1
|
Burlak C, Taylor RT, Wang ZY, Tector AJ. Human anti‐α‐fucose antibodies are xenoreactive toward GGTA1/CMAH knockout pigs. Xenotransplantation 2020; 27:e12629. [DOI: 10.1111/xen.12629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | - R. Travis Taylor
- Department of Medical Microbiology and Immunology University of Toledo Medical Center Toledo OH USA
| | | | | |
Collapse
|
2
|
Cheng Y, Li M, Wang S, Peng H, Reid S, Ni N, Fang H, Xu W, Wang B. Carbohydrate biomarkers for future disease detection and treatment. Sci China Chem 2010; 53:3-20. [PMID: 32214994 PMCID: PMC7089153 DOI: 10.1007/s11426-010-0021-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/09/2009] [Indexed: 12/28/2022]
Abstract
Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate "binders" that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, though some issues cross therapeutic boundaries.
Collapse
Affiliation(s)
- YunFeng Cheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - MinYong Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - ShaoRu Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - HanJing Peng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Suazette Reid
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - NanTing Ni
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - WenFang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - BingHe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
3
|
Yuriev E, Agostino M, Farrugia W, Christiansen D, Sandrin MS, Ramsland PA. Structural biology of carbohydrate xenoantigens. Expert Opin Biol Ther 2009; 9:1017-29. [PMID: 19591628 DOI: 10.1517/14712590903066703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transplantation of organs across species (xenotransplantation) is being considered to overcome the shortage of human donor organs. However, unmodified pig organs undergo an antibody-mediated hyperacute rejection that is brought about by the presence of natural antibodies to Galalpha(1,3)Gal, which is the major carbohydrate xenoantigen. Genetic modification of pig organs to remove most of the Galalpha(1,3)Gal epitopes has been achieved, but the human immune system may still recognize residual lipid-linked Galalpha(1,3)Gal carbohydrates, new (cryptic) carbohydrates or additional non-Galalpha(1,3)Gal carbohydrate xenoantigens. The structural basis for lectin and antibody recognition of Galalpha(1,3)Gal carbohydrates is starting to be understood and is discussed in this review. Antibody binding to Galalpha(1,3)Gal carbohydrates is predicted to primarily involve end-on insertion of the terminal alphaGal residue, but it is possible that groove-type binding can occur, as for some lectins. It is likely that similar antibody and lectin recognition will occur with other non-Galalpha(1,3)Gal xenoantigens, which potentially represent new barriers for pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Elizabeth Yuriev
- Monash University, Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry and Drug Action, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
In this review, we summarize the work published over the last 2 years using genetic modifications of animals in the field of xenotransplantation. Genetic engineering of the donor has become a powerful tool in xenotransplantation, both for the inactivation of one particular porcine gene and for the addition of human genes with the goal of overcoming xenogeneic barriers. We summarize the work relative to the knockout of the alpha1,3-galactosyltransferase gene, followed by genetic engineering aimed at reducing the humoral and cellular immune response, complement activation and coagulation. Finally, we report on the genetic modification of pigs to reduce porcine endogenous retrovirus infection risk in the xenogeneic context.
Collapse
|
5
|
Xenotransplantation: role of natural immunity. Transpl Immunol 2008; 21:70-4. [PMID: 18992342 DOI: 10.1016/j.trim.2008.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/09/2008] [Indexed: 11/20/2022]
Abstract
Hyperacute rejection, mediated by natural anti-Galalpha1,3Galbeta1,4GlcNAc (alphaGal) antibodies and the classically activated complement pathway, was identified as the first major barrier to the survival of porcine organs in humans. Subsequently, discordant pig-to-nonhuman primate and concordant rodent models revealed key roles for T and B lymphocytes in the second form of rejection, acute vascular rejection (AVR) or delayed xenograft rejection (DXR). As significant progress was made in strategies to circumvent or suppress xenoreactivity of the adaptive immune system, it became clear that, apart from natural antibodies, other innate immune system elements actively participate in AVR/DXR and represent a barrier to xenograft acceptance that may be particularly difficult to overcome. Observations in pig-to-primate and semi-discordant and concordant rodent models indicate that Natural Killer (NK) cells play a more prominent role in xenograft than in allograft rejection. Several mechanisms through which human NK cells recognize porcine endothelial cells have been elucidated and these appear to be more diverse than those involved in NK cell alloreactivity. Further, it has been demonstrated that human macrophages and neutrophils can directly recognize pig derived cells and can mediate direct xenograft damage. Here, we review the recent progress in the understanding of the xenoreactivity of the natural immune system, focussing on preclinical pig-to-(non)human primate systems, and discuss the proposed strategies to overcome these barriers.
Collapse
|
6
|
Kiernan K, Harnden I, Gunthart M, Gregory C, Meisner J, Kearns-Jonker M. The anti-non-gal xenoantibody response to xenoantigens on gal knockout pig cells is encoded by a restricted number of germline progenitors. Am J Transplant 2008; 8:1829-39. [PMID: 18671678 PMCID: PMC3462011 DOI: 10.1111/j.1600-6143.2008.02337.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antibodies directed at non-gal xenoantigens are responsible for acute humoral xenograft rejection when gal knockout (GalTKO) pig organs are transplanted into nonhuman primates. We generated IgM and IgG gene libraries using peripheral blood lymphocytes of rhesus monkeys initiating active xenoantibody responses after immunization with GalTKO pig endothelial cells and used these libraries to identify IgV(H) genes that encode antibody responses to non-gal pig xenoantigens. Immunoglobulin genes derived from the IGHV3-21 germline progenitor encode xenoantibodies directed at non-gal xenoantigens. Transduction of GalTKO cells with lentiviral vectors expressing the porcine alