone density, bone fragility, growth, and mobility of the affected individuals, creating the need for alternative therapeutic agents. (2) Methods: We searched the medical database to find papers regarding treatments for OI other than conventional ones. We included 45 publications. (3) Results: In reviewing the literature, eight new potential therapies for OI were identified, proving promising results in cells and animal models or in human practice, but further research is still needed. Bone marrow transplantation is a promising therapy in mice, adults, and children, decreasing the fracture rate with a beneficial effect on structural bone proprieties. Anti-RANKL antibodies generated controversial results related to the therapy schedule, from no change in the fracture rate to improvement in the bone mineral density resorption markers and bone formation, but with adverse effects related to hypercalcemia. Sclerostin inhibitors in murine models demonstrated an increase in the bone formation rate and trabecular cortical bone mass, and a few human studies showed an increase in biomarkers and BMD and the downregulation of resorption markers. Recombinant human parathormone and TGF-β generated good results in human studies by increasing BMD, depending on the type of OI. Gene therapy, 4-phenylbutiric acid, and inhibition of eIF2α phosphatase enzymes have only been studied in cell cultures and animal models, with promising results. (4) Conclusions: This paper focuses on eight potential therapies for OI, but there is not yet enough data for a new, generally accepted treatment. Most of them showed promising results, but further research is needed, especially in the pediatric field.
Collapse
Affiliation(s)
- Alexandru Dinulescu
- Departament of Pediatrics and Department of Pediatric Orthopedics, “Carol Davila“ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.D.); (M.C.); (A.D.); (I.D.); (M.L.P.); (A.U.)
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| | - Alexandru-Sorin Păsărică
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| | - Mădălina Carp
- Departament of Pediatrics and Department of Pediatric Orthopedics, “Carol Davila“ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.D.); (M.C.); (A.D.); (I.D.); (M.L.P.); (A.U.)
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| | - Andrei Dușcă
- Departament of Pediatrics and Department of Pediatric Orthopedics, “Carol Davila“ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.D.); (M.C.); (A.D.); (I.D.); (M.L.P.); (A.U.)
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| | - Irina Dijmărescu
- Departament of Pediatrics and Department of Pediatric Orthopedics, “Carol Davila“ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.D.); (M.C.); (A.D.); (I.D.); (M.L.P.); (A.U.)
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| | - Mirela Luminița Pavelescu
- Departament of Pediatrics and Department of Pediatric Orthopedics, “Carol Davila“ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.D.); (M.C.); (A.D.); (I.D.); (M.L.P.); (A.U.)
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| | - Daniela Păcurar
- Departament of Pediatrics and Department of Pediatric Orthopedics, “Carol Davila“ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.D.); (M.C.); (A.D.); (I.D.); (M.L.P.); (A.U.)
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| | - Alexandru Ulici
- Departament of Pediatrics and Department of Pediatric Orthopedics, “Carol Davila“ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.D.); (M.C.); (A.D.); (I.D.); (M.L.P.); (A.U.)
- Departament of Pediatrics and Department of Pediatric Orthopedics, Emergency Hospital for Children ‘’Grigore Alexandrescu’’, 011743 Bucharest, Romania;
| |
Collapse
|
8
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Mahajan A, Bhattacharyya S. Immunomodulation by mesenchymal stem cells during osteogenic differentiation: Clinical implications during bone regeneration. Mol Immunol 2023; 164:143-152. [PMID: 38011783 DOI: 10.1016/j.molimm.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Critical bone defects resulting in delayed and non-union are a major concern in the field of orthopedics. Over the past decade, mesenchymal stem cells (MSCs) have become a promising frontier for bone repair and regeneration owing to their high expansion rate and osteogenic differentiation potential ex vivo. MSCs have also long been associated with their ability to modulate immune response in the recipients. These can even skew the immune response towards pro-inflammatory or anti-inflammatory type by sensing their local microenvironment. MSCs adopt anti-inflammatory phenotype at bone injury site and secrete various immunomodulatory factors such as IDO, NO, TGFβ1 and PGE-2 which have redundant role in osteoblast differentiation and bone formation. As such, several studies have also sought to decipher the immunomodulatory effects of osteogenically differentiated MSCs. The present review discusses the immunomodulatory status of MSCs during their osteogenic differentiation and summarizes few mechanisms that cause immunosuppression by osteogenically differentiated MSCs and its implication during bone healing.
Collapse
Affiliation(s)
- Aditi Mahajan
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
10
|
Sagar RL, Walther-Jallow L, Götherström C, Westgren M, David AL. Maternal and fetal safety outcomes after in utero stem cell injection: A systematic review. Prenat Diagn 2023; 43:1622-1637. [PMID: 37975679 DOI: 10.1002/pd.6459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE To investigate the maternal and fetal safety of In utero stem cell transplantation (IUSCT). METHODS Medline®, Embase and Cochrane library (1967-2023) search for publications reporting IUSCT in humans. Two reviewers independently screened abstracts and full-text papers. RESULTS Sixty six transplantation procedures in 52 fetuses were performed for haemoglobinopathies (n = 14), red cell/bleeding disorders (n = 4), immunodeficiencies (n = 15), storage disorders (n = 7), osteogenesis imperfecta (n = 2) and healthy fetuses (n = 10). The average gestational age was 18.9 weeks; of procedures reporting the injection route, cells were delivered by intraperitoneal (n = 37), intravenous (n = 19), or intracardiac (n = 4) injection or a combination (n = 3); most fetuses received one injection (n = 41). Haematopoietic (n = 40) or mesenchymal (n = 12) stem cells were delivered. The cell dose was inconsistently reported (range 1.8-3.3 × 109 cells total (n = 27); 2.7-5.0 × 109 /kg estimated fetal weight (n = 17)). The acute fetal procedural complication rate was 4.5% (3/66); the acute fetal mortality rate was 3.0% (2/66). Neonatal survival was 69.2% (36/52). Immediate maternal and pregnancy outcomes were reported in only 30.8% (16/52) and 44.2% (23/52) of cases respectively. Four fetal/pregnancy outcomes would also classify as ≥ Grade 2 maternal adverse events. CONCLUSIONS Short-, medium-, and long-term maternal and fetal adverse events should be reported in all IUSCT studies.
Collapse
Affiliation(s)
- Rachel L Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, ANA Futura, Huddinge, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, ANA Futura, Huddinge, Sweden
| | - Magnus Westgren
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, ANA Futura, Huddinge, Sweden
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
11
|
Valsecchi C, Croce S, Lenta E, Acquafredda G, Comoli P, Avanzini MA. TITLE: New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs. Pharmacol Res 2023; 192:106796. [PMID: 37207738 DOI: 10.1016/j.phrs.2023.106796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Mesenchymal Stromal Cell (MSC) clinical applications have been widely reported and their therapeutic potential has been documented in several diseases. MSCs can be isolated from several human tissues and easily expanded in vitro, they are able to differentiate in a variety of cell lineages, and they are known to interact with most immunological cells, showing immunosuppressive and tissue repair properties. Their therapeutic efficacy is closely associated with the release of bioactive molecules, namely Extracellular Vesicles (EVs), effective as their parental cells. EVs isolated from MSCs act by fusing with target cell membrane and releasing their content, showing a great potential for the treatment of injured tissues and organs, and for the modulation of the host immune system. EV-based therapies provide, as major advantages, the possibility to cross the epithelium and blood barrier and their activity is not influenced by the surrounding environment. In the present review, we deal with pre-clinical reports and clinical trials to provide data in support of MSC and EV clinical efficacy with particular focus on neonatal and pediatric diseases. Considering pre-clinical and clinical data so far available, it is likely that cell-based and cell-free therapies could become an important therapeutic approach for the treatment of several pediatric diseases.
Collapse
Affiliation(s)
- Chiara Valsecchi
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Elisa Lenta
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Gloria Acquafredda
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Patrizia Comoli
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Kawai H, Oo MW, Takabatake K, Tosa I, Soe Y, Eain HS, Sanou S, Fushimi S, Sukegawa S, Nakano K, Takeshi T, Nagatsuka H. Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus 2023; 7:e10722. [PMID: 36936364 PMCID: PMC10020919 DOI: 10.1002/jbm4.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ikue Tosa
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Sho Sanou
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Oral and Maxillofacial SurgeryKagawa Prefectural Central HospitalTakamatsuJapan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takarada Takeshi
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
13
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
14
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
15
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
16
|
Kihara Y, Tanaka Y, Ikeda M, Homma J, Takagi R, Ishigaki K, Yamanouchi K, Honda H, Nagata S, Yamato M. In utero transplantation of myoblasts and adipose-derived mesenchymal stem cells to murine models of Duchenne muscular dystrophy does not lead to engraftment and frequently results in fetal death. Regen Ther 2022; 21:486-493. [PMID: 36313392 PMCID: PMC9596598 DOI: 10.1016/j.reth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a progressive disease that leads to damage of muscle and myocardium due to genetic abnormalities in the dystrophin gene. In utero cell transplantation that might facilitate allogenic transplantation is worth considering to treat this disease. Methods We performed allogeneic in utero transplantation of GFP-positive myoblasts and adipose-derived mesenchymal stem cells into murine DMD model animals. The transplantation route in this study was fetal intraperitoneal transplantation and transplacental transplantation. Transplanted animals were examined at 4-weeks old by immunofluorescence staining and RT-qPCR. Results No GFP-positive cells were found by immunofluorescence staining of skeletal muscle and no GFP mRNA was detected by RT-qPCR in any animal, transplantation method and cell type. Compared with previous reports, myoblast transplantation exhibited an equivalent mortality rate, but adipose-derived stem cell (ASC) transplantation produced a higher mortality rate. Conclusions In utero transplantation of myoblasts or ASCs to murine models of DMD does not lead to engraftment and, in ASC transplantation primarily, frequently results in fetal death.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yukie Tanaka
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masanari Ikeda
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Honda
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Corresponding author. Fax: +81 3-3359-6046.
| |
Collapse
|
17
|
Shi C, Pan L, Hu Z. Experimental and clinical progress of in utero hematopoietic cell transplantation therapy for congenital disorders. Front Pharmacol 2022; 13:851375. [PMID: 36120324 PMCID: PMC9478511 DOI: 10.3389/fphar.2022.851375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In utero hematopoietic cell transplantation (IUHCT) is considered a potentially efficient therapeutic approach with relatively few side effects, compared to adult hematopoietic cell transplantation, for various hematological genetic disorders. The principle of IUHCT has been extensively studied in rodent models and in some large animals with close evolutionary similarities to human beings. However, IUHCT has only been used to rebuild human T cell immunity in certain patients with inherent immunodeficiencies. This review will first summarize the animal models utilized for IUHCT investigations and describe the associated outcomes. Recent advances and potential barriers for successful IUHCT are discussed, followed by possible strategies to overcome these barriers experimentally. Lastly, we will outline the progress made towards utilizing IUHCT to treat inherent disorders for patients, list out associated limitations and propose feasible means to promote the efficacy of IUHCT clinically.
Collapse
Affiliation(s)
- Chunyu Shi
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lu Pan
- Department of Pediatric Immunology, Allergy and Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zheng Hu,
| |
Collapse
|
18
|
Keshavarz Shahbaz S, Mansourabadi AH, Jafari D. Genetically engineered mesenchymal stromal cells as a new trend for treatment of severe acute graft-versus-host disease. Clin Exp Immunol 2022; 208:12-24. [PMID: 35274673 PMCID: PMC9113247 DOI: 10.1093/cei/uxac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of non-hematopoietic and self-renewing cells characterized by the potential to differentiate into different cell subtypes. MSCs have interesting features which have attracted a lot of attention in various clinical investigations. Some basic features of MSCs are including the weak immunogenicity (absence of MHC-II and costimulatory ligands accompanied by the low expression of MHC-I) and the potential of plasticity and multi-organ homing via expressing related surface molecules. MSCs by immunomodulatory effects could also ameliorate several immune-pathological conditions like graft-versus-host diseases (GVHD). The efficacy and potency of MSCs are the main objections of MSCs therapeutic applications. It suggested that improving the MSC immunosuppressive characteristic via genetic engineering to produce therapeutic molecules consider as one of the best options for this purpose. In this review, we explain the functions, immunologic properties, and clinical applications of MSCs to discuss the beneficial application of genetically modified MSCs in GVHD.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Science, Qazvin, Iran
| | - Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Zanjan, Iran
| |
Collapse
|
19
|
Schindeler A, Lee LR, O'Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:826-836. [PMID: 35306687 PMCID: PMC9324990 DOI: 10.1002/jbmr.4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) describes a series of genetic bone fragility disorders that can have a substantive impact on patient quality of life. The multidisciplinary approach to management of children and adults with OI primarily involves the administration of antiresorptive medication, allied health (physiotherapy and occupational therapy), and orthopedic surgery. However, advances in gene editing technology and gene therapy vectors bring with them the promise of gene-targeted interventions to provide an enduring or perhaps permanent cure for OI. This review describes emergent technologies for cell- and gene-targeted therapies, major hurdles to their implementation, and the prospects of their future success with a focus on bone disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadAustralia
| | - Craig F Munns
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Endocrinology and DiabetesQueensland Children's HospitalBrisbaneQLDAustralia
- Child Health Research Centre and Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
20
|
Therapeutic Potential of Human Fetal Mesenchymal Stem Cells in Musculoskeletal Disorders: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031439. [PMID: 35163361 PMCID: PMC8835918 DOI: 10.3390/ijms23031439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for diverse diseases and injuries. The biological and clinical advantages of human fetal MSCs (hfMSCs) have recently been reported. In terms of promising therapeutic approaches for diverse diseases and injuries, hfMSCs have gained prominence as healing tools for clinical therapies. Therefore, this review assesses not the only biological advantages of hfMSCs for healing human diseases and regeneration, but also the research evidence for the engraftment and immunomodulation of hfMSCs based on their sources and biological components. Of particular clinical relevance, the present review also suggests the potential therapeutic feasibilities of hfMSCs for musculoskeletal disorders, including osteoporosis, osteoarthritis, and osteogenesis imperfecta.
Collapse
|
21
|
Götherström C, David AL, Walther-Jallow L, Åström E, Westgren M. Mesenchymal Stem Cell Therapy for Osteogenesis Imperfecta. Clin Obstet Gynecol 2021; 64:898-903. [PMID: 34510048 DOI: 10.1097/grf.0000000000000656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to provide a brief overview on the background and rationale on treating fetuses and children suffering from osteogenesis imperfecta (OI) with mesenchymal stem cells (MSCs). MSCs ability to migrate, engraft, and differentiate into bone cells and to act via paracrine effects on the recipient's tissues makes these cells promising candidates as a clinical therapy for OI. Animal work and limited clinical studies in humans support the use of MSC in treating OI. Off-the-shelf MSC have a good safety profile and exhibit multilineage differentiation potential and a low immunogenic profile and thereby may enable this potential therapy to become widely available. MSC transplantation before and after birth to treat OI is an experimental therapy that is currently tested in the international multicentre phase I/II clinical trial BOOSTB4 that aims to assess the safety and efficacy of fetal MSC transplantation for the treatment of severe types of OI.
Collapse
Affiliation(s)
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | | | - Eva Åström
- Woman and Child Health, Karolinska Institutet
- Department of Pediatric Neurology, Astrid Lindgren Children's Hospital at Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Westgren
- Departments of Clinical Science, Intervention and Technology (CLINTEC)
| |
Collapse
|
22
|
Battle L, Yakar S, Carriero A. A systematic review and meta-analysis on the efficacy of stem cell therapy on bone brittleness in mouse models of osteogenesis imperfecta. Bone Rep 2021; 15:101108. [PMID: 34368408 PMCID: PMC8326355 DOI: 10.1016/j.bonr.2021.101108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 11/01/2022] Open
Abstract
There is no cure for osteogenesis imperfecta (OI), and current treatments can only partially correct the bone phenotype. Stem cell therapy holds potential to improve bone quality and quantity in OI. Here, we conduct a systematic review and meta-analysis of published studies to investigate the efficacy of stem cell therapy to rescue bone brittleness in mouse models of OI. Identified studies included bone marrow, mesenchymal stem cells, and human fetal stem cells. Effect size of fracture incidence, maximum load, stiffness, cortical thickness, bone volume fraction, and raw engraftment rates were pooled in a random-effects meta-analysis. Cell type, cell number, injection route, mouse age, irradiation, anatomical bone, and follow up time were considered as moderators. It was not possible to investigate further parameters due to the lack of standards of investigation between the studies. Despite the use of oim mice in the majority of the investigations considered and the lack of sham mice as control, this study demonstrates the promising potential of stem cell therapy to reduce fractures in OI. Although their low engraftment, cell therapy in mouse models of OI had a beneficial effect on maximum load, but not on stiffness, cortical thickness and bone volume. These parameters all depend on bone geometry and do not inform on its material properties. Being bone fractures the primary symptom of OI, there is a critical need to measure the fracture toughness of OI bone treated with stem cells to assess the actual efficacy of the treatment to rescue OI bone brittleness.
Collapse
Affiliation(s)
- Lauren Battle
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
23
|
Abstract
The field of fetal medicine has evolved significantly over the past several decades. Our ability to identify and treat the unborn patient has been shaped by advancements in imaging technology, genetic diagnosis, an improved understanding of fetal physiology, and the development and optimization of in utero surgical techniques. The future of the field will be shaped by medical innovators pushing for the continued refinement of minimally invasive surgical technique, the application of pioneering technologies such as robotic surgery and in utero stem cell and gene therapies, and the development of innovative ex utero fetal support systems.
Collapse
Affiliation(s)
- Eric Bergh
- Department of Obstetrics and Gynecology, The Fetal Center at Children's Memorial Hermann Hospital, University of Texas Health Science Center, McGovern Medical School, 6410 Fannin Street, Suite 700, Houston, TX 77030, USA.
| | - Cara Buskmiller
- Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center, McGovern Medical School, 6410 Fannin Street, Suite 700, Houston, TX 77030, USA. https://twitter.com/CaraBuskmiller
| | - Anthony Johnson
- Department of Obstetrics and Gynecology, The Fetal Center at Children's Memorial Hermann Hospital, University of Texas Health Science Center, McGovern Medical School, 6410 Fannin Street, Suite 700, Houston, TX 77030, USA
| |
Collapse
|
24
|
Kirankumar S, Gurusamy N, Rajasingh S, Sigamani V, Vasanthan J, Perales SG, Rajasingh J. Modern approaches on stem cells and scaffolding technology for osteogenic differentiation and regeneration. Exp Biol Med (Maywood) 2021; 247:433-445. [PMID: 34648374 DOI: 10.1177/15353702211052927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The process of bone repair has always been a natural mystery. Although bones do repair themselves, supplemental treatment is required for the initiation of the self-regeneration process. Predominantly, surgical procedures are employed for bone regeneration. Recently, cell-based therapy for bone regeneration has proven to be more effective than traditional methods, as it eliminates the immune risk and painful surgeries. In clinical trials, various stem cells, especially mesenchymal stem cells, have shown to be more efficient for the treatment of several bone-related diseases, such as non-union fracture, osteogenesis imperfecta, osteosarcoma, and osteoporosis. Furthermore, the stem cells grown in a suitable three-dimensional scaffold support were found to be more efficient for osteogenesis. It has been shown that the three-dimensional bioscaffolds support and simulate an in vivo environment, which helps in differentiation of stem cells into bone cells. Bone regeneration in patients with bone disorders can be improved through modification of stem cells with several osteogenic factors or using stem cells as carriers for osteogenic factors. In this review, we focused on the various types of stem cells and scaffolds that are being used for bone regeneration. In addition, the molecular mechanisms of various transcription factors, signaling pathways that support bone regeneration and the senescence of the stem cells, which limits bone regeneration, have been discussed.
Collapse
Affiliation(s)
- Shivaani Kirankumar
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Genetic Engineering, 93104SRM Institute of Science and Technology, Chennai 603203, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jayavardini Vasanthan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Genetic Engineering, 93104SRM Institute of Science and Technology, Chennai 603203, India
| | - Selene G Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
25
|
Sabir A, Irving M. Clinical trials in skeletal dysplasia: a paradigm for treating rare diseases. Br Med Bull 2021; 139:16-35. [PMID: 34453435 DOI: 10.1093/bmb/ldab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Genetic skeletal dysplasia conditions (GSDs) account for 5% of all birth defects. Until recently, targeted treatments were only available for select few conditions; 1 however, opportunities arising from developments in molecular diagnostic technologies are now leading to unparalleled therapeutic advances. This review explores current GSD clinical trials, their challenges and the hopes for the future. SOURCES OF DATA A systematic literature search of relevant original articles, reviews and meta-analyses restricted to English was conducted using PubMed up to February 2020 regarding emerging GSD therapies. AREAS OF AGREEMENT We discuss current clinical trials for in achondroplasia, osteopetrosis, osteogenesis imperfecta, hypophosphataemic rickets, hypophosphatasia and fibrous ossificans progressiva. AREAS OF CONTROVERSY We explore challenges in GSD drug development from clinician input, cost-effectiveness and evidenced-based practice. GROWING POINTS We explore opportunities brought by earlier diagnosis, its treatment impact and the challenges of gene editing. AREAS TIMELY FOR DEVELOPING RESEARCH We horizon scan for future clinical trials.
Collapse
Affiliation(s)
- Ataf Sabir
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Department of Clinical Genetics, Birmingham Women's and Children's Hospital, Mindelsohn Way, Birmingham B15 2TG, UK and University of Birmingham and Birmingham Health Partners, Edgbaston, Birmingham B152TT, UK
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Department of Medical and Molecular Genetics, Faculty of Life Sciences, King's College London, Strand London WC2R 2LS, UK
| |
Collapse
|
26
|
Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int J Mol Sci 2021; 22:7724. [PMID: 34299344 PMCID: PMC8306037 DOI: 10.3390/ijms22147724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.
Collapse
Affiliation(s)
- Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
- University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| |
Collapse
|
27
|
Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Adv 2021; 4:5877-5887. [PMID: 33232479 DOI: 10.1182/bloodadvances.2020002646] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely recognized to possess potent immunomodulatory activity, as well as to stimulate repair and regeneration of diseased or damaged tissue. These fundamental properties suggest important applications in hematopoietic cell transplantation. Although the mechanisms of therapeutic activity in vivo are yet to be fully elucidated, MSCs seem to suppress lymphocytes by paracrine mechanisms, including secreted mediators and metabolic modulators. Most recently, host macrophage engulfment of apoptotic MSCs has emerged as an important contributor to the immune suppressive microenvironment. Although bone marrow-derived MSCs are the most commonly studied, the tissue source of MSCs may be a critical determinant of immunomodulatory function. The key application of MSC therapy in hematopoietic cell transplantation is to prevent or treat graft-versus-host disease (GVHD). The pathogenesis of GVHD reveals multiple potential targets. Moreover, the recently proposed concept of tissue tolerance suggests a new possible mechanism of MSC therapy for GVHD. Beyond GVHD, MSCs may facilitate hematopoietic stem cell engraftment, which could gain greater importance with increasing use of haploidentical transplantation. Despite many challenges and much doubt, commercial MSC products for pediatric steroid-refractory GVHD have been licensed in Japan, conditionally licensed in Canada and New Zealand, and have been recommended for approval by an FDA Advisory Committee in the United States. Here, we review key historical data in the context of the most salient recent findings to present the current state of MSCs as adjunct cell therapy in hematopoietic cell transplantation.
Collapse
|
28
|
Ramesh S, Daniel D, Götherström C, Madhuri V. Trophic effects of multiple administration of mesenchymal stem cells in children with osteogenesis imperfecta. Clin Transl Med 2021; 11:e385. [PMID: 33931966 PMCID: PMC8019582 DOI: 10.1002/ctm2.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/15/2022] Open
Abstract
The safety of mesenchymal stem cell therapy for osteogenesis imperfecta has been demonstrated previously. However, it is unknown how the trophic effects are mediated by stem cells. In the present commentary, we bring to the attention of readers the recent report by Infante et al in the journal of clinical and translational medicine. The TERCELOI clinical trial presented the possible paracrine effect of transplanted MSCs in vitro and in vivo using proteomics and transcriptomic analysis. This novel finding adds new knowledge in the field of regenerative medicine. However, the scarcity of solid evidence in growth warrants a more thorough discussion.
Collapse
Affiliation(s)
- Sowmya Ramesh
- Department of Paediatric OrthopaedicsChristian Medical CollegeVelloreTamil NaduIndia
- Center for Stem Cell Research, a unit of inStem BengaluruChristian Medical CollegeVelloreTamil NaduIndia
| | - Dolly Daniel
- Department of Immunohematology and Transfusion MedicineChristian Medical CollegeVelloreTamil NaduIndia
| | - Cecilia Götherström
- Department of Clinical Science, Intervention & TechnologyKarolinska InstitutetStockholmSweden
| | - Vrisha Madhuri
- Department of Paediatric OrthopaedicsChristian Medical CollegeVelloreTamil NaduIndia
- Center for Stem Cell Research, a unit of inStem BengaluruChristian Medical CollegeVelloreTamil NaduIndia
| |
Collapse
|
29
|
Cortabarria ASDV, Makhoul L, Strouboulis J, Lombardi G, Oteng-Ntim E, Shangaris P. In utero Therapy for the Treatment of Sickle Cell Disease: Taking Advantage of the Fetal Immune System. Front Cell Dev Biol 2021; 8:624477. [PMID: 33553164 PMCID: PMC7862553 DOI: 10.3389/fcell.2020.624477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Sickle Cell Disease (SCD) is an autosomal recessive disorder resulting from a β-globin gene missense mutation and is among the most prevalent severe monogenic disorders worldwide. Haematopoietic stem cell transplantation remains the only curative option for the disease, as most management options focus solely on symptom control. Progress in prenatal diagnosis and fetal therapeutic intervention raises the possibility of in utero treatment. SCD can be diagnosed prenatally in high-risk patients using chorionic villus sampling. Among the possible prenatal treatments, in utero stem cell transplantation (IUSCT) shows the most promise. IUSCT is a non-myeloablative, non-immunosuppressive alternative conferring various unique advantages and may also offer safer postnatal management. Fetal immunologic immaturity could allow engraftment of allogeneic cells before fetal immune system maturation, donor-specific tolerance and lifelong chimerism. In this review, we will discuss SCD, screening and current treatments. We will present the therapeutic rationale for IUSCT, examine the early experimental work and initial human experience, as well as consider primary barriers of clinically implementing IUSCT and the promising approaches to address them.
Collapse
Affiliation(s)
| | - Laura Makhoul
- GKT School of Medical Education, King's College London, London, United Kingdom
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Kings College London, London, United Kingdom
| | - Giovanna Lombardi
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Eugene Oteng-Ntim
- School of Life Course Sciences, Kings College London, London, United Kingdom
| | - Panicos Shangaris
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- School of Life Course Sciences, Kings College London, London, United Kingdom
| |
Collapse
|
30
|
Iwai S, Okada A, Sasano K, Endo M, Yamazaki S, Wang X, Shimbo T, Tomimatsu T, Kimura T, Tamai K. Controlled induction of immune tolerance by mesenchymal stem cells transferred by maternal microchimerism. Biochem Biophys Res Commun 2021; 539:83-88. [PMID: 33461067 DOI: 10.1016/j.bbrc.2020.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Feto-maternal immune tolerance is established during pregnancy; however, its mechanism and maintenance remain underexplored. Here, we investigated whether mesenchymal stem/stromal cells (MSCs) as non-inherited maternal antigens (NIMAs) transferred by maternal microchimerism could induce immune tolerance. We showed that MSCs had a potential equivalent to hematopoietic stem and progenitor cells (HSPCs) to induce immune tolerance and that MSCs were essential to induce tolerance to MSC-specific antigens. Furthermore, we demonstrated that MSCs as NIMAs transferred by maternal microchimerism could induce robust immune tolerance that can be further enhanced using a drug. Our data shed light on induction of immune tolerance and serve as a foundation to develop new therapies using maternally derived cells for autoimmune or genetic diseases.
