Abstract
Background
Podocyte injury and subsequent excretion in urine play a crucial role in the pathogenesis and progression of diabetic nephropathy (DN). Quantification of messenger RNA (mRNA) expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers. We hypothesized that the urinary mRNA profile of podocyte-associated molecules may provide important clinical insight into the different stages of diabetic nephropathy.
Methods
DN patients (N = 51) and healthy controls (N = 13) were enrolled in this study. DN patients were divided into a normoalbuminuria group (UAE<30 mg/g, n = 17), a microalbuminuria group (UAE 30∼300 mg/g, n = 15), and a macroalbuminuria group (UAE>300 mg/g, n = 19), according to their urinary albumin excretion (UAE). Relative mRNA abundance of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were quantified, and correlations between target mRNAs and clinical parameters were examined.
Results
The urinary mRNA levels of all genes studied were significantly higher in the DN group compared with controls (p<0.05), and mRNA levels increased with DN progression. Urinary mRNA levels of all target genes positively correlated with both UAE and BUN. The expression of podocalyxin, CD2-AP, α-actin4, and podocin mRNA correlated with serum creatinine (r = 0.457, p = 0.001; r = 0.329, p = 0.01; r = 0.286, p = 0.021; r = 0.357, p = 0.006, respectively). Furthermore, podocalyxin mRNA was found to negatively correlate with eGFR (r = −0.349, p = 0.01).
Conclusion
The urinary mRNA profiles of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.
Collapse