1
|
Li B, Wang Y, Owens CR, Banaee T, Chu CT, Jabbari K, Lee AD, Khatter NJ, Palestine AG, Su AJA, Huang CA, Washington KM. Immune responses in rodent whole eye transplantation: elucidation and preliminary investigations into rejection diagnosis and monitoring. Front Immunol 2025; 16:1475055. [PMID: 39944695 PMCID: PMC11814173 DOI: 10.3389/fimmu.2025.1475055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Background Whole Eye Transplantation (WET) offers potential for vision restoration but is hindered by the complex challenge of immune rejection. Understanding and closely monitoring these immunological responses is crucial for advancing WET. This study delves into the timeline and nature of immune responses in a rodent model of WET without immunosuppression, aiming to elucidate a detailed picture of the immune landscape post-transplantation and establish innovative diagnostic and monitoring methods. Methods We employed a multi-faceted approach to analyze immune responses post-WET, including assessments of gross changes in corneal transparency, thickness, and skin condition. Histopathological examinations of both ocular and surrounding skin tissues provided insights into cellular changes, complemented by ocular RT-qPCR for molecular analysis. Serological analysis was employed to quantify cytokines, chemokines, and donor-specific antibodies, aiming to identify potential biomarkers correlating with WET rejection and to validate the presence of antibody-mediated rejection. These methodologies collectively contribute to the development of non-invasive diagnostic and monitoring strategies for WET. Results Our study revealed a rapid and acute immune response following WET, characterized by an early innate immune response dominated by complement involvement, and infiltration of neutrophils and monocytes by post-operative day (POD) 2. This was succeeded by an acute T-cell-mediated immune reaction, predominantly involving T helper 1 (Th1) cells and cytotoxic T lymphocytes (CTLs). The presence of donor specific antibody (DSA) and indications of pyroptosis in the early phases of rejection were observed. Notably, the early elevation of serum CXCL10 by POD4, coupled with ocular CD3+ cell infiltration, emerged as a potential early biomarker for WET rejection. Additionally, corneal transparency grading proved effective as a non-invasive monitoring tool. Conclusion This study offers a first-time comprehensive exploration of immune responses in WET, unveiling rapid and complex rejection mechanisms. The identification of early biomarkers and the development of non-invasive monitoring techniques significantly advance our understanding of WET rejection. Additionally, these findings establish an essential baseline for future research in this evolving field.
Collapse
Affiliation(s)
- Bing Li
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yong Wang
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles R. Owens
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Touka Banaee
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Charleen T. Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kayvon Jabbari
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anna D. Lee
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Neil J. Khatter
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alan G. Palestine
- Sue Anschutz-Rogers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - An-Jey A. Su
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christene A. Huang
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kia M. Washington
- Division of Plastic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Xia X, Fan X, Jiang S, Liao Y, Sun Y. Unveiling the intricate interplay: Exploring biological bridges between renal ischemia-reperfusion injury and T cell-mediated immune rejection in kidney transplantation. PLoS One 2024; 19:e0311661. [PMID: 39715172 DOI: 10.1371/journal.pone.0311661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/22/2024] [Indexed: 12/25/2024] Open
Abstract
Although the link between ischemia-reperfusion injury (IRI) and T cell-mediated rejection (TCMR) in kidney transplantation (KT) is well known, the mechanism remains unclear. We investigated essential genes and biological processes involved in interactions between IRI and TCMR. METHODS Renal IRI and TCMR datasets were obtained from the Gene Expression Omnibus database. IRI and TCMR co-expression networks were built using weighted gene co-expression network analysis, and essential modules were identified to acquire shared genes and conduct functional enrichment analysis. Shared genes were used for TCMR consensus clustering, differentially expressed genes (DEGs) were identified, and gene set enrichment analysis (GSEA) was conducted. Three machine learning algorithms screened for hub genes, which underwent miRNA prediction and transcription factor analysis. Hub gene expression was verified, and survival analysis was performed using Kaplan-Meier curves. RESULTS IRI and TCMR shared 84 genes. Functional enrichment analysis revealed that inflammation played a significant role. Based on shared genes, TCMR was divided into two clusters. GSEA revealed that graft rejection-related pathways varied between the two clusters. TCMR hub genes, guanylate-binding protein 1 (GBP1) and CD69, showed increased expression. Decreased survival rates were found in patients who had undergone KT and had high GBP1 and CD69 levels. CONCLUSIONS The study demonstrates that renal IRI has a potential role in renal TCMR and the pathogenic pathways are potentially inflammation-related.
Collapse
Affiliation(s)
- Xinyi Xia
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Xinrui Fan
- Faculty of Psychology, Sleep and NeuroImaging Center, Southwest University, Chongqing, China
| | - Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Yang Sun
- Department of Medical Records Management and Statistics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Janfeshan S, Afshari A, Yaghobi R, Roozbeh J. Urinary CXCL-10, a prognostic biomarker for kidney graft injuries: a systematic review and meta-analysis. BMC Nephrol 2024; 25:292. [PMID: 39232662 PMCID: PMC11375915 DOI: 10.1186/s12882-024-03728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
The challenges of long-term graft survival and the side effects of current immunosuppressive therapies in kidney transplantation highlight the need for improved drugs with fewer adverse effects. Biomarkers play a crucial role in quickly detecting post-transplant complications, with new biomarkers showing promise for ongoing monitoring of disease and potentially reducing the need for unnecessary invasive biopsies. The chemokines such as C-X-C motif chemokine ligand 10 (CXCL10), are particularly promising protein biomarkers for acute renal rejection, with urine samples being a desirable source for biomarkers. The aim of this review is to analyze the literature on the potential role of urinary CXCL10 protein in predicting kidney graft injuries. The results of this study demonstrate that evaluating urinary CXCL10 levels is more successful in identifying post-transplant injuries compared to assessing the CXCL10/Cr ratio.
Collapse
Affiliation(s)
- Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Falahat P, Scheidt U, Pörner D, Schwab S. Recent Insights in Noninvasive Diagnostic for the Assessment of Kidney and Cardiovascular Outcome in Kidney Transplant Recipients. J Clin Med 2024; 13:3778. [PMID: 38999343 PMCID: PMC11242869 DOI: 10.3390/jcm13133778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Kidney transplantation improves quality of life and prolongs survival of patients with end-stage kidney disease. However, kidney transplant recipients present a higher risk for cardiovascular events compared to the general population. Risk assessment for graft failure as well as cardiovascular events is still based on invasive procedures. Biomarkers in blood and urine, but also new diagnostic approaches like genetic or molecular testing, can be useful tools to monitor graft function and to identify patients of high cardiovascular risk. Many biomarkers have been introduced, whereas most of these biomarkers have not been implemented in clinical routine. Here, we discuss recent developments in biomarkers and diagnostic models in kidney transplant recipients. Because many factors impact graft function and cardiovascular risk, it is most likely that no biomarker will meet the highest demands and standards. We advocate to shift focus to the identification of patients benefitting from molecular and genetic testing as well as from analysis of more specific biomarkers instead of finding one biomarker fitting to all patients.
Collapse
Affiliation(s)
- Peyman Falahat
- Department of Internal Medicine I, Nephrology Section, University of Bonn, 53121 Bonn, Germany
| | - Uta Scheidt
- Department of Internal Medicine I, Nephrology Section, University of Bonn, 53121 Bonn, Germany
| | - Daniel Pörner
- Department of Internal Medicine I, Nephrology Section, University of Bonn, 53121 Bonn, Germany
| | - Sebastian Schwab
- Department of Internal Medicine I, Nephrology Section, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
5
|
Erez DL, Lokesh S, Howarth KD, Meloni S, Ballester L, Laskin B, Sullivan KE, Blinder J. Immune urinary biomarkers predict infant cardiac surgery-associated acute kidney injury. Pediatr Nephrol 2024; 39:589-595. [PMID: 37597103 PMCID: PMC11849402 DOI: 10.1007/s00467-023-06051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) occurs frequently after infant cardiac surgery and is associated with poor outcomes, including mortality and prolonged length of stay. AKI mechanisms are poorly understood, limiting therapeutic targets. Emerging data implicates dysregulated immune activation in post-cardiac surgery AKI development. We sought to identify immune-mediated AKI biomarkers after infant cardiopulmonary bypass (CPB)-assisted cardiac surgery. METHODS A single-center prospective study of 126 infants less than 1 year old undergoing CPB-assisted surgery enrolled between 10/2017 and 6/2019. Urine samples were collected before CPB and at 6, 24, 48, and 72 h after surgery. Immune-mediated biomarkers were measured using commercial ELISA and Luminex™ multiplex kits. Based on subject age, neonatal KDIGO (< 1 month) or KDIGO criteria defined AKI. The Kruskal-Wallis rank test determined the relationship between urinary biomarker measurements and AKI. RESULTS A total of 35 infants (27%) developed AKI. AKI subjects were younger, underwent more complex surgery, and had longer CPB time. Subjects with AKI vs. those without AKI had higher median urinary chemokine 10 (C-X-C motif) ligand levels at 24, 48, and 72 h, respectively: 14.3 pg/ml vs. 5.3 pg/ml, 3.4 pg/ml vs. 0.8 pg/ml, and 1.15 pg/ml vs. 0.22 pg/ml (p < 0.05) post-CPB. At 6 h post-CPB, median vascular cell adhesion protein 1 (VCAM) levels (pg/mL) were higher among AKI subjects (491 pg/ml vs. 0 pg/ml, p = 0.04). CONCLUSIONS Urinary CXCL10 and VCAM are promising pro-inflammatory biomarkers for early AKI detection and may indicate eventual AKI therapeutic targets. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Daniella Levy Erez
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Schneider Children's Medical Center Israel, 14 Kaplan Street, Petach Tiqva, Israel.
| | - Shah Lokesh
- Division of Pediatric Nephrology, Department of Pediatrics, Stanford University School of Medicine, Stanford, USA
| | - Kathryn D Howarth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Sherin Meloni
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Lance Ballester
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Benjamin Laskin
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kathleen E Sullivan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Joshua Blinder
- Division of Cardiac Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
6
|
Chancharoenthana W, Traitanon O, Leelahavanichkul A, Tasanarong A. Molecular immune monitoring in kidney transplant rejection: a state-of-the-art review. Front Immunol 2023; 14:1206929. [PMID: 37675106 PMCID: PMC10477600 DOI: 10.3389/fimmu.2023.1206929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Although current regimens of immunosuppressive drugs are effective in renal transplant recipients, long-term renal allograft outcomes remain suboptimal. For many years, the diagnosis of renal allograft rejection and of several causes of renal allograft dysfunction, such as chronic subclinical inflammation and infection, was mostly based on renal allograft biopsy, which is not only invasive but also possibly performed too late for proper management. In addition, certain allograft dysfunctions are difficult to differentiate from renal histology due to their similar pathogenesis and immune responses. As such, non-invasive assays and biomarkers may be more beneficial than conventional renal biopsy for enhancing graft survival and optimizing immunosuppressive drug regimens during long-term care. This paper discusses recent biomarker candidates, including donor-derived cell-free DNA, transcriptomics, microRNAs, exosomes (or other extracellular vesicles), urine chemokines, and nucleosomes, that show high potential for clinical use in determining the prognosis of long-term outcomes of kidney transplantation, along with their limitations.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Thammasat Multi-Organ Transplant Center, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Opas Traitanon
- Thammasat Multi-Organ Transplant Center, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Adis Tasanarong
- Thammasat Multi-Organ Transplant Center, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
7
|
Novacescu D, Latcu SC, Bardan R, Daminescu L, Cumpanas AA. Contemporary Biomarkers for Renal Transplantation: A Narrative Overview. J Pers Med 2023; 13:1216. [PMID: 37623466 PMCID: PMC10456039 DOI: 10.3390/jpm13081216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Renal transplantation (RT) is the preferred treatment for end-stage renal disease. However, clinical challenges persist, i.e., early detection of graft dysfunction, timely identification of rejection episodes, personalization of immunosuppressive therapy, and prediction of long-term graft survival. Biomarkers have emerged as valuable tools to address these challenges and revolutionize RT patient care. Our review synthesizes the existing scientific literature to highlight promising biomarkers, their biological characteristics, and their potential roles in enhancing clinical decision-making and patient outcomes. Emerging non-invasive biomarkers seemingly provide valuable insights into the immunopathology of nephron injury and allograft rejection. Moreover, we analyzed biomarkers with intra-nephron specificities, i.e., glomerular vs. tubular (proximal vs. distal), which can localize an injury in different nephron areas. Additionally, this paper provides a comprehensive analysis of the potential clinical applications of biomarkers in the prediction, detection, differential diagnosis and assessment of post-RT non-surgical allograft complications. Lastly, we focus on the pursuit of immune tolerance biomarkers, which aims to reclassify transplant recipients based on immune risk thresholds, guide personalized immunosuppression strategies, and ultimately identify patients for whom immunosuppression may safely be reduced. Further research, validation, standardization, and prospective studies are necessary to fully harness the clinical utility of RT biomarkers and guide the development of targeted therapies.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Razvan Bardan
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Liviu Daminescu
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
| | - Alin Adrian Cumpanas
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
8
|
Jimenez-Coll V, Llorente S, Boix F, Alfaro R, Galián JA, Martinez-Banaclocha H, Botella C, Moya-Quiles MR, Muro-Pérez M, Minguela A, Legaz I, Muro M. Monitoring of Serological, Cellular and Genomic Biomarkers in Transplantation, Computational Prediction Models and Role of Cell-Free DNA in Transplant Outcome. Int J Mol Sci 2023; 24:ijms24043908. [PMID: 36835314 PMCID: PMC9963702 DOI: 10.3390/ijms24043908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
The process and evolution of an organ transplant procedure has evolved in terms of the prevention of immunological rejection with the improvement in the determination of immune response genes. These techniques include considering more important genes, more polymorphism detection, more refinement of the response motifs, as well as the analysis of epitopes and eplets, its capacity to fix complement, the PIRCHE algorithm and post-transplant monitoring with promising new biomarkers that surpass the classic serum markers such as creatine and other similar parameters of renal function. Among these new biomarkers, we analyze new serological, urine, cellular, genomic and transcriptomic biomarkers and computational prediction, with particular attention to the analysis of donor free circulating DNA as an optimal marker of kidney damage.
Collapse
Affiliation(s)
- Víctor Jimenez-Coll
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Santiago Llorente
- Nephrology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Francisco Boix
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Rafael Alfaro
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - José Antonio Galián
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Helios Martinez-Banaclocha
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Carmen Botella
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - María R. Moya-Quiles
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Manuel Muro-Pérez
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Correspondence: (I.L.); (M.M.); Tel.: +34-699986674 (M.M.); Fax: +34-868834307 (M.M.)
| | - Manuel Muro
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
- Correspondence: (I.L.); (M.M.); Tel.: +34-699986674 (M.M.); Fax: +34-868834307 (M.M.)
| |
Collapse
|
9
|
The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res 2022; 2022:6572338. [PMID: 35669103 PMCID: PMC9167141 DOI: 10.1155/2022/6572338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical transplantology is a constantly evolving field of medicine. Kidney transplantation has become standard clinical practice, and it has a significant impact on reducing mortality and improving the quality of life of patients. Allogenic transplantation induces an immune response, which may lead to the rejection of the transplanted organ. The gold standard for evaluating rejection of the transplanted kidney by the recipient's organism is a biopsy of this organ. However, due to the high invasiveness of this procedure, alternative diagnostic methods are being sought. Therefore, the biomarkers may play an essential predictive role in transplant rejection. A review of the most promising biomarkers for early diagnosis and prognosis prediction of allogenic kidney transplant rejection summarizes novel data on neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), C-X-C motif chemokine 10 (CXCL-10), cystatin C (CysC), osteopontin (OPN), and clusterin (CLU) and analyses the dynamics of changes of the biomarkers mentioned above in kidney diseases and the mechanism of rejection of the transplanted kidney.
Collapse
|
10
|
Cornish EF, McDonnell T, Williams DJ. Chronic Inflammatory Placental Disorders Associated With Recurrent Adverse Pregnancy Outcome. Front Immunol 2022; 13:825075. [PMID: 35529853 PMCID: PMC9072631 DOI: 10.3389/fimmu.2022.825075] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory placental disorders are a group of rare but devastating gestational syndromes associated with adverse pregnancy outcome. This review focuses on three related conditions: villitis of unknown etiology (VUE), chronic histiocytic intervillositis (CHI) and massive perivillous fibrin deposition (MPFD). The hallmark of these disorders is infiltration of the placental architecture by maternal immune cells and disruption of the intervillous space, where gas exchange between the mother and fetus occurs. Currently, they can only be detected through histopathological examination of the placenta after a pregnancy has ended. All three are associated with a significant risk of recurrence in subsequent pregnancies. Villitis of unknown etiology is characterised by a destructive infiltrate of maternal CD8+ T lymphocytes invading into the chorionic villi, combined with activation of fetal villous macrophages. The diagnosis can only be made when an infectious aetiology has been excluded. VUE becomes more common as pregnancy progresses and is frequently seen with normal pregnancy outcome. However, severe early-onset villitis is usually associated with fetal growth restriction and recurrent pregnancy loss. Chronic histiocytic intervillositis is characterised by excessive accumulation of maternal CD68+ histiocytes in the intervillous space. It is associated with a wide spectrum of adverse pregnancy outcomes including high rates of first-trimester miscarriage, severe fetal growth restriction and late intrauterine fetal death. Intervillous histiocytes can also accumulate due to infection, including SARS-CoV-2, although this infection-induced intervillositis does not appear to recur. As with VUE, the diagnosis of CHI requires exclusion of an infectious cause. Women with recurrent CHI and their families are predisposed to autoimmune diseases, suggesting CHI may have an alloimmune pathology. This observation has driven attempts to prevent CHI with a wide range of maternal immunosuppression. Massive perivillous fibrin deposition is diagnosed when >25% of the intervillous space is occupied by fibrin, and is associated with fetal growth restriction and late intrauterine fetal death. Although not an inflammatory disorder per se, MPFD is frequently seen in association with both VUE and CHI. This review summarises current understanding of the prevalence, diagnostic features, clinical consequences, immune pathology and potential prophylaxis against recurrence in these three chronic inflammatory placental syndromes.
Collapse
Affiliation(s)
- Emily F. Cornish
- Elizabeth Garrett Anderson Institute for Women’s Health, Department of Maternal and Fetal Medicine, University College London, London, United Kingdom,*Correspondence: Emily F. Cornish,
| | - Thomas McDonnell
- Faculty of Engineering Science, Department of Biochemical Engineering, University College London, London, United Kingdom
| | - David J. Williams
- Elizabeth Garrett Anderson Institute for Women’s Health, Department of Maternal and Fetal Medicine, University College London, London, United Kingdom
| |
Collapse
|
11
|
Brunet M, Millán O. Getting immunosuppression just right: the role of clinical biomarkers in predicting patient response post solid organ transplantation. Expert Rev Clin Pharmacol 2021; 14:1467-1479. [PMID: 34607521 DOI: 10.1080/17512433.2021.1987882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Actually, immunosuppression selection isn't based on individual immune alloreactivity, and immunosuppressive drug dosing is mainly based on the development of toxicity and the achievement of specific target concentrations. Since a successful outcome requires optimal patient risk stratification and treatment, several groups have evaluated candidate biomarkers that have shown promise in the assessment of individual immune responses, the prediction of personal pharmacodynamic effects of immunosuppressive drugs and the prognosis and diagnosis of graft outcomes.. AREAS COVERED This review includes biomarkers that the Scientific Community in Solid Organ Transplantation currently considers to have potential as diagnostic and prognostic biomarkers of graft evolution. We have focused on recent scientific advances and expert recommendations regarding the role of specific and non-specific pharmacodynamic biomarkers that are mainly involved in the T-cell-mediated response. EXPERT OPINION Integral pharmacologic monitoring that combines pharmacokinetics, pharmacogenetics and predictive pharmacodynamic biomarkers may provide crucial information and allow personal adjustment of immunosuppressive drugs at an early stage before severe adverse events ensue. Multicentre, randomized, prospective and interventional trials are needed to fine tune the established cut-off values for each biomarker and the optimal monitoring frequency for each biomarker and to accurately evaluate possible clinical confounding factors to enable correct clinical qualification.
Collapse
Affiliation(s)
- Mercè Brunet
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Millán
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Para R, Romero R, Miller D, Galaz J, Done B, Peyvandipour A, Gershater M, Tao L, Motomura K, Ruden DM, Isherwood J, Jung E, Kanninen T, Pique-Regi R, Tarca AL, Gomez-Lopez N. The Distinct Immune Nature of the Fetal Inflammatory Response Syndrome Type I and Type II. Immunohorizons 2021; 5:735-751. [PMID: 34521696 PMCID: PMC9394103 DOI: 10.4049/immunohorizons.2100047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Fetal inflammatory response syndrome (FIRS) is strongly associated with neonatal morbidity and mortality and can be classified as type I or type II. Clinically, FIRS type I and type II are considered as distinct syndromes, yet the molecular underpinnings of these fetal inflammatory responses are not well understood because of their low prevalence and the difficulty of postdelivery diagnosis. In this study, we performed RNA sequencing of human cord blood samples from preterm neonates diagnosed with FIRS type I or FIRS type II. We found that FIRS type I was characterized by an upregulation of host immune responses, including neutrophil and monocyte functions, together with a proinflammatory cytokine storm and a downregulation of T cell processes. In contrast, FIRS type II comprised a mild chronic inflammatory response involving perturbation of HLA transcripts, suggestive of fetal semiallograft rejection. Integrating single-cell RNA sequencing-derived signatures with bulk transcriptomic data confirmed that FIRS type I immune responses were mainly driven by monocytes, macrophages, and neutrophils. Last, tissue- and cell-specific signatures derived from the BioGPS Gene Atlas further corroborated the role of myeloid cells originating from the bone marrow in FIRS type I. Collectively, these data provide evidence that FIRS type I and FIRS type II are driven by distinct immune mechanisms; whereas the former involves the innate limb of immunity consistent with host defense, the latter resembles a process of semiallograft rejection. These findings shed light on the fetal immune responses caused by infection or alloreactivity that can lead to deleterious consequences in neonatal life.
Collapse
Affiliation(s)
- Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jenna Isherwood
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI; and
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
13
|
Millán O, Rovira J, Guirado L, Espinosa C, Budde K, Sommerer C, Piñeiro GJ, Diekmann F, Brunet M. Advantages of plasmatic CXCL-10 as a prognostic and diagnostic biomarker for the risk of rejection and subclinical rejection in kidney transplantation. Clin Immunol 2021; 229:108792. [PMID: 34217849 DOI: 10.1016/j.clim.2021.108792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
This study evaluate the potential of plasmatic CXCL-10 (pCXCL-10) as a pre&post transplantation prognostic and diagnostic biomarker of T-cell-mediated rejection (TCMR), antibody-mediated rejection (ABMR) and subclinical rejection (SCR) risk in adult kidney recipients considering BKV and CMV infections as possible clinical confounder factors. Twenty-eight of 100 patients included experienced rejection (TCMR:14; ABMR:14); 8 SCR; 13 and 16 were diagnosed with BKV and CMV infection, respectively. Pre-transplantation pCXCL-10 was significantly increased in TCMR and ABMR and post-transplantation in TCMR, ABMR and SCR compared with nonrejectors. All CMV+ patients showed pCXCL-10 levels above the cutoff values established for rejection whereas the 80% of BKV+ patients showed pCXCL-10 concentration < 100 pg/mL. pCXCL-10 could improve pre-transplantation patient stratification and immunosuppressive treatment selection according to rejection risk; and after kidney transplantation could be a potential early prognostic biomarker for rejection. Clinical confounding factor in BKV+ and particularly in CMV+ patients must be discarded.
Collapse
Affiliation(s)
- Olga Millán
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, c/Villarroel, 170, 08036 Barcelona, Spain; Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, c/Sinesio Delgado 4, 28029 Madrid, Spain.
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain; Red de Investigación Renal (REDINREN), Plaza de las Cortes, 11, 28014 Madrid, Spain.
| | - Lluis Guirado
- Renal Transplant Unit, Nephrology Department, Fundació Puigvert, Carrer de Cartagena, 340, 08025 Barcelona, Spain.
| | - Cristina Espinosa
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, c/Villarroel, 170, 08036 Barcelona, Spain.
| | - Klemens Budde
- Medizinische Klinik mit Schwerpunkt Nephrologie, Charité Universitätsmedizin Berlin, Campus Charité Mitte Luisenstraße 13, 10117 Berlin, Germany.
| | - Claudia Sommerer
- Department of Nephrology, University of Heidelberg, University Hospital of Heidelberg and Mannheim, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany.
| | - Gaston J Piñeiro
- Department of Nephrology and Kidney Transplantation, ICNU, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain; Red de Investigación Renal (REDINREN), Plaza de las Cortes, 11, 28014 Madrid, Spain; Department of Nephrology and Kidney Transplantation, ICNU, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain.
| | - Mercè Brunet
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, c/Villarroel, 170, 08036 Barcelona, Spain; Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, c/Sinesio Delgado 4, 28029 Madrid, Spain.
| |
Collapse
|
14
|
Urinary Biomarkers for Diagnosis and Prediction of Acute Kidney Allograft Rejection: A Systematic Review. Int J Mol Sci 2020; 21:ijms21186889. [PMID: 32961825 PMCID: PMC7555436 DOI: 10.3390/ijms21186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023] Open
Abstract
Noninvasive tools for diagnosis or prediction of acute kidney allograft rejection have been extensively investigated in recent years. Biochemical and molecular analyses of blood and urine provide a liquid biopsy that could offer new possibilities for rejection prevention, monitoring, and therefore, treatment. Nevertheless, these tools are not yet available for routine use in clinical practice. In this systematic review, MEDLINE was searched for articles assessing urinary biomarkers for diagnosis or prediction of kidney allograft acute rejection published in the last five years (from 1 January 2015 to 31 May 2020). This review follows the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Articles providing targeted or unbiased urine sample analysis for the diagnosis or prediction of both acute cellular and antibody-mediated kidney allograft rejection were included, analyzed, and graded for methodological quality with a particular focus on study design and diagnostic test accuracy measures. Urinary C-X-C motif chemokine ligands were the most promising and frequently studied biomarkers. The combination of precise diagnostic reference in training sets with accurate validation in real-life cohorts provided the most relevant results and exciting groundwork for future studies.
Collapse
|
15
|
Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci 2020; 21:ijms21155404. [PMID: 32751357 PMCID: PMC7432796 DOI: 10.3390/ijms21155404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
New biomarkers of early and late graft dysfunction are needed in renal transplant to improve management of complications and prolong graft survival. A wide range of potential diagnostic and prognostic biomarkers, measured in different biological fluids (serum, plasma, urine) and in renal tissues, have been proposed for post-transplant delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction (CAD). This review investigates old and new potential biomarkers for each of these clinical domains, seeking to underline their limits and strengths. OMICs technology has allowed identifying many candidate biomarkers, providing diagnostic and prognostic information at very early stages of pathological processes, such as AR. Donor-derived cell-free DNA (ddcfDNA) and extracellular vesicles (EVs) are further promising tools. Although most of these biomarkers still need to be validated in multiple independent cohorts and standardized, they are paving the way for substantial advances, such as the possibility of accurately predicting risk of DGF before graft is implanted, of making a “molecular” diagnosis of subclinical rejection even before histological lesions develop, or of dissecting etiology of CAD. Identification of “immunoquiescent” or even tolerant patients to guide minimization of immunosuppressive therapy is another area of active research. The parallel progress in imaging techniques, bioinformatics, and artificial intelligence (AI) is helping to fully exploit the wealth of information provided by biomarkers, leading to improved disease nosology of old entities such as transplant glomerulopathy. Prospective studies are needed to assess whether introduction of these new sets of biomarkers into clinical practice could actually reduce the need for renal biopsy, integrate traditional tools, and ultimately improve graft survival compared to current management.
Collapse
|
16
|
Erez DL, Denburg MR, Afolayan S, Jodele S, Wallace G, Davies SM, Seif AE, Bunin N, Laskin BL, Sullivan KE. Acute Kidney Injury in Children after Hematopoietic Cell Transplantation Is Associated with Elevated Urine CXCL10 and CXCL9. Biol Blood Marrow Transplant 2020; 26:1266-1272. [PMID: 32165324 DOI: 10.1016/j.bbmt.2020.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is nearly universally associated with worse outcomes, especially among children after hematopoietic stem cell transplant (HCT). Our objective was to examine urinary immune biomarkers of AKI after HCT to provide insights into novel mechanisms of kidney injury in this population. Studying patients undergoing allogeneic HCT provides a unique opportunity to examine immune markers of AKI because the risk of AKI is high and the immune system newly develops after transplant. Children (>2 years old) and young adults undergoing their first allogeneic HCT and enrolled in a prospective, observational cohort study at 2 large children's hospitals had urine collected pre-HCT and monthly for the first 4 months after HCT. Urine samples at each monthly time point were assayed for 8 immune-related biomarkers. AKI was defined as a 1.5-fold increase in the monthly serum creatinine value, which was recorded ±1 day from when the research urine sample was obtained, as compared with the pre-HCT baseline. Generalized estimating equation regression analysis evaluated the association between the monthly repeated measures (urinary biomarkers and AKI). A total of 176 patients were included from 2 pediatric centers. Thirty-six patients from 1 center were analyzed as a discovery cohort and the remaining 140 patients from the second center were analyzed as a validation cohort. AKI rates were 18% to 35% depending on the monthly time point after HCT. Urine CXCL10 and CXCL9 concentrations were significantly higher among children who developed AKI compared with children who did not (P < .01) in both cohorts. In order to gain a better understanding of the cellular source for these biomarkers in the urine, we also analyzed in vitro expression of CXCL10 and CXCL9 in kidney cell lines after stimulation with interferon-γ and interferon-α. HEK293-epithelial kidney cells demonstrated interferon-induced expression of CXCL10 and CXCL9, suggesting a potential mechanism driving the key finding. CXCL10 and CXCL9 are associated with AKI after HCT and are therefore promising biomarkers to guide improved diagnostic and treatment strategies for AKI in this high-risk population.
Collapse
Affiliation(s)
- Daniella Levy Erez
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Michelle R Denburg
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simisola Afolayan
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gregory Wallace
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alix E Seif
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nancy Bunin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin L Laskin
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen E Sullivan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Weseslindtner L, Hedman L, Wang Y, Strassl R, Helanterä I, Aberle SW, Bond G, Hedman K. Longitudinal assessment of the CXCL10 blood and urine concentration in kidney transplant recipients with BK polyomavirus replication-a retrospective study. Transpl Int 2020; 33:555-566. [PMID: 31981424 PMCID: PMC7216881 DOI: 10.1111/tri.13584] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/03/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
In kidney transplant recipients (KTRs), BK polyomavirus (BKPyV) replication may progress to polyomavirus‐associated nephropathy (PVAN). In this retrospective study, we assessed the chemokine CXCL10 in urine and blood samples consecutively acquired from 85 KTRs who displayed different stages of BKPyV replication and eventually developed PVAN. In parallel to progression toward PVAN, CXCL10 gradually increased in blood and urine, from baseline (prior to virus replication) to BKPyV DNAuria (median increase in blood: 42.15 pg/ml, P = 0.0156), from mere DNAuria to low‐ and high‐level BKPyV DNAemia (median increase: 52.60 and 87.26 pg/ml, P = 0.0010 and P = 0.0002, respectively) and peaked with histologically confirmed PVAN (median increase: 145.00 pg/ml, P < 0.0001). CXCL10 blood and urine levels significantly differed among KTRs with respect to simultaneous presence of human cytomegalovirus (P < 0.001) as well as in relation to the clinical severity of respective BKPyV DNAemia episodes (P = 0.0195). CXCL‐10 concentrations were particularly lower in KTRs in whom BKPyV DNAemia remained without clinical evidence for PVAN, as compared to individuals who displayed high decoy cell levels, decreased renal function and/or biopsy‐proven PVAN (median blood concentration: 266.97 vs. 426.42 pg/ml, P = 0.0282). In conclusion, in KTRs CXCL10 rises in parallel to BKPyV replication and correlates with the gradual development of PVAN.
Collapse
Affiliation(s)
- Lukas Weseslindtner
- Department of Virology, University of Helsinki, Helsinki, Finland.,Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Lea Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Yilin Wang
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Robert Strassl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ilkka Helanterä
- Division of Nephrology, Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
18
|
Gao J, Wu L, Wang S, Chen X. Role of Chemokine (C-X-C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediators Inflamm 2020; 2020:6194864. [PMID: 32089645 PMCID: PMC7025113 DOI: 10.1155/2020/6194864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C ligand 10 (CXCL10), also known as interferon-γ-inducible protein 10 (IP-10), exerts biological function mainly through binding to its specific receptor, CXCR3. Studies have shown that renal resident mesangial cells, renal tubular epithelial cells, podocytes, endothelial cells, and infiltrating inflammatory cells express CXCL10 and CXCR3 under inflammatory conditions. In the last few years, strong experimental and clinical evidence has indicated that CXCL10 is involved in the development of renal diseases through the chemoattraction of inflammatory cells and facilitation of cell growth and angiostatic effects. In addition, CXCL10 has been shown to be a significant biomarker of disease severity, and it can be used as a prognostic indicator for a variety of renal diseases, such as renal allograft dysfunction and lupus nephritis. In this review, we summarize the structures and biological functions of CXCL10 and CXCR3, focusing on the important role of CXCL10 in the pathogenesis of kidney disease, and provide a theoretical basis for CXCL10 as a potential biomarker and therapeutic target in human kidney disease.
Collapse
Affiliation(s)
- Jie Gao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road 324, Jinan 250000, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| | - Siyang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| |
Collapse
|
19
|
Luo S, Zhu R, Yu T, Fan H, Hu Y, Mohanta SK, Hu D. Chronic Inflammation: A Common Promoter in Tertiary Lymphoid Organ Neogenesis. Front Immunol 2019; 10:2938. [PMID: 31921189 PMCID: PMC6930186 DOI: 10.3389/fimmu.2019.02938] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) frequently develop locally in adults in response to non-resolving inflammation. Chronic inflammation leads to the differentiation of stromal fibroblast cells toward lymphoid tissue organizer-like cells, which interact with lymphotoxin α1β2+ immune cells. The interaction initiates lymphoid neogenesis by recruiting immune cells to the site of inflammation and ultimately leads to the formation of TLOs. Mature TLOs harbor a segregated T-cell zone, B-cell follicles with an activated germinal center, follicular dendritic cells, and high endothelial venules, which architecturally resemble those in secondary lymphoid organs. Since CXCL13 and LTα1β2 play key roles in TLO neogenesis, they might constitute potential biomarkers of TLO activity. The well-developed TLOs actively regulate local immune responses and influence disease progression, and they are thereby regarded as the powerhouses of local immunity. In this review, we recapitulated the determinants for TLOs development, with great emphasis on the fundamental role of chronic inflammation and tissue-resident stromal cells for TLO neogenesis, hence offering guidance for therapeutic interventions in TLO-associated diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarajo Kumar Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat Commun 2019; 10:4712. [PMID: 31624262 PMCID: PMC6797722 DOI: 10.1038/s41467-019-12628-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) use remains a challenge in patients with solid organ allografts as most would undergo rejection. In a melanoma patient in whom programmed-death 1 (PD-1) blockade resulted in organ rejection and colitis, the addition of the mTOR inhibitor sirolimus resulted in ongoing anti-tumor efficacy while promoting allograft tolerance. Strong granzyme B+, interferon (IFN)-γ+ CD8+ cytotoxic T cell and circulating regulatory T (Treg) cell responses were noted during allograft rejection, along with significant eosinophilia and elevated serum IL-5 and eotaxin levels. Co-treatment with sirolimus abated cytotoxic T cell numbers and eosinophilia, while elevated Treg cell numbers in the peripheral blood were maintained. Interestingly, numbers of IFN-γ+ CD4+ T cells and serum IFN-γ levels increased with the addition of sirolimus treatment likely promoting ongoing anti-PD-1 efficacy. Thus, our results indicate that sirolimus has the potential to uncouple anti-PD-1 therapy toxicity and efficacy. The use of immune checkpoint inhibitors (ICI) in cancer patients with solid organ allografts is hampered due to potential organ rejection. Here, the authors present a case report of a patient with kidney allograft and show that treatment with the mTOR inhibitor sirolimus preserves peripheral tolerance and anti-tumour efficacy of ICI therapy.
Collapse
|
21
|
Egelkamp J, Chichelnitskiy E, Kühne JF, Wandrer F, Daemen K, Keil J, Bräsen JH, Schmitz J, Bellmàs-Sanz R, Iordanidis S, Katsirntaki K, Hake K, Akhdar A, Neudörfl C, Haller H, Blume C, Falk CS. Back signaling of HLA class I molecules and T/NK cell receptor ligands in epithelial cells reflects the rejection-specific microenvironment in renal allograft biopsies. Am J Transplant 2019; 19:2692-2704. [PMID: 31062482 DOI: 10.1111/ajt.15417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 01/25/2023]
Abstract
The role of endothelial cells in the pathophysiology of antibody-mediated rejection after renal transplantation has been widely investigated. We expand this scenario to the impact of epithelial cells on the microenvironment during rejection. Primary proximal tubular epithelial cells were stimulated via HLA class I, CD155 and CD166 based on their potential signal-transducing capacity to mediate back signaling after encounter with either T/NK cells or donor-specific antibodies. Upon crosslinking of these ligands with mAbs, PTEC secreted IL-6, CXCL1,8,10, CCL2, and sICAM-1. These proteins were also released by PTEC as consequence of a direct interaction with T/NK cells. Downmodulation of the receptor CD226 on effector cells confirmed the involvement of this receptor/ligand pair in back signaling. In vivo, CD155 and CD166 expression was detectable in proximal and distal tubuli of renal transplant biopsies, respectively. The composition of the protein microenvironment in these biopsies showed a substantial overlap with the PTEC response. Cluster and principal component analyses of the microenvironment separated unsuspicious from rejection biopsies and, furthermore, ABMR, TCMR, and borderline rejection. In conclusion, our results provide evidence that epithelial cells may contribute to the rejection process and pave the way to a better understanding of the pathomechanisms of kidney allograft rejection.
Collapse
Affiliation(s)
- Johanna Egelkamp
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Jenny F Kühne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Franziska Wandrer
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Kerstin Daemen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ramon Bellmàs-Sanz
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Susanne Iordanidis
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Kevin Hake
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Ali Akhdar
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Neudörfl
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Cornelia Blume
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany.,DZIF, German Center for Infection Research, TTU-IICH, Hannover/Braunschweig, Germany
| |
Collapse
|
22
|
Watson D, Yang JYC, Sarwal RD, Sigdel TK, Liberto JM, Damm I, Louie V, Sigdel S, Livingstone D, Soh K, Chakraborty A, Liang M, Lin PC, Sarwal MM. A Novel Multi-Biomarker Assay for Non-Invasive Quantitative Monitoring of Kidney Injury. J Clin Med 2019; 8:E499. [PMID: 31013714 PMCID: PMC6517941 DOI: 10.3390/jcm8040499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
The current standard of care measures for kidney function, proteinuria, and serum creatinine (SCr) are poor predictors of early-stage kidney disease. Measures that can detect chronic kidney disease in its earlier stages are needed to enable therapeutic intervention and reduce adverse outcomes of chronic kidney disease. We have developed the Kidney Injury Test (KIT) and a novel KIT Score based on the composite measurement and validation of multiple biomarkers across a unique set of 397 urine samples. The test is performed on urine samples that require no processing at the site of collection and without target sequencing or amplification. We sought to verify that the pre-defined KIT test, KIT Score, and clinical thresholds correlate with established chronic kidney disease (CKD) and may provide predictive information on early kidney injury status above and beyond proteinuria and renal function measurements alone. Statistical analyses across six DNA, protein, and metabolite markers were performed on a subset of residual spot urine samples with CKD that met assay performance quality controls from patients attending the clinical labs at the University of California, San Francisco (UCSF) as part of an ongoing IRB-approved prospective study. Inclusion criteria included selection of patients with confirmed CKD and normal healthy controls; exclusion criteria included incomplete or missing information for sample classification, logistical delays in transport/processing of urine samples or low sample volume, and acute kidney injury. Multivariate logistic regression of kidney injury status and likelihood ratio statistics were used to assess the contribution of the KIT Score for prediction of kidney injury status and stage of CKD as well as assess the potential contribution of the KIT Score for detection of early-stage CKD above and beyond traditional measures of renal function. Urine samples were processed by a proprietary immunoprobe for measuring cell-free DNA (cfDNA), methylated cfDNA, clusterin, CXCL10, total protein, and creatinine. The KIT Score and stratified KIT Score Risk Group (high versus low) had a sensitivity and specificity for detection of kidney injury status (healthy or CKD) of 97.3% (95% CI: 94.6-99.3%) and 94.1% (95% CI: 82.3-100%). In addition, in patients with normal renal function (estimated glomerular filtration rate (eGFR) ≥ 90), the KIT Score clearly identifies those with predisposing risk factors for CKD, which could not be detected by eGFR or proteinuria (p < 0.001). The KIT Score uncovers a burden of kidney injury that may yet be incompletely recognized, opening the door for earlier detection, intervention and preservation of renal function.
Collapse
Affiliation(s)
- Drew Watson
- KIT Bio, 665 3rd Street, San Francisco, CA 94107, USA.
| | - Joshua Y C Yang
- KIT Bio, 665 3rd Street, San Francisco, CA 94107, USA.
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Reuben D Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Juliane M Liberto
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Victoria Louie
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Shristi Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Devon Livingstone
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Katherine Soh
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Arjun Chakraborty
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Michael Liang
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Pei-Chen Lin
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Minnie M Sarwal
- KIT Bio, 665 3rd Street, San Francisco, CA 94107, USA.
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Corsiero E, Delvecchio FR, Bombardieri M, Pitzalis C. B cells in the formation of tertiary lymphoid organs in autoimmunity, transplantation and tumorigenesis. Curr Opin Immunol 2019; 57:46-52. [PMID: 30798069 DOI: 10.1016/j.coi.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
Tertiary lymphoid organs named also tertiary lymphoid structures (TLS) often occur at sites of autoimmune inflammation, organ transplantation and cancer. Although the mechanisms for their formation/function are not entirely understood, it is known that TLS can display features of active germinal centres supporting the proliferation and differentiation of (auto)-reactive B cells. In this Review, we discuss current knowledge on TLS-associated B cells with particular reference on how within diseased tissues these structures are linked to either deleterious or protective outcomes in patients and the potential for therapeutic targeting of TLS through novel drugs.
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK
| | - Francesca Romana Delvecchio
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK.
| |
Collapse
|
24
|
Sigdel TK, Yang JYC, Bestard O, Schroeder A, Hsieh SC, Liberto JM, Damm I, Geraedts ACM, Sarwal MM. A urinary Common Rejection Module (uCRM) score for non-invasive kidney transplant monitoring. PLoS One 2019; 14:e0220052. [PMID: 31365568 PMCID: PMC6668802 DOI: 10.1371/journal.pone.0220052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
A Common Rejection Module (CRM) consisting of 11 genes expressed in allograft biopsies was previously reported to serve as a biomarker for acute rejection (AR), correlate with the extent of graft injury, and predict future allograft damage. We investigated the use of this gene panel on the urine cell pellet of kidney transplant patients. Urinary cell sediments collected from patients with biopsy-confirmed acute rejection, borderline AR (bAR), BK virus nephropathy (BKVN), and stable kidney grafts with normal protocol biopsies (STA) were analyzed for expression of these 11 genes using quantitative polymerase chain reaction (qPCR). We assessed these 11 CRM genes for their abundance, autocorrelation, and individual expression levels. Expression of 10/11 genes were elevated in AR when compared to STA. Psmb9 and Cxcl10could classify AR versus STA as accurately as the 11-gene model (sensitivity = 93.6%, specificity = 97.6%). A uCRM score, based on the geometric mean of the expression levels, could distinguish AR from STA with high accuracy (AUC = 0.9886) and correlated specifically with histologic measures of tubulitis and interstitial inflammation rather than tubular atrophy, glomerulosclerosis, intimal proliferation, tubular vacuolization or acute glomerulitis. This urine gene expression-based score may enable the non-invasive and quantitative monitoring of AR.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua Y. C. Yang
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Oriol Bestard
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Kidney Transplant Unit, Bellvitge University Hospital, UB, Barcelona, Spain
| | - Andrew Schroeder
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Szu-Chuan Hsieh
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Juliane M. Liberto
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Izabella Damm
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Anna C. M. Geraedts
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Minnie M. Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Urinary CXCL10 Chemokine Is Associated With Alloimmune and Virus Compartment-Specific Renal Allograft Inflammation. Transplantation 2018; 102:521-529. [PMID: 28902772 DOI: 10.1097/tp.0000000000001931] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Urinary CXC chemokine ligand 10 (CXCL10) is a promising biomarker for subclinical tubulointerstitial inflammation, but limited data exist regarding its correlation with (micro)vascular inflammation. Furthermore, no study has evaluated whether concomitant serum CXCL10 improves the discrimination for (micro)vascular inflammation. METHODS We investigated whether serum/urinary CXCL10 reflect subclinical inflammation within different renal compartments. Patients (n = 107) with 107 surveillance biopsies were classified as: normal histology (n = 47), normal histology with polyomavirus BK (BKV) or cytomegalovirus (CMV) viremia (n = 17), moderate-severe tubulointerstitial inflammation (tubulitis ≥2, n = 18), pure microvascular inflammation (n = 15), and isolated v lesions (n = 10). Serum and urinary CXCL10 Enzyme-linked Immunosorbent Assay was performed. An independent validation set was evaluated for urine CXCL10: normal histology (n = 14), normal histology with BKV or CMV viremia (n = 19), tubulitis ≥2 (n = 15), pure microvascular inflammation (n = 41), and isolated v lesions (n = 14). RESULTS Elevated urinary CXCL10 reflected inflammation within the tubulointerstitial (urinary CXCL10/creatinine, 1.23 ng/mmol vs 0.46 ng/mmol; P = 0.02; area under the curve, 0.69; P = 0.001) and microvascular compartments (urinary CXCL10/creatinine, 1.72 ng/mmol vs 0.46 ng/mmol; P = 0.03; area under the curve, 0.69; P = 0.02) compared to normal histology. Intriguingly, urinary CXCL10 was predominantly elevated with peritubular capillaritis, but not glomerulitis (P = 0.04). Furthermore, urinary CXCL10 corresponded with BKV, but not CMV viremia (P = 0.02). These urine CXCL10 findings were confirmed in the independent validation set. Finally, serum CXCL10 was elevated with BKV and CMV viremia but was not associated with microvascular or vascular inflammation (P ≥ 0.19). CONCLUSIONS Urinary CXCL10 reflects subclinical inflammation within the tubulointerstitial and peritubular capillary spaces, but not the vascular/systemic compartments; this was consistent with BKV (tubulointerstitial) and CMV viremia (systemic). Serum CXCL10 was not a useful marker for (micro)vascular inflammation.
Collapse
|
26
|
Kim CY, Jung E, Kim EN, Kim CJ, Lee JY, Hwang JH, Song WS, Lee BS, Kim EAR, Kim KS. Chronic Placental Inflammation as a Risk Factor of Severe Retinopathy of Prematurity. J Pathol Transl Med 2018; 52:290-297. [PMID: 30008195 PMCID: PMC6166017 DOI: 10.4132/jptm.2018.07.09] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background Chronic placental inflammation (CPI) has been implicated in the pathogenesis of diseases in premature infants, whereas retinopathy of prematurity (ROP) is a major complication primarily affecting preterm and very low-birth-weight (VLBW) infants. This study aims to investigate the association between CPI and ROP in VLBW infants. Methods We performed a retrospective review of clinical records of VLBW infants born between 2013 and 2016. Placental pathology findings including CPI cases were analyzed using logistic regression to study infants’ morbidities and other clinical characteristics. Results A total of 402 infants with a mean (standard deviation) gestational age of 28.5 (2.8) weeks and birth weight of 1,027.2 (304.4) g were included. The incidence of ROP was 24.1%. CPI was found in 90 infants (22.4%), among which 28.9% (26 of 90) developed ROP, and 21.1% (19 of 90) underwent laser photocoagulation. Lower gestational age, lower birth weight, longer duration of oxygen supply, and presence of CPI were associated with the development of ROP. After adjustment for gestational age, birth weight, sex, duration of oxygen supply, and other overlapping placental pathology, CPI was associated with the odds for type 1 ROP that required laser photocoagulation (adjusted odds ratio, 2.739; 95% confidence interval, 1.112 to 6.749; p = .029). Conclusions CPI was associated with severe ROP requiring treatment with laser photocoagulation in VLBW infants.
Collapse
Affiliation(s)
- Chae Young Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Euiseok Jung
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Na Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hye Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo Sun Song
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Sop Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ellen Ai-Rhan Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Soo Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Abstract
Detecting acute rejection in kidney transplantation has been traditionally done using histological analysis of invasive allograft biopsies, but this method carries a risk and is not perfect. Transplant professionals have been working to develop more accurate or less invasive biomarkers that can predict acute rejection or subsequent worse allograft survival. These biomarkers can use tissue, blood or urine as a source. They can comprise individual molecules or panels, singly or in combination, across different components or pathways of the immune system. This review highlights the most recent evidence for biomarker efficacy, especially from multicenter trials.
Collapse
Affiliation(s)
- Vikas R Dharnidharka
- Division of Pediatric Nephrology, Hypertension and Pheresis, Washington University in St Louis & St. Louis Children's Hospital, St Louis, MO, USA.
| | - Andrew Malone
- Division of Nephrology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
28
|
Nordling S, Brännström J, Carlsson F, Lu B, Salvaris E, Wanders A, Buijs J, Estrada S, Tolmachev V, Cowan PJ, Lorant T, Magnusson PU. Enhanced protection of the renal vascular endothelium improves early outcome in kidney transplantation: Preclinical investigations in pig and mouse. Sci Rep 2018; 8:5220. [PMID: 29581529 PMCID: PMC5979943 DOI: 10.1038/s41598-018-21463-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/06/2018] [Indexed: 01/07/2023] Open
Abstract
Ischemia reperfusion injury is one of the major complications responsible for delayed graft function in kidney transplantation. Applications to reduce reperfusion injury are essential due to the widespread use of kidneys from deceased organ donors where the risk for delayed graft function is especially prominent. We have recently shown that coating of inflamed or damaged endothelial cells with a unique heparin conjugate reduces thrombosis and leukocyte recruitment. In this study we evaluated the binding capacity of the heparin conjugate to cultured human endothelial cells, to kidneys from brain-dead porcine donors, and to murine kidneys during static cold storage. The heparin conjugate was able to stably bind cultured endothelial cells with high avidity, and to the renal vasculature of explanted kidneys from pigs and mice. Treatment of murine kidneys prior to transplantation reduced platelet deposition and leukocyte infiltration 24 hours post-transplantation, and significantly improved graft function. The present study thus shows the benefits of enhanced protection of the renal vasculature during cold storage, whereby increasing the antithrombotic and anti-adhesive properties of the vascular endothelium yields improved renal function early after transplantation.
Collapse
Affiliation(s)
- Sofia Nordling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Brännström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Carlsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bo Lu
- Immunology Research Centre, St Vincent's Hospital Melbourne, Victoria, Australia
| | - Evelyn Salvaris
- Immunology Research Centre, St Vincent's Hospital Melbourne, Victoria, Australia
| | - Alkwin Wanders
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sergio Estrada
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital Melbourne, and Department of Medicine, University of Melbourne, Victoria, Australia
| | - Tomas Lorant
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Maymon E, Romero R, Bhatti G, Chaemsaithong P, Gomez-Lopez N, Panaitescu B, Chaiyasit N, Pacora P, Dong Z, Hassan SS, Erez O. Chronic inflammatory lesions of the placenta are associated with an up-regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med 2018; 46:123-137. [PMID: 28829757 PMCID: PMC5797487 DOI: 10.1515/jpm-2017-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether the amniotic fluid (AF) concentration of soluble CXCR3 and its ligands CXCL9 and CXCL10 changes in patients whose placentas show evidence of chronic chorioamnionitis or other placental lesions consistent with maternal anti-fetal rejection. METHODS This retrospective case-control study included 425 women with (1) preterm delivery (n=92); (2) term in labor (n=68); and (3) term not in labor (n=265). Amniotic fluid CXCR3, CXCL9 and CXCL10 concentrations were determined by ELISA. RESULTS (1) Amniotic fluid concentrations of CXCR3 and its ligands CXCL9 and CXCL10 are higher in patients with preterm labor and maternal anti-fetal rejection lesions than in those without these lesions [CXCR3: preterm labor and delivery with maternal anti-fetal rejection placental lesions (median, 17.24 ng/mL; IQR, 6.79-26.68) vs. preterm labor and delivery without these placental lesions (median 8.79 ng/mL; IQR, 4.98-14.7; P=0.028)]; (2) patients with preterm labor and chronic chorioamnionitis had higher AF concentrations of CXCL9 and CXCL10, but not CXCR3, than those without this lesion [CXCR3: preterm labor with chronic chorioamnionitis (median, 17.02 ng/mL; IQR, 5.57-26.68) vs. preterm labor without chronic chorioamnionitis (median, 10.37 ng/mL; IQR 5.01-17.81; P=0.283)]; (3) patients with preterm labor had a significantly higher AF concentration of CXCR3 than those in labor at term regardless of the presence or absence of placental lesions. CONCLUSION Our findings support a role for maternal anti-fetal rejection in a subset of patients with preterm labor.
Collapse
Affiliation(s)
- Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Block E East Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
30
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
31
|
Salvadori M, Tsalouchos A. Biomarkers in renal transplantation: An updated review. World J Transplant 2017; 7:161-178. [PMID: 28698834 PMCID: PMC5487307 DOI: 10.5500/wjt.v7.i3.161] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Genomics, proteomics and molecular biology lead to tremendous advances in all fields of medical sciences. Among these the finding of biomarkers as non invasive indicators of biologic processes represents a useful tool in the field of transplantation. In addition to define the principal characteristics of the biomarkers, this review will examine the biomarker usefulness in the different clinical phases following renal transplantation. Biomarkers of ischemia-reperfusion injury and of delayed graft function are extremely important for an early diagnosis of these complications and for optimizing the treatment. Biomarkers predicting or diagnosing acute rejection either cell-mediated or antibody-mediated allow a risk stratification of the recipient, a prompt diagnosis in an early phase when the histology is still unremarkable. The kidney solid organ response test detects renal transplant recipients at high risk for acute rejection with a very high sensitivity and is also able to make diagnosis of subclinical acute rejection. Other biomarkers are able to detect chronic allograft dysfunction in an early phase and to differentiate the true chronic rejection from other forms of chronic allograft nephropathies no immune related. Finally biomarkers recently discovered identify patients tolerant or almost tolerant. This fact allows to safely reduce or withdrawn the immunosuppressive therapy.
Collapse
|
32
|
Romero R, Chaemsaithong P, Chaiyasit N, Docheva N, Dong Z, Kim CJ, Kim YM, Kim JS, Qureshi F, Jacques SM, Yoon BH, Chaiworapongsa T, Yeo L, Hassan SS, Erez O, Korzeniewski SJ. CXCL10 and IL-6: Markers of two different forms of intra-amniotic inflammation in preterm labor. Am J Reprod Immunol 2017; 78. [PMID: 28544362 PMCID: PMC5488235 DOI: 10.1111/aji.12685] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
Problem To determine whether amniotic fluid (AF) CXCL10 concentration is associated with histologic chronic chorioamnionitis in patients with preterm labor (PTL) and preterm prelabor rupture of the membranes (PROM). Method of Study This study included 168 women who had an episode of PTL or preterm PROM. AF interleukin (IL)‐6 and CXCL10 concentrations were determined by immunoassay. Results (i) Increased AF CXCL10 concentration was associated with chronic (OR: 4.8; 95% CI: 1.7‐14), but not acute chorioamnionitis; (ii) increased AF IL‐6 concentration was associated with acute (OR: 4.2; 95% CI: 1.3‐13.7) but not chronic chorioamnionitis; and (iii) an increase in AF CXCL10 concentration was associated with placental lesions consistent with maternal anti‐fetal rejection (OR: 3.7; 95% CI: 1.3‐10.4). (iv) All patients with elevated AF CXCL10 and IL‐6 delivered preterm. Conclusion Increased AF CXCL10 concentration is associated with chronic chorioamnionitis or maternal anti‐fetal rejection, whereas increased AF IL‐6 concentration is associated with acute histologic chorioamnionitis.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Faisal Qureshi
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suzanne M Jacques
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
33
|
Salvadori M, Tsalouchos A. Pre-transplant biomarkers and prediction of post-transplant outcomes in kidney transplantation. J Renal Inj Prev 2017; 6:222-230. [DOI: 10.15171/jrip.2017.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
34
|
The association of urinary interferon-gamma inducible protein-10 (IP10/CXCL10) levels with kidney allograft rejection. Inflamm Res 2017; 66:425-432. [PMID: 28246678 DOI: 10.1007/s00011-017-1025-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/29/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
|
35
|
Jain NG, Wong EA, Aranyosi AJ, Boneschansker L, Markmann JF, Briscoe DM, Irimia D. Microfluidic mazes to characterize T-cell exploration patterns following activation in vitro. Integr Biol (Camb) 2016; 7:1423-31. [PMID: 26325525 DOI: 10.1039/c5ib00146c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The migration of T-cell subsets within peripheral tissues is characteristic of inflammation and immunoregulation. In general, the lymphocyte migratory response is assumed directional and guided by local gradients of chemoattractants and/or chemorepellents. However, little is known about how cells explore their tissue environment, and whether lymphocyte activation may influence speed and exploratory patterns of migration. To probe migration patterns by T-cells we designed a microfluidic maze device that replicates critical features of a tissue-like microenvironment. We quantified the migration patterns of unstimulated and mitogen-activated human T-cells at single cell resolution and found significant differences in exploration within microfluidic mazes. While unstimulated lymphocytes migrated in a directed manner, activated T-cells migrated through large areas of the mazes in an exploratory pattern in response to the chemoattractants RANTES (CCL5) and IP-10 (CXCL10). The analysis of migration enabled by the microfluidic devices help develop new methods for determining how human circulating T-cells function in vivo to seek out antigens in health and disease states.
Collapse
Affiliation(s)
- Namrata G Jain
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Elisabeth A Wong
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alexander J Aranyosi
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Leo Boneschansker
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA.
| | - James F Markmann
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Ave, MA 02139, USA
| | - David M Briscoe
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA. and Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Ave, MA 02139, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
36
|
Borges TJ, O’Malley JT, Wo L, Murakami N, Smith B, Azzi J, Tripathi S, Lane JD, Bueno EM, Clark RA, Tullius SG, Chandraker A, Lian CG, Murphy GF, Strom TB, Pomahac B, Najafian N, Riella LV. Codominant Role of Interferon-γ- and Interleukin-17-Producing T Cells During Rejection in Full Facial Transplant Recipients. Am J Transplant 2016; 16:2158-71. [PMID: 26749226 PMCID: PMC4979599 DOI: 10.1111/ajt.13705] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/25/2023]
Abstract
Facial transplantation is a life-changing procedure for patients with severe composite facial defects. However, skin is the most immunogenic of all transplants, and better understanding of the immunological processes after facial transplantation is of paramount importance. Here, we describe six patients who underwent full facial transplantation at our institution, with a mean follow-up of 2.7 years. Seum, peripheral blood mononuclear cells, and skin biopsy specimens were collected prospectively, and a detailed characterization of their immune response (51 time points) was performed, defining 47 immune cell subsets, 24 serum cytokines, anti-HLA antibodies, and donor alloreactivity on each sample, producing 4269 data points. In a nonrejecting state, patients had a predominant T helper 2 cell phenotype in the blood. All patients developed at least one episode of acute cellular rejection, which was characterized by increases in interferon-γ/interleukin-17-producing cells in peripheral blood and in the allograft's skin. Serum monocyte chemotactic protein-1 level was significantly increased during rejection compared with prerejection time points. None of the patients developed de novo donor-specific antibodies, despite a fourfold expansion in T follicular helper cells at 1 year posttransplantation. In sum, facial transplantation is frequently complicated by a codominant interferon-γ/interleukin-17-mediated acute cellular rejection process. Despite that, medium-term outcomes are promising with no evidence of de novo donor-specific antibody development.