Collapse
Affiliation(s)
- Sayuri Iwai
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Aiko Okada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kei Sasano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan; Department of Children's and Women's Health, Division of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc, Ibaraki, Osaka, Japan
| | - Xin Wang
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc, Ibaraki, Osaka, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan
| | - Takuji Tomimatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
31
|
Torii D, Kobayashi T, Horie T, Tsutsui TW. Characterization of dental pulp stem cells isolated from a patient diagnosed with Crouzon syndrome. J Cell Physiol 2021; 236:5317-5324. [PMID: 33386632 PMCID: PMC8048801 DOI: 10.1002/jcp.30241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
Stem cells isolated from patients with rare diseases are important to elucidate their pathogeny and mechanisms to enable regenerative therapy. However, the mechanisms underlying tissue regeneration using patient‐derived dental pulp stem cells (DPSCs) are unclear. In this study, we investigated the levels of mRNA and protein expression related to cellular differentiation of Crouzon syndrome patient‐derived DPSCs (CS‐DPSCs) with a Gly338Arg fibroblast growth factor receptor 2 mutation. Multipotency‐related gene expression levels were equivalent in both healthy donor DPSCs and CS‐DPSCs. CS‐DPSCs showed higher osteocalcin (OCN) expression than healthy donor DPSCs. CS‐DPSCs showed a lower increase in the rate of OCN expression among phorbol 12‐myristate 13‐acetate (PMA)‐treated cells than healthy donor DPSCs compared with untreated control cells. CS‐DPSCs showed a lower phosphorylation rate of p38 and p44/42 in PMA‐treated cells than healthy donor DPSCs compared with untreated control cells. These results demonstrate that CS‐DPSCs have higher OCN expression and lower PMA stimulation‐responsiveness than healthy donor DPSCs.
Collapse
Affiliation(s)
- Daisuke Torii
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| | - Tomoko Kobayashi
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan.,Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| | - Tetsuro Horie
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan.,Department of Oral Health, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| | - Takeo W Tsutsui
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan
| |
Collapse
|
32
|
Infante A, Gener B, Vázquez M, Olivares N, Arrieta A, Grau G, Llano I, Madero L, Bueno AM, Sagastizabal B, Gerovska D, Araúzo‐Bravo MJ, Astigarraga I, Rodríguez CI. Reiterative infusions of MSCs improve pediatric osteogenesis imperfecta eliciting a pro-osteogenic paracrine response: TERCELOI clinical trial. Clin Transl Med 2021; 11:e265. [PMID: 33463067 PMCID: PMC7805402 DOI: 10.1002/ctm2.265] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disease characterized by bone fragility, with a wide range in the severity of clinical manifestations. The majority of cases are due to mutations in the COL1A1 or COL1A2 genes, which encode type I collagen. Mesenchymal stem cells (MSCs), as the progenitors of the osteoblasts, the main type I collagen secreting cell type in the bone, have been proposed and tested as an innovative therapy for OI with promising but transient outcomes. METHODS To overcome the short-term effect of MSCs therapy, we performed a phase I clinical trial based on reiterative infusions of histocompatible MSCs, administered in a 2.5-year period, in two pediatric patients affected by severe and moderate OI. The aim of this study was to assess the safety and effectiveness of this cell therapy in nonimmunosuppressed OI patients. The host response to MSCs was studied by analyzing the sera from OI patients, collected before, during, and after the cell therapy. RESULTS We first demonstrated that the sequential administration of MSCs was safe and improved the bone parameters and quality of life of OI patients along the cell treatment plus 2-year follow-up period. Moreover, the study of the mechanism of action indicated that MSCs therapy elicited a pro-osteogenic paracrine response in patients, especially noticeable in the patient affected by severe OI. CONCLUSIONS Our results demonstrate the feasibility and potential of reiterative MSCs infusion for two pediatric OI and highlight the paracrine response shown by patients as a consequence of MSCs treatment.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Cell Therapy LaboratoryBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Blanca Gener
- Stem Cells and Cell Therapy LaboratoryBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
- Service of GeneticsCruces University HospitalBarakaldoSpain
| | - Miguel Vázquez
- Department of PediatricsBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Nerea Olivares
- Department of Biochemistry, Immunology UnitCruces University HospitalBarakaldoSpain
| | - Arantza Arrieta
- Department of Biochemistry, Immunology UnitCruces University HospitalBarakaldoSpain
| | - Gema Grau
- Department of PediatricsBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Isabel Llano
- Service of GeneticsCruces University HospitalBarakaldoSpain
| | - Luis Madero
- Department of Pediatric Hematology, Oncology and Stem CellsNiño Jesús University Children´s HospitalMadridSpain
| | - Ana Maria Bueno
- Department of Orthopedic SurgeryGetafe University HospitalMadridSpain
| | | | - Daniela Gerovska
- Computational Biology and Systems Biomedicine Research GroupBiodonostia Health Research InstituteDonostiaSpain
| | - Marcos J Araúzo‐Bravo
- Computational Biology and Systems Biomedicine Research GroupBiodonostia Health Research InstituteDonostiaSpain
| | - Itziar Astigarraga
- Department of PediatricsBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
- Department of PediatricsBasque Country University UPV/EHULeioaSpain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy LaboratoryBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| |
Collapse
|
33
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
34
|
Massa M, Croce S, Campanelli R, Abbà C, Lenta E, Valsecchi C, Avanzini MA. Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics (Basel) 2020; 10:diagnostics10120999. [PMID: 33255416 PMCID: PMC7760121 DOI: 10.3390/diagnostics10120999] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decade, the secreting activity of mesenchymal stem/stromal cells (MSCs) has been widely investigated, due to its possible therapeutic role. In fact, MSCs release extracellular vesicles (EVs) containing relevant biomolecules such as mRNAs, microRNAs, bioactive lipids, and signaling receptors, able to restore physiological conditions where regenerative or anti-inflammatory actions are needed. An actual advantage would come from the therapeutic use of EVs with respect to MSCs, avoiding the possible immune rejection, the lung entrapment, improving the safety, and allowing the crossing of biological barriers. A number of concerns still have to be solved regarding the mechanisms determining the beneficial effect of MSC-EVs, the possible alteration of their properties as a consequence of the isolation/purification methods, and/or the best approach for a large-scale production for clinical use. Most of the preclinical studies have been successful, reporting for MSC-EVs a protecting role in acute kidney injury following ischemia reperfusion, a potent anti-inflammatory and anti-fibrotic effects by reducing disease associated inflammation and fibrosis in lung and liver, and the modulation of both innate and adaptive immune responses in graft versus host disease (GVHD) as well as autoimmune diseases. However, the translation of MSC-EVs to the clinical stage is still at the initial phase. Herein, we discuss the therapeutic potential of an acellular product such as MSC derived EVs (MSC-EVs) in acute and chronic pathologies.
Collapse
Affiliation(s)
- Margherita Massa
- Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (M.M.); (C.A.)
| | - Stefania Croce
- General Surgery Department, Fondazione IRCCS Policlinico S. Matteo, Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Carlotta Abbà
- Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (M.M.); (C.A.)
| | - Elisa Lenta
- Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
35
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
36
|
Kiani AK, Paolacci S, Scanzano P, Michelini S, Capodicasa N, D'Agruma L, Notarangelo A, Tonini G, Piccinelli D, Farshid KR, Petralia P, Fulcheri E, Buffelli F, Chiurazzi P, Terranova C, Plotti F, Angioli R, Castori M, Pös O, Szemes T, Bertelli M. Prenatal genetic diagnosis: Fetal therapy as a possible solution to a positive test. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020021. [PMID: 33170180 PMCID: PMC8023142 DOI: 10.23750/abm.v91i13-s.10534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fetal abnormalities cause 20% of perinatal deaths. Advances in prenatal genetic and other types of screening offer great opportunities for identifying high risk pregnancies. METHODS Through a literature search, here we summarise what are the prenatal diagnostic technique that are being used and how those techniques may allow for prenatal interventions. RESULTS Next generation sequencing and non-invasive prenatal testing are fundamental for clinical diagnostics because of their sensitivity and accuracy in identifying point mutations, aneuploidies, and microdeletions, respectively. Timely identification of genetic disorders and other fetal abnormalities enables early intervention, such as in-utero gene therapy, fetal drug therapy and prenatal surgery. CONCLUSION Prenatal intervention is mainly focused on conditions that may cause death or lifelong disabilities, like spina bifida, congenital diaphragm hernia and sacrococcygeal teratoma; and may be an alternative therapeutic option to termination of pregnancy. However, it is not yet widely available, due to lack of specialized centers.
Collapse
Affiliation(s)
| | | | | | - Sandro Michelini
- Department of Rehabilitation, San Giovanni Battista Hospital, Rome, Italy.
| | | | - Leonardo D'Agruma
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | - Angelantonio Notarangelo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | - Gerolamo Tonini
- Surgical Department, Unit of Urology, Poliambulanza Foundation, Brescia, Italy.
| | - Daniela Piccinelli
- Department of Mother and Child Health, Unit of Obstetrics and Gynecology, Poliambulanza Foundation, Brescia, Italy.
| | | | | | - Ezio Fulcheri
- UOSD Fetal and Perinatal Pathology, Department of Translational Research, Laboratory Medicine, Diagnostics and Services, IRCCS Giannina Gaslini Institute, Genoa, Italy.
| | - Francesca Buffelli
- UOSD Fetal and Perinatal Pathology, Department of Translational Research, Laboratory Medicine, Diagnostics and Services, IRCCS Giannina Gaslini Institute, Genoa, Italy.
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome Italy.
| | - Corrado Terranova
- University Campus Bio Medico of Rome, Department of Obstetrics and Gynecology, Rome, Italy.
| | - Francesco Plotti
- University Campus Bio Medico of Rome, Department of Obstetrics and Gynecology, Rome, Italy.
| | - Roberto Angioli
- University Campus Bio Medico of Rome, Department of Obstetrics and Gynecology, Rome, Italy.
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | - Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia.
| | - Tomas Szemes
- 14 Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Geneton Ltd., Bratislava, Slovakia; Comenius University Science Park, Bratislava, Slovakia.
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
37
|
Elgaz S, Bonig H, Bader P. Mesenchymal stromal cells for osteonecrosis. J Transl Med 2020; 18:399. [PMID: 33081809 PMCID: PMC7576732 DOI: 10.1186/s12967-020-02565-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022] Open
Abstract
Osteonecrosis (ON) is an acquired debilitating skeletal disorder, which is caused by a multitude of traumatic and non-traumatic etiological factors. Vascular damage, mechanical stress and increased intraosseous pressure have been discussed as contributors to ON. The optimal treatment of ON remains to be determined, since the current gold standard, core decompression, is insufficiently effective. Specific properties of mesenchymal stromal cells (MSCs) provide the rationale for their assessment in advanced stages of ON: Osteoinductive potential has been demonstrated and MSC preparations of suitable quality for use as medicinal products have been developed. Here we review the scant information on the use of allogeneic or autologous MSCs in advanced ON as well as potentially supportive data from pre-clinical studies with autologous bone marrow mononuclear cells (auto BM-MNCs), which have been studied quite extensively and the presumed therapeutic effect of which was attributed to the rare MSCs contained in these cell products. Outcomes in clinical trials with MSCs and auto-BM-MNCs remain preliminary and non-definitive, at best promising, with respect to their pharmacological effect. Clearly, though, the application of any of these cell therapies was technically feasible and safe in that it was associated with low complication rates. The heterogeneity of cell type and source, study protocols, cell manufacturing, cell properties, cell doses and surgical techniques might contribute to inconsistent results.
Collapse
Affiliation(s)
- S Elgaz
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - H Bonig
- Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Baden-Württemberg-Hessen, Goethe University, Frankfurt am Main, Germany
| | - P Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Ringdén O, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells in Pediatric Hematopoietic Cell Transplantation a Review and a Pilot Study in Children Treated With Decidua Stromal Cells for Acute Graft-versus-Host Disease. Front Immunol 2020; 11:567210. [PMID: 33193339 PMCID: PMC7604265 DOI: 10.3389/fimmu.2020.567210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are rare precursors in all organs of the body. MSCs have profound anti-inflammatory effects and reduce alloreactivity in vitro and in vivo. In pediatric allogeneic hematopoietic cell transplantation (HCT), MSCs have mainly been used to treat acute graft-versus-host disease (GVHD). MSCs are commercially available for this indication in Canada, Japan, and New Zeeland. More rare indications for MSCs in pediatric patients include graft failure and chronic GVHD. MSCs from bone marrow, adipose tissue, umbilical cord, Wharton's jelly, placenta tissue, and decidua have been used, but the optimal clinical stromal cell source has not been compared in clinical trials. More experimental clinical indications using MSCs, such as sepsis, acute respiratory distress syndrome, hemorrhages, pneumo-mediastinum, and neuroinflammation have primarily been explored in animal models or adult HCT patients. MSCs have almost no if any side-effects. In this pilot study we report the outcome of six children treated with decidua stromal cells (DSCs) for steroid refractory acute GVHD. At 6 months, complete response was seen in four patients and partial response in two patients. One child with high-risk ALL died from relapse and a boy with sickle cell disease died from a cerebral hemorrhage. Five-year survival was 67% and all survivors showed a Lansky score of 100%. To conclude, MSCs from various organs are well-tolerated and have shown an encouraging outcome for acute GVHD in pediatric patients.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Britt Gustafsson
- Division of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 2020; 183:R95-R106. [PMID: 32621590 PMCID: PMC7694877 DOI: 10.1530/eje-20-0299] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by bone fragility and skeletal deformities. While the majority of cases are associated with pathogenic variants in COL1A1 and COL1A2, the genes encoding type I collagen, up to 25% of cases are associated with other genes that function within the collagen biosynthesis pathway or are involved in osteoblast differentiation and bone mineralization. Clinically, OI is heterogeneous in features and variable in severity. In addition to the skeletal findings, it can affect multiple systems including dental and craniofacial abnormalities, muscle weakness, hearing loss, respiratory and cardiovascular complications. A multi-disciplinary approach to care is recommended to address not only the fractures, reduced mobility, growth and bone pain but also other extra-skeletal manifestations. While bisphosphonates remain the mainstay of treatment in OI, new strategies are being explored, such as sclerostin inhibitory antibodies and TGF beta inhibition, to address not only the low bone mineral density but also the inherent bone fragility. Studies in animal models have expanded the understanding of pathomechanisms of OI and, along with ongoing clinical trials, will allow to develop better therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Brien M. Rabenhorst
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Osteogenesis imperfecta (OI) is a chronic disease with few treatment options available. The purpose of this review is to provide an overview on treating OI with mesenchymal stem cells (MSC). RECENT FINDINGS Off-the-shelf MSC have a good safety profile and exhibit multilineage differentiation potential and a low immunogenic profile and are easy to manufacture. Their ability to migrate, engraft, and differentiate into bone cells, and also to act via paracrine effects on the recipient's tissues, makes MSC candidates as a clinical therapy for OI. Due to their high osteogenic potency, fetal MSC offer an even higher therapeutic potential in OI compared with MSC derived from adult sources. Preclinical and initial clinical data support the use of MSC in treating OI. The characteristics of MSC make them of great interest in treating OI. MSC may be safely transplanted via intravenous administration and show potential positive clinical effects.
Collapse
Affiliation(s)
- Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, ANA Futura, floor 8, Alfred Nobels Allé 8, 141 52 Huddinge, Stockholm, Sweden.
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, ANA Futura, floor 8, Alfred Nobels Allé 8, 141 52 Huddinge, Stockholm, Sweden
| |
Collapse
|
41
|
Abedian Z, Jenabian N, Moghadamnia AA, Zabihi E, Pourbagher R, Hossein‐Nataj H, Mohamadnia‐Afrouzi M. A comparative study on immunophenotypic characterization and osteogenic differentiation of human mesenchymal stromal cells derived from periodontal ligament and gingiva. J Periodontol 2020; 91:1194-1202. [DOI: 10.1002/jper.19-0535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Zeinab Abedian
- Student Research Committee Babol University of Medical Sciences Babol Iran
- Dental Materials Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Niloofar Jenabian
- Dental Materials Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | | | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
- Department of Pharmacology Babol University of Medical Sciences Babol Iran
| | - Roghayeh Pourbagher
- Student Research Committee Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Hadi Hossein‐Nataj
- Department of Immunology School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Mousa Mohamadnia‐Afrouzi
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| |
Collapse
|
42
|
Ultrasound-guided in Utero Transplantation of Placental Stem Cells into the Liver of Crigler-Najjar Syndrome Model Rat. Transplantation 2020; 103:e182-e187. [PMID: 30985583 DOI: 10.1097/tp.0000000000002735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Advances in prenatal screening and early diagnosis of genetic disease will potentially allow for preemptive treatment of anticipated postnatal disease by in utero cell transplantation (IUCT). This strategy carries potential benefits over postnatal treatment, which might allow for improved engraftment and function of the transplanted cells. Congenital metabolic disorders may be an ideal target for this type of therapy, as in most cases, they require replacement of a single deficient hepatic enzyme, and multiple small-animal models exist for preclinical testing. METHODS The Gunn rat, a Crigler-Najjar syndrome model animal lacking UDP-glucuronosyltransferase (UGT1A1), was used as recipient. Human amniotic epithelial cells (hAECs), which possess hepatic differentiation potential, were transplanted into the midgestation fetal Gunn rat liver via ultrasound-guided IUCT. The impact of IUCT on live birth and postnatal survival was evaluated. Human cell engraftment was immunohistochemically analyzed on postnatal day 21. RESULTS Ultrasound-guided IUCT was conducted in rat fetuses on embryonic day 16. Following IUCT, the antihuman mitochondria-positive cells were detected in the liver of recipient rats at postnatal day 21. CONCLUSIONS Here, we have introduced ultrasound-guided IUCT of hAEC using a small-animal model of a congenital metabolic disorder without immunosuppression. The immunological advantage of IUCT was demonstrated with xenogeneic IUCT. This procedure is suitable to conduct preclinical studies for exploring the feasibility and efficacy of ultrasound-guided transuterine cell injection using rodent disease models.
Collapse
|
43
|
Marzin P, Cormier-Daire V. New perspectives on the treatment of skeletal dysplasia. Ther Adv Endocrinol Metab 2020; 11:2042018820904016. [PMID: 32166011 PMCID: PMC7054735 DOI: 10.1177/2042018820904016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
The last few decades have been marked by the identification of numerous genes implicated in genetic disorders, helping in the elucidation of the underlying pathophysiology of these conditions. This has allowed new therapeutic approaches to emerge such as cellular therapy, gene therapy, or pharmacological therapy for various conditions. Skeletal dysplasias are good models to illustrate these scientific advances. Indeed, several therapeutic strategies are currently being investigated in osteogenesis imperfecta; there are ongoing clinical trials based on pharmacological approaches, targeting signaling pathways in achondroplasia and fibrodysplasia ossificans progressiva or the endoplasmic reticulum stress in metaphyseal dysplasia type Schmid or pseudoachondroplasia. Moreover, the treatment of hypophosphatasia or Morquio A disease illustrates the efficacy of enzyme drug replacement. To provide a highly specialized multidisciplinary approach, these treatments are managed by reference centers. The emergence of treatments in skeletal dysplasia provides new perspectives on the prognosis of these severe conditions and may change prenatal counseling in these diseases over the coming years.
Collapse
Affiliation(s)
- Pauline Marzin
- Clinical Genetics, INSERM UMR 1163, Paris
Descartes-Sorbonne Paris Cité University, IMAGINE Institute, Necker Enfants
Malades Hospital, Paris, France
| | - Valérie Cormier-Daire
- Clinical Genetics, INSERM UMR 1163, Paris
Descartes-Sorbonne Paris Cité University, IMAGINE Institute, Necker Enfants
Malades Hospital, 149 rue de sevres, Paris, 75015, France
| |
Collapse
|
44
|
Sabir AH, Cole T. The evolving therapeutic landscape of genetic skeletal disorders. Orphanet J Rare Dis 2019; 14:300. [PMID: 31888683 PMCID: PMC6937740 DOI: 10.1186/s13023-019-1222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rare bone diseases account for 5% of all birth defects yet very few have personalised treatments. Developments in genetic diagnosis, molecular techniques and treatment technologies however, are leading to unparalleled therapeutic advance. This review explores the evolving therapeutic landscape of genetic skeletal disorders (GSDs); the key conditions and there key differentials. METHODS A retrospective literature based review was conducted in December 2018 using a systematic search strategy for relevant articles and trials in Pubmed and clinicaltrials.gov respectively. Over 140 articles and 80 trials were generated for review. RESULTS Over 20 personalised therapies are discussed in addition to several novel disease modifying treatments in over 25 GSDs. Treatments discussed are at different stages from preclinical studies to clinical trials and approved drugs, including; Burosumab for X-linked hypophosphatemia, Palovarotene for Hereditary Multiple Exostoses, Carbamazepine for Metaphyseal Chondrodysplasia (Schmid type), Lithium carbonate and anti-sclerostin therapy for Osteoporosis Pseudoglioma syndrome and novel therapies for Osteopetrosis. We also discuss therapeutic advances in Achondroplasia, Osteogenesis Imperfecta (OI), Hypophosphotasia (HPP), Fibrodysplasia Ossificans Progressiva, and RNA silencing therapies in preclinical studies for OI and HPP. DISCUSSION It is an exciting time for GSD therapies despite the challenges of drug development in rare diseases. In discussing emerging therapies, we explore novel approaches to drug development from drug repurposing to in-utero stem cell transplants. We highlight the improved understanding of bone pathophysiology, genetic pathways and challenges of developing gene therapies for GSDs.
