1
|
Fukasaku Y, Goto R, Ganchiku Y, Emoto S, Zaitsu M, Watanabe M, Kawamura N, Fukai M, Shimamura T, Taketomi A. Novel immunological approach to asses donor reactivity of transplant recipients using a humanized mouse model. Hum Immunol 2020; 81:342-353. [PMID: 32345498 DOI: 10.1016/j.humimm.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
In organ transplantation, a reproducible and robust immune-monitoring assay has not been established to determine individually tailored immunosuppressants (IS). We applied humanized mice reconstituted with human (hu-) peripheral blood mononuclear cells (PBMCs) obtained from living donor liver transplant recipients to evaluate their immune status. Engraftment of 2.5 × 106 hu-PBMCs from healthy volunteers and recipients in the NSG mice was achieved successfully. The reconstituted lymphocytes consisted mainly of hu-CD3+ lymphocytes with predominant CD45RA-CD62Llo TEM and CCR6-CXCR3+CD4+ Th1 cells in hu-PBMC-NSG mice. Interestingly, T cell allo-reactivity of hu-PBMC-NSG mice was amplified significantly compared with that of freshly isolated PBMCs (p < 0.05). Furthermore, magnified hu-T cell responses to donor antigens (Ag) were observed in 2/10 immunosuppressed recipients with multiple acute rejection (AR) experiences, suggesting that the immunological assay in hu-PBMC-NSG mice revealed hidden risks of allograft rejection by IS. Furthermore, donor Ag-specific hyporesponsiveness was maintained in recipients who had been completely weaned off IS (n = 4), despite homeostatic proliferation of hu-T cells in the hu-PBMC-NSG mice. The immunological assay in humanized mice provides a new tool to assess recipient immunity in the absence of IS and explore the underlying mechanisms to maintaining operational tolerance.
Collapse
Affiliation(s)
- Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Shin Emoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Watanabe
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Norio Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| |
Collapse
|
2
|
Deng C, Chen Y, Zhang L, Wu Y, Li H, Wu Y, Wang B, Sun Z, Li Y, Lv Q, Yang Y, Wang J, Jin Q, Xie M. Delivery of FK506-loaded PLGA nanoparticles prolongs cardiac allograft survival. Int J Pharm 2019; 575:118951. [PMID: 31843550 DOI: 10.1016/j.ijpharm.2019.118951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
In this study, FK506-loaded poly(lactide-co-glycolide) nanoparticles (PLGA-FK506-NPs) were developed using an O/W emulsion solvent evaporation method. The PLGA-FK506-NPs were observed to be monodispersed and spherical by transmission and scanning electron microscopy. The mean size and zeta potential measured by dynamic light scattering were 110 ± 1.3 nm and -20.56 ± 3.65 mV, respectively. The FK506 entrapment and loading efficiency were 94.46 ± 1.88% and 5.38 ± 0.24%, respectively. Moreover, a pharmacokinetics study revealed that the PLGA-FK506-NPs behaved significantly different than free FK506 by exhibiting a higher area under curve (1.69-fold), higher mean residence time (1.29-fold), slower clearance and longer elimination half-life. Notably, the concentrations of FK506 in the spleen and mesenteric lymph nodes of the PLGA-FK506-NP group were 3.1-fold and 2.9-fold higher than those of the free FK506 group. Furthermore, the immunosuppressive efficacy was evaluated in a rat heterotopic heart transplantation model, and the results showed that PLGA-FK506-NP treatment could successfully alleviate acute rejection and prolong allograft survival compared with the free FK506 treatment (mean survival time, 17.1 ± 2.0 versus 13.3 ± 1.7 days). In conclusion, PLGA-FK506-NPs are a promising formulation for spleen and lymph node delivery and have potential use in the treatment of cardiac allograft acute rejection.
Collapse
Affiliation(s)
- Cheng Deng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Ya Wu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Huiling Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Yu Wu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Bin Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Yuman Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Yali Yang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China.
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, China.
| |
Collapse
|
3
|
Granot E, Loewenthal R, Jakobovich E, Gazit E, Sokal E, Reding R. Living related liver transplant following bone marrow transplantation from same donor: long-term survival without immunosuppression. Pediatr Transplant 2012; 16:E1-4. [PMID: 20819183 DOI: 10.1111/j.1399-3046.2010.01378.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report long-term (seven yr) immunological tolerance in a 16-yr-old boy, to a liver allograft donated by his father following a bone marrow transplant at age 2.5 yr from the same donor. The bone marrow transplant was complicated by severe GVHD leading to liver failure and the ensuing need for a liver transplant, performed under planned avoidance of immunosuppression. At one wk post-transplant, although a liver biopsy was histologically compatible with acute rejection, favorable clinical and biochemical evolution precluded initiating immunosuppressive therapy, thus highlighting the need for caution when interpreting early histological changes so that administration of unnecessary immunosuppression can be avoided. Induction of tolerance in transplant recipients remains an elusive goal. In those patients who had received conventional bone marrow transplants and had endured the consequences of GVHD, development of macrochimerism may allow immunosuppression-free solid organ transplantation from the same donor.
Collapse
Affiliation(s)
- E Granot
- Pediatric Department, Kaplan Medical Center, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
4
|
Burrell BE, Ding Y, Nakayama Y, Park KS, Xu J, Yin N, Bromberg JS. Tolerance and lymphoid organ structure and function. Front Immunol 2011; 2:64. [PMID: 22566853 PMCID: PMC3342028 DOI: 10.3389/fimmu.2011.00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
This issue of Frontiers in Immunologic Tolerance explores barriers to tolerance from a variety of views of cells, molecules, and processes of the immune system. Our laboratory has spent over a decade focused on the migration of the cells of the immune system, and dissecting the signals that determine how and where effector and suppressive regulatory T cells traffic from one site to another in order to reject or protect allografts. These studies have led us to a greater appreciation of the anatomic structure of the immune system, and the realization that the path taken by lymphocytes during the course of the immune response to implanted organs determines the final outcome. In particular, the structures, microanatomic domains, and the cells and molecules that lymphocytes encounter during their transit through blood, tissues, lymphatics, and secondary lymphoid organs are powerful determinants for whether tolerance is achieved. Thus, the understanding of complex cellular and molecular processes of tolerance will not come from “96-well plate immunology,” but from an integrated understanding of the temporal and spatial changes that occur during the response to the allograft. The study of the precise positioning and movement of cells in lymphoid organs has been difficult since it is hard to visualize cells within their three-dimensional setting; instead techniques have tended to be dominated by two-dimensional renderings, although advanced confocal and two-photon systems are changing this view. It is difficult to precisely modify key molecules and events in lymphoid organs, so that existing knockouts, transgenics, inhibitors, and activators have global and pleiotropic effects, rather than precise anatomically restricted influences. Lastly, there are no well-defined postal codes or tracking systems for leukocytes, so that while we can usually track cells from point A to point B, it is exponentially more difficult or even impossible to track them to point C and beyond. We believe this represents one of the fundamental barriers to understanding the immune system and devising therapeutic approaches that take into account anatomy and structure as major controlling principles of tolerance.
Collapse
Affiliation(s)
- Bryna E Burrell
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Topical inhibition of T cell costimulatory pathways in draining lymph nodes may suppress allograft rejection. Med Hypotheses 2010; 76:441-4. [PMID: 21134721 DOI: 10.1016/j.mehy.2010.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/09/2010] [Accepted: 11/13/2010] [Indexed: 11/22/2022]
Abstract
Topical immune suppression is an attractive and practical therapeutic option to prolong survival time of allografts, before the appearance of new agent with higher immunosuppressive efficacy and lower undesirable side effects. The initiation of rejection and outcome of allografts is principally mediated by alloantigen reactive T cells. The activation of T cells requires at least two signals, first is T-cell receptor signal and second is costimulatory signal. T cells that encounter antigen without the appropriate costimulatory signal become anergy or tolerance. Migration of alloantigen-bearing dendritic cells into the T-cell zone of secondary lymphoid tissues, which are essential for primary alloimmune responses, effectively induces T-cell activation and expansion with the presence of two signals. Draining lymph nodes are the promising targets for topical immune suppression, as disrupting lymphatic drainage from the transplanted graft to lymph nodes prevented rejection of skin allografts and lymphadenectomy prolong the survival time of skin and corneal allografts in experimental animals. Therefore, we hypothesize that inhibition of T cell costimulatory pathways in draining lymph nodes could impair the alloantigen-specific immune response and reduce systemic immunosuppressive drugs dose for allografts survival. Further investigations are required to identify most efficient way for draining lymph nodes transfer of costimulatory molecule gene or topical drug administration of costimulatory inhibitors to draining lymph nodes.
Collapse
|
6
|
Watanabe A, Hara M, Chosa E, Nakamura K, Sekiya R, Shimizu T, Onitsuka T. Combination of adoptive cell transfer and antibody injection can eradicate established tumors in mice--an in vivo study using anti-OX40mAb, anti-CD25mAb and anti-CTLA4mAb-. Immunopharmacol Immunotoxicol 2010; 32:238-45. [PMID: 20001272 DOI: 10.3109/08923970903222355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Boosting an effective immune response against established tumors remains a difficult challenge. This study shows the combination of 1) adoptive cell transfer using CD25 depleted splenocytes co-cultured with irradiated tumor cells, and 2) antibody injection therapy using CTLA4 blockade, the elimination of Treg and OX40, which together could eradicate an established MethA tumor in over 50% of the BALB/c mice. Each element of the protocol was shown to be necessary, as elimination of any factor except anti-CD25 antibody injection failed to eradicate the tumor.
Collapse
Affiliation(s)
- Akira Watanabe
- Department of Cardiovascular, Thoracic and General Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Alawieh M, Rifle G, Bouchot O, Malapert G, Mousson C, Martin L. Injection of donor-derived OX62+ splenic dendritic cells with anti-CD4 monoclonal antibody generates CD4+CD25+FOXP3+ regulatory T cells that prolong allograft skin survival indefinitely and abrogate production of donor-specific antibodies in a rat model. Transplant Proc 2010; 41:3363-6. [PMID: 19857750 DOI: 10.1016/j.transproceed.2009.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To examine in a rat model the ability of donor dendritic cells and anti-CD4 monoclonal antibody (mAb) to generate donor-specific CD4+CD25+ regulatory T cells (Tregs) and to evaluate the capacity of these Tregs to prolong skin allograft survival and abrogate the production of donor-specific antibodies after skin grafting. MATERIALS AND METHODS OX62+ (nonplasmacytoid) splenic dendritic cells were isolated from Fischer rats using magnetic beads and injected (2 x 10(6)) into Lewis rat recipients with or without treatment with a nondepleting anti-CD4 (W3/25) mAb. After 4 weeks, splenic CD4+CD25+FOXP3+ T cells were harvested using magnetic beads from conditioned animals and injected (1 x 10(6)) into naïve Lewis recipients (day 1) before they received a skin graft from a Fischer (n = 4) or a third-party (Norway; n = 4) donor rat. Donor-specific antibodies were detected in recipient blood using flow cytometric cross-matches with donor lymphocytes from day 0 to day 30 after grafting. RESULTS After injection of conditioned CD4+CD25+FOXP3+ T cells, Lewis recipients accepted skin grafts from Fischer donors indefinitely (>100 days) but rejected third-party skin grafts. Donor-specific antibodies were detected at low levels in only 1 recipient receiving conditioned Tregs before grafting. Naive Tregs did not prolong skin graft survival. CONCLUSION These preliminary data suggest that splenic dendritic cells in combination with an anti-CD4 mAb induce donor-specific Tregs that indefinitely prolong allogeneic skin graft survival and inhibit donor-specific antibody production. Experiments are under way to determine whether this protocol can inhibit chronic lesions after heart transplantation in this model.
Collapse
Affiliation(s)
- M Alawieh
- Insitut Fédératif de Recherche Santé-STIC (IFR 100), University of Burgundy, Dijon, France
| | | | | | | | | | | |
Collapse
|
8
|
Ayala-García MA, Soel JM, Diaz E, González B, Paz FJ, Cervantes F, Rodea E, Muñoz G, Rodriguez JS, Gutiérrez J, Malacara JM. Induction of tolerance in renal transplantation using splenic transplantation: experimental study in a canine model. Transplant Proc 2010; 42:376-80. [PMID: 20172353 DOI: 10.1016/j.transproceed.2009.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate in a canine model the induction of tolerance to renal transplantation after splenectomy and splenosis. MATERIALS AND METHODS This prospective, experimental, comparative, longitudinal study included 4 experimental groups, each comprising 4 dogs. Group 1 (control group) underwent renal transplantation only; group 2 underwent renal transplantation and splenectomy; group 3 underwent renal transplantation and splenosis; and group 4 underwent renal transplantation, splenectomy, and splenosis. Survival and degree of rejection were compared between the 4 groups. RESULTS Splenosis improved renal function after transplantation, as indicated by increased serum creatinine concentration (group 3, 6.2 mg/dL vs group 1, 12.9 mg/dL). Comparison of weighted survival curves (corrected for degree of rejection) demonstrated a significant difference between group 2 (66.0 days) and group 4 (66.2 days) vs group 1 (52.7 days) and group 3 (41.2 days) (P = .05, Wilcoxon rank sum test). CONCLUSION These results suggest that in this experimental model of renal transplantation, splenosis and splenectomy induce clinical tolerance, as indicated by improved renal function and prolonged recipient survival.
Collapse
Affiliation(s)
- M A Ayala-García
- Hospital Regional de Alta Especialidad del Bajio y Universidad de Guanajuato, León, Guanajuato, Mexico.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cadili A, de Gara C. Complications of splenectomy. Am J Med 2008; 121:371-5. [PMID: 18456028 DOI: 10.1016/j.amjmed.2008.02.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 01/26/2008] [Accepted: 02/01/2008] [Indexed: 12/11/2022]
Abstract
Surgical removal of the spleen, splenectomy, is a procedure that has significantly decreased in frequency as our understanding of the infectious complications of the asplenic state increased. The full spectrum and details of splenic function, however, have yet to be fully outlined. As a result, our comprehension of the long-term consequences of splenectomy remains incomplete. We review the evidence relating to the effects of splenectomy on infection, malignancy, thrombosis, and transplantation. Perhaps the best-defined and most widely understood complication of splenectomy is the asplenic patient's susceptibility to infection. In response to this concern, novel techniques have emerged to attempt to preserve splenic function in those patients for whom surgical therapy of the spleen is necessary. The efficacy of these techniques in preserving splenic function and staving off the complications associated with splenectomy is also reviewed in this article.
Collapse
|
10
|
Hara M, Chosa E, Onitsuka T. The spleen's role in transplantation immunology. Transpl Immunol 2008; 18:324-9. [DOI: 10.1016/j.trim.2007.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/09/2007] [Accepted: 09/17/2007] [Indexed: 11/29/2022]
|