Collapse
Affiliation(s)
- T. J. Borges
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - J. T. O’Malley
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - L. Wo
- Division of Plastic Surgery, Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - N. Murakami
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - B. Smith
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - J. Azzi
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - S. Tripathi
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - J. D. Lane
- Division of Plastic Surgery, Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - E. M. Bueno
- Division of Plastic Surgery, Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - R. A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - S. G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - A. Chandraker
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - C. G. Lian
- Program in Dermatopathology, Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - G. F. Murphy
- Program in Dermatopathology, Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - T. B. Strom
- Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - B. Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - N. Najafian
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA,Department of Nephrology, Cleveland Clinic Florida, Weston, FL
| | - L. V. Riella
- Schuster Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA,Corresponding author: Leonardo V. Riella,
| |
Collapse
|
37
|
Peng W, Chen J, Jiang Y, Shou Z, Chen Y, Wang H. Non-invasive Detection of Acute Renal Allograft Rejection by Measurement of Vascular Endothelial Growth Factor in Urine. J Int Med Res 2016; 35:442-9. [PMID: 17697520 DOI: 10.1177/147323000703500402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Urinary vascular endothelial growth factor (VEGF) was determined by enzyme-linked immunosorbent assay in 199 renal allograft recipients and 80 healthy controls. Urinary VEGF level did not change significantly during the first 8 weeks after transplantation in 119 patients with stable renal function and there were no abnormal histological findings (No-AR). In 67 patients with acute rejection, urinary VEGF was significantly higher (28.57 ± 6.21 pg/μmol creatinine) than in the No-AR patients (3.05 ± 0.45 pg/μmol creatinine) and healthy controls (2.87 ± 0.35 pg/μmol creatinine). At a cut-off point of 3.26 pg/μmol creatinine, sensitivity and specificity for diagnosis of acute rejection were 86.6 and 71.4%, respectively. The 13 patients with subclinical rejection excreted urinary VEGF (16.14 ± 4.09 pg/μmol creatinine) at a significantly higher level than No-AR patients (3.05 ± 0.45 pg/μmol creatinine). At a cut-off point of 4.69 pg/μmol creatinine, sensitivity and specificity for diagnosis of subclinical rejection were 84.6 and 79.8%, respectively. In conclusion, monitoring VEGF in urine might offer a new non-invasive way to detect acute and subclinical rejection in renal transplant recipients.
Collapse
Affiliation(s)
- W Peng
- Department of Nephrology, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Kariminik A, Dabiri S, Yaghobi R. Polyomavirus BK Induces Inflammation via Up-regulation of CXCL10 at Translation Levels in Renal Transplant Patients with Nephropathy. Inflammation 2016; 39:1514-9. [DOI: 10.1007/s10753-016-0385-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Crescioli C. Chemokines and transplant outcome. Clin Biochem 2016; 49:355-62. [DOI: 10.1016/j.clinbiochem.2015.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/10/2015] [Accepted: 07/20/2015] [Indexed: 12/26/2022]
|
40
|
Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am J Obstet Gynecol 2015; 213:S53-69. [PMID: 26428503 DOI: 10.1016/j.ajog.2015.08.041] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023]
Abstract
Chronic inflammatory lesions of the placenta are characterized by the infiltration of the organ by lymphocytes, plasma cells, and/or macrophages and may result from infections (viral, bacterial, parasitic) or be of immune origin (maternal anti-fetal rejection). The 3 major lesions are villitis (when the inflammatory process affects the villous tree), chronic chorioamnionitis (which affects the chorioamniotic membranes), and chronic deciduitis (which involves the decidua basalis). Maternal cellular infiltration is a common feature of the lesions. Villitis of unknown etiology (VUE) is a destructive villous inflammatory lesion that is characterized by the infiltration of maternal T cells (CD8+ cytotoxic T cells) into chorionic villi. Migration of maternal T cells into the villi is driven by the production of T-cell chemokines in the affected villi. Activation of macrophages in the villi has been implicated in the destruction of the villous architecture. VUE has been reported in association with preterm and term fetal growth restriction, preeclampsia, fetal death, and preterm labor. Infants whose placentas have VUE are at risk for death and abnormal neurodevelopmental outcome at the age of 2 years. Chronic chorioamnionitis is the most common lesion in late spontaneous preterm birth and is characterized by the infiltration of maternal CD8+ T cells into the chorioamniotic membranes. These cytotoxic T cells can induce trophoblast apoptosis and damage the fetal membranes. The lesion frequently is accompanied by VUE. Chronic deciduitis consists of the presence of lymphocytes or plasma cells in the basal plate of the placenta. This lesion is more common in pregnancies that result from egg donation and has been reported in a subset of patients with premature labor. Chronic placental inflammatory lesions can be due to maternal anti-fetal rejection, a process associated with the development of a novel form of fetal systemic inflammatory response. The syndrome is characterized by an elevation of the fetal plasma T-cell chemokine. The evidence that maternal anti-fetal rejection underlies the pathogenesis of many chronic inflammatory lesions of the placenta is reviewed. This article includes figures and histologic examples of all chronic inflammatory lesions of the placenta.
Collapse
|
41
|
Hirt-Minkowski P, De Serres SA, Ho J. Developing renal allograft surveillance strategies - urinary biomarkers of cellular rejection. Can J Kidney Health Dis 2015; 2:28. [PMID: 26285614 PMCID: PMC4539917 DOI: 10.1186/s40697-015-0061-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023] Open
Abstract
Purpose of review Developing tailored immunosuppression regimens requires sensitive, non-invasive tools for serial post-transplant surveillance as the current clinical standards with serum creatinine and proteinuria are ineffective at detecting subclinical rejection. The purpose of this review is: (i) to illustrate the rationale for allograft immune monitoring, (ii) to discuss key steps to bring a biomarker from bench-to-bedside, and (iii) to present an overview of promising biomarkers for cellular rejection. Sources of information PubMed. Findings Recent multicentre prospective observational cohort studies have significantly advanced biomarker development by allowing for the adequately powered evaluation of multiple biomarkers capable of detecting allograft rejection. These studies demonstrate that urinary CXCR3 chemokines (i.e. CXCL9 and CXCL10) are amongst the most promising for detecting subclinical inflammation; increasing up to 30 days prior to biopsy-proven acute rejection; decreasing in response to anti-rejection therapy; and having prognostic significance for the subsequent development of allograft dysfunction. Urinary CXCR3 chemokines are measured by simple and cost-effective ELISA methodology, which can readily be implemented in clinical labs. Limitations Many biomarker studies are performed in highly selected patient groups and lack surveillance biopsies to accurately classify healthy transplants. Few validation studies have been done in unselected, consecutive patient populations to characterize population-based diagnostic performance. Implications Based on these data, prospective interventional trials should be undertaken to determine if chemokine-based post-transplant monitoring strategies can improve long-term renal allograft outcomes. This last step will be necessary to move novel biomarkers from the bench-to-bedside.
Collapse
Affiliation(s)
- Patricia Hirt-Minkowski
- Clinic for Transplant Immunology and Nephrology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Sacha A De Serres
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec - L'Hôtel-Dieu, Faculty of Medicine, Laval University, 11 Côte du Palais, Québec, QC G1R 2J6 Canada
| | - Julie Ho
- Internal Medicine & Immunology, Sections of Nephrology & Biomedical Proteomics, University of Manitoba, GE421C Health Sciences Centre, 820 Sherbrook Street, Winnipeg, MB R3A 1R9 Canada ; Manitoba Centre for Proteomics and Systems Biology, Health Sciences Centre, Winnipeg, MB Canada ; Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
42
|
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015; 26:311-27. [DOI: 10.1016/j.cytogfr.2014.11.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
|
43
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
44
|
Schlickeiser S, Boës D, Streitz M, Sawitzki B. The use of novel diagnostics to individualize immunosuppression following transplantation. Transpl Int 2015; 28:911-20. [PMID: 25611562 DOI: 10.1111/tri.12527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022]
Abstract
Despite major improvements in short-term survival of organ allografts, long-term graft survival has not changed significantly. It is also known that toxic side effects of current immunosuppressive drugs (IS) especially calcineurin inhibitors (CNI) contribute to the unsatisfactory graft and patient survival following transplantation. Thus, clinicians strive to reduce or wean IS in potentially eligible patients. Research in the last 10 years has focussed on identification of biomarkers suitable for patient stratification in minimization or weaning trials. Most of the described biomarkers have been run retrospectively on samples collected within single-centre trials. Thus, often their performance has not been validated in other potentially multicentre clinical trials. Ultimately, the utility of biomarkers to identify potential weaning candidates should be investigated in large randomized prospective trials. In particular, for testing in such trials, we need more information about the accuracy, reproducibility, stability and limitations of the described biomarkers. Also, data repositories summarizing crucial information on biomarker performance in age- and gender-matched healthy individuals of different ethnicity are missing. This together with improved bioinformatics tools might help in developing better scores for patient stratification. Here, we will summarize the current results, knowledge and limitations on biomarkers for drug minimization or weaning trials.
Collapse
Affiliation(s)
- Stephan Schlickeiser
- Institute of Medical Immunology, CCM, Charité University Berlin, Berlin, Germany
| | - David Boës
- Institute of Medical Immunology, CCM, Charité University Berlin, Berlin, Germany
| | - Mathias Streitz
- Institute of Medical Immunology, CCM, Charité University Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, CCM, Charité University Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), CVK, Charité University Berlin, Berlin, Germany
| |
Collapse
|
45
|
Noninvasive allograft imaging of acute rejection: evaluation of (131)I-anti-CXCL10 mAb. Inflammation 2014; 38:456-64. [PMID: 25338944 DOI: 10.1007/s10753-014-0050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the use of iodine-131-labeled anti-CXCL10 mAb as tracer targeted at CXCL10 to detect acute rejection (AR) with mice model. Expression of CXCL10 was proved by RT-PCR, ELISA, and immunochemistry staining. All groups were submitted to whole-body autoradioimaging and ex vivo biodistribution studies after tail vein injection of (131)I-anti-CXCL10 mAb. The highest concentration/expression of CXCL10 was detected in allograft tissue compared with allograft treated with tacrolimus and isograft control. Tacrolimus could obviously inhibit the rejection of allograft. Allograft could be obviously imaged at all checking points, much clearer than the other two groups. The biodistribution results showed the highest uptake of radiotracer in allograft. T/NT (target/nontarget) ratio was 4.15 ± 0.25 at 72 h, apparently different from allograft treated with tacrolimus (2.29 ± 0.10), P < 0.05. These data suggest that CXCL10 is a promising target for early stage AR imaging and (131)I-CXCL10 mAb can successfully image AR and monitor the effect of immunosuppressant.
Collapse
|
46
|
Field M, Lowe D, Cobbold M, Higgins R, Briggs D, Inston N, Ready AR. The use of NGAL and IP-10 in the prediction of early acute rejection in highly sensitized patients following HLA-incompatible renal transplantation. Transpl Int 2014; 27:362-70. [DOI: 10.1111/tri.12266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/01/2013] [Accepted: 01/13/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Melanie Field
- Department of Renal Transplantation; University Hospital Birmingham Foundation Trust; Edgbaston UK
| | - David Lowe
- Histocompatibility and Immunogenetics; NHSBT Birmingham; Edgbaston Birmingham UK
| | - Mark Cobbold
- MRC Centre for Immune Regulation; School of Immunity and Infection; Medical School; University of Birmingham; Birmingham UK
| | - Robert Higgins
- Department of Nephrology; University Hospitals of Coventry and Warwickshire; Coventry UK
| | - David Briggs
- Histocompatibility and Immunogenetics; NHSBT Birmingham; Edgbaston Birmingham UK
| | - Nicholas Inston
- Department of Renal Transplantation; University Hospital Birmingham Foundation Trust; Edgbaston UK
| | - Andrew R. Ready
- Department of Renal Transplantation; University Hospital Birmingham Foundation Trust; Edgbaston UK
| |
Collapse
|
47
|
Abstract
Organ transplantation appears today to be the best alternative to replace the loss of vital organs induced by various diseases. Transplants can, however, also be rejected by the recipient. In this review, we provide an overview of the mechanisms and the cells/molecules involved in acute and chronic rejections. T cells and B cells mainly control the antigen-specific rejection and act either as effector, regulatory, or memory cells. On the other hand, nonspecific cells such as endothelial cells, NK cells, macrophages, or polymorphonuclear cells are also crucial actors of transplant rejection. Last, beyond cells, the high contribution of antibodies, chemokines, and complement molecules in graft rejection is discussed in this article. The understanding of the different components involved in graft rejection is essential as some of them are used in the clinic as biomarkers to detect and quantify the level of rejection.
Collapse
Affiliation(s)
- Aurélie Moreau
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN, CHU de Nantes 44093, France
| | | | | | | |
Collapse
|
48
|
Hricik DE, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, Goebel J, Gibson IW, Fairchild RL, Riggs M, Spain K, Ikle D, Bridges ND, Heeger PS. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant 2013; 13:2634-44. [PMID: 23968332 PMCID: PMC3959786 DOI: 10.1111/ajt.12426] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 05/11/2013] [Indexed: 01/25/2023]
Abstract
Noninvasive biomarkers are needed to assess immune risk and ultimately guide therapeutic decision-making following kidney transplantation. A requisite step toward these goals is validation of markers that diagnose and/or predict relevant transplant endpoints. The Clinical Trials in Organ Transplantation-01 protocol is a multicenter observational study of biomarkers in 280 adult and pediatric first kidney transplant recipients. We compared and validated urinary mRNAs and proteins as biomarkers to diagnose biopsy-proven acute rejection (AR) and stratify patients into groups based on risk for developing AR or progressive renal dysfunction. Among markers tested for diagnosing AR, urinary CXCL9 mRNA (odds ratio [OR] 2.77, positive predictive value [PPV] 61.5%, negative predictive value [NPV] 83%) and CXCL9 protein (OR 3.40, PPV 67.6%, NPV 92%) were the most robust. Low urinary CXCL9 protein in 6-month posttransplant urines obtained from stable allograft recipients classified individuals least likely to develop future AR or a decrement in estimated glomerular filtration rate between 6 and 24 months (92.5-99.3% NPV). Our results support using urinary CXCL9 for clinical decision-making following kidney transplantation. In the context of acute dysfunction, low values can rule out infectious/immunological causes of injury. Absent urinary CXCL9 at 6 months posttransplant defines a subgroup at low risk for incipient immune injury.
Collapse
Affiliation(s)
- D. E. Hricik
- University Hospitals Case Medical Center, Cleveland, OH
| | - P. Nickerson
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - D. Rush
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - J. Goebel
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - I. W. Gibson
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | - N. D. Bridges
- Transplantation Branch, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - P. S. Heeger
- Icahn School of Medicine at Mount Sinai, New York, NY, Corresponding author: Peter S. Heeger,
| | | |
Collapse
|
49
|
Romero R, Whitten A, Korzeniewski SJ, Than NG, Chaemsaithong P, Miranda J, Dong Z, Hassan SS, Chaiworapongsa T. Maternal floor infarction/massive perivillous fibrin deposition: a manifestation of maternal antifetal rejection? Am J Reprod Immunol 2013; 70:285-98. [PMID: 23905710 DOI: 10.1111/aji.12143] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Massive perivillous fibrin deposition (MPFD) and maternal floor infarction (MFI) are related placental lesions often associated with fetal death and fetal growth restriction. A tendency to recur in subsequent pregnancies has been reported. This study was conducted to determine whether this complication of pregnancy could reflect maternal antifetal rejection. METHODS Pregnancies with MPFD were identified (n = 10). Controls consisted of women with uncomplicated pregnancies who delivered at term without MPFD (n = 175). Second-trimester maternal plasma was analyzed for panel-reactive anti-HLA class I and class II antibodies. The prevalence of chronic chorioamnionitis, villitis of unknown etiology, and plasma cell deciduitis was compared between cases and controls. Immunohistochemistry was performed on available umbilical vein segments from cases with MPFD (n = 4) to determine whether there was evidence of complement activation (C4d deposition). Specific maternal HLA-antibody and fetal HLA-antigen status were also determined in paired specimens (n = 6). Plasma CXCL-10 concentrations were measured in longitudinal samples of cases (n = 28 specimens) and controls (n = 749 specimens) by ELISA. Linear mixed-effects models were used to test for differences in plasma CXCL-10 concentration. RESULTS (i) The prevalence of plasma cell deciduitis in the placenta was significantly higher in cases with MPFD than in those with uncomplicated term deliveries (40% versus 8.6%, P = 0.01), (ii) patients with MPFD had a significantly higher frequency of maternal anti-HLA class I positivity during the second trimester than those with uncomplicated term deliveries (80% versus 36%, P = 0.01); (iii) strongly positive C4d deposition was observed on umbilical vein endothelium in cases of MPFD, (iv) a specific maternal antibody against fetal HLA antigen class I or II was identified in all cases of MPFD; and 5) the mean maternal plasma concentration of CXCL-10 was higher in patients with evidence of MPFD than in those without evidence of MFPD (P < 0.001). CONCLUSION A subset of patients with MPFD has evidence of maternal antifetal rejection.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee J, Romero R, Chaiworapongsa T, Dong Z, Tarca AL, Xu Y, Chiang PJ, Kusanovic JP, Hassan SS, Yeo L, Yoon BH, Than NG, Kim CJ. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am J Reprod Immunol 2013; 70:265-84. [PMID: 23905683 DOI: 10.1111/aji.12142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human fetus is able to mount a systemic inflammatory response when exposed to microorganisms. This stereotypic response has been termed the 'fetal inflammatory response syndrome' (FIRS), defined as an elevation of fetal plasma interleukin-6 (IL-6). FIRS is frequently observed in patients whose preterm deliveries are associated with intra-amniotic infection, acute inflammatory lesions of the placenta, and a high rate of neonatal morbidity. Recently, a novel form of fetal systemic inflammation, characterized by an elevation of fetal plasma CXCL10, has been identified in patients with placental lesions consistent with 'maternal anti-fetal rejection'. These lesions include chronic chorioamnionitis, plasma cell deciduitis, and villitis of unknown etiology. In addition, positivity for human leukocyte antigen (HLA) panel-reactive antibodies (PRA) in maternal sera can also be used to increase the index of suspicion for maternal anti-fetal rejection. The purpose of this study was to determine (i) the frequency of pathologic lesions consistent with maternal anti-fetal rejection in term and spontaneous preterm births; (ii) the fetal serum concentration of CXCL10 in patients with and without evidence of maternal anti-fetal rejection; and (iii) the fetal blood transcriptome and proteome in cases with a fetal inflammatory response associated with maternal anti-fetal rejection. METHOD OF STUDY Maternal and fetal sera were obtained from normal term (n = 150) and spontaneous preterm births (n = 150). A fetal inflammatory response associated with maternal anti-fetal rejection was diagnosed when the patients met two or more of the following criteria: (i) presence of chronic placental inflammation; (ii) ≥80% of maternal HLA class I PRA positivity; and (iii) fetal serum CXCL10 concentration >75th percentile. Maternal HLA PRA was analyzed by flow cytometry. The concentrations of fetal CXCL10 and IL-6 were determined by ELISA. Transcriptome analysis was undertaken after the extraction of total RNA from white blood cells with a whole-genome DASL assay. Proteomic analysis of fetal serum was conducted by two-dimensional difference gel electrophoresis. Differential gene expression was considered significant when there was a P < 0.01 and a fold-change >1.5. RESULTS (i) The frequency of placental lesions consistent with maternal anti-fetal rejection was higher in patients with preterm deliveries than in those with term deliveries (56% versus 32%; P < 0.001); (ii) patients with spontaneous preterm births had a higher rate of maternal HLA PRA class I positivity than those who delivered at term (50% versus 32%; P = 0.002); (iii) fetuses born to mothers with positive maternal HLA PRA results had a higher median serum CXCL10 concentration than those with negative HLA PRA results (P < 0.001); (iv) the median serum CXCL10 concentration (but not IL-6) was higher in fetuses with placental lesions associated with maternal anti-fetal rejection than those without such lesions (P < 0.001); (v) a whole-genome DASL assay of fetal blood RNA demonstrated differential expression of 128 genes between fetuses with and without lesions associated with maternal anti-fetal rejection; and (vi) comparison of the fetal serum proteome demonstrated 20 proteins whose abundance differed between fetuses with and without lesions associated with maternal anti-fetal rejection. CONCLUSION We describe a systemic inflammatory response in human fetuses born to mothers with evidence of maternal anti-fetal rejection. The transcriptome and proteome of this novel type of fetal inflammatory response were different from that of FIRS type I (which is associated with acute infection/inflammation).
Collapse
Affiliation(s)
- Joonho Lee
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|