Collapse
Affiliation(s)
- Ataf Hussain Sabir
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, UK.
| | - Trevor Cole
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
45
|
Use of Mesenchymal Stem/Stromal Cells for Pediatric Orthopedic Applications. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
47
|
Nyberg E, O’Sullivan A, Grayson W. scafSLICR: A MATLAB-based slicing algorithm to enable 3D-printing of tissue engineering scaffolds with heterogeneous porous microarchitecture. PLoS One 2019; 14:e0225007. [PMID: 31743350 PMCID: PMC6863524 DOI: 10.1371/journal.pone.0225007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/06/2023] Open
Abstract
3D-printing is a powerful manufacturing tool that can create precise microscale architectures across macroscale geometries. Within biomedical research, 3D-printing of various materials has been used to fabricate rigid scaffolds for cell and tissue engineering constructs with precise microarchitecture to direct cell behavior and macroscale geometry provides patient specificity. While 3D-printing hardware has become low-cost due to modeling and rapid prototyping applications, there is no common paradigm or platform for the controlled design and manufacture of 3D-printed constructs for tissue engineering. Specifically, controlling the tissue engineering features of pore size, porosity, and pore arrangement is difficult using currently available software. We have developed a MATLAB approach termed scafSLICR to design and manufacture tissue-engineered scaffolds with precise microarchitecture and with simple options to enable spatially patterned pore properties. Using scafSLICR, we designed, manufactured, and characterized porous scaffolds in acrylonitrile butadiene styrene with a variety of pore sizes, porosities, and gradients. We found that transitions between different porous regions maintained an open, connected porous network without compromising mechanical integrity. Further, we demonstrated the usefulness of scafSLICR in patterning different porous designs throughout large anatomic shapes and in preparing craniofacial tissue engineering bone scaffolds. Finally, scafSLICR is distributed as open-source MATLAB scripts and as a stand-alone graphical interface.
Collapse
Affiliation(s)
- Ethan Nyberg
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aine O’Sullivan
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
48
|
Medhat D, Rodríguez CI, Infante A. Immunomodulatory Effects of MSCs in Bone Healing. Int J Mol Sci 2019; 20:ijms20215467. [PMID: 31684035 PMCID: PMC6862454 DOI: 10.3390/ijms20215467] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into multilineage cells, thus making them a significant prospect as a cell source for regenerative therapy; however, the differentiation capacity of MSCs into osteoblasts seems to not be the main mechanism responsible for the benefits associated with human mesenchymal stem cells hMSCs when used in cell therapy approaches. The process of bone fracture restoration starts with an instant inflammatory reaction, as the innate immune system responds with cytokines that enhance and activate many cell types, including MSCs, at the site of the injury. In this review, we address the influence of MSCs on the immune system in fracture repair and osteogenesis. This paradigm offers a means of distinguishing target bone diseases to be treated with MSC therapy to enhance bone repair by targeting the crosstalk between MSCs and the immune system.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| |
Collapse
|
49
|
Kim SW, Zhu GQ, Bae WJ. Mesenchymal Stem Cells Treatment for Erectile Dysfunction in Diabetic Rats. Sex Med Rev 2019; 8:114-121. [PMID: 31653438 DOI: 10.1016/j.sxmr.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Aging men with diabetes mellitus are more easily suffering from erectile dysfunction (ED), which was poor to respond to drugs. Mesenchymal stem cell treatment (MSCT) offers us an alternative approach that might reverse diabetes mellitus erectile dysfunction (DMED). AIM The aim of this study was to review the current studies investigating mesenchymal stem cell approach in diabetic rat models of ED for future research. METHODS A medical literature search was performed in PubMed by using the keywords including erectile dysfunction, mesenchymal stem cells, diabetes mellitus, and rat model. MAIN OUTCOME MEASURE Representative studies on DMED rats treated by MSCT were reviewed. RESULTS Streptozocin-induced type 1 diabetes mellitus rats were used in most studies because of cost and convenience. With the development of stem cell treatment for DMED research, many kinds of stem cells were used in animal experiment, such as bone marrow-derived mesenchymal stem cells, adipose-derived stem cells, human umbilical cord blood mononuclear cells, muscle-derived stem cells, urine-derived stem cells, neural crest stem cells, and endothelial progenitor cells. Although diverse stem cells were applied for DMED treatment, the mechanism behind these approaches was identical, including improving vascular injury, recovering smooth muscle, restoring neuronal cells, inhibiting the generation of inflammatory cytokines, homing mesenchymal stem cells, and decreasing apoptosis in corpus cavernosum. Meanwhile, combination therapies, including MSCT with drug, herb, and low-energy extracorporeal shockwave treatment showed satisfactory results for ED. CONCLUSION It has been proved that MSCT is an effective and safe treatment for the DMED rats. What's more, MSCT might be a potential and promising approach for patients with DMED as a minimally invasive treatment. Combination of MSCT with various methods was proved to be a more efficient treatment and dependable option to make up for deficiencies of MSCT. Kim SW, Zhu GQ, Bae WJ. Mesenchymal Stem Cells Treatment for Erectile Dysfunction in Diabetic Rats. Sex Med Rev 2020;8:114-121.
Collapse
Affiliation(s)
- Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Guan Qun Zhu
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Cytoprotective Preconditioning of Osteoblast-Like Cells with N-Acetyl- L-Cysteine for Bone Regeneration in Cell Therapy. Int J Mol Sci 2019; 20:ijms20205199. [PMID: 31635184 PMCID: PMC6834301 DOI: 10.3390/ijms20205199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress hinders tissue regeneration in cell therapy by inducing apoptosis and dysfunction in transplanted cells. N-acetyl-L-cysteine (NAC) reinforces cellular antioxidant capabilities by increasing a major cellular endogenous antioxidant molecule, glutathione, and promotes osteogenic differentiation. This study investigates the effects of pretreatment of osteoblast-like cells with NAC on oxidative stress-induced apoptosis and dysfunction and bone regeneration in local transplants. Rat femur bone marrow-derived osteoblast-like cells preincubated for 3 h with and without 5 mM NAC were cultured in a NAC-free osteogenic differentiation medium with continuous exposure to 50 μM hydrogen peroxide to induce oxidative stress. NAC preincubation prevented disruption of intracellular redox balance and alleviated apoptosis and negative impact on osteogenic differentiation, even under oxidative stress. Autologous osteoblast-like cells with and without NAC pretreatment in a collagen sponge vehicle were implanted in critical-size defects in rat femurs. In the third week, NAC-pretreated cells yielded complete defect closure with significantly matured lamellar bone tissue in contrast with poor bone healing by cells without pretreatment. Cell-tracking analysis demonstrated direct bone deposition by transplanted cells pretreated with NAC. Pretreatment of osteoblast-like cells with NAC enhances bone regeneration in local transplantation by preventing oxidative stress-induced apoptosis and dysfunction at the transplanted site.
Collapse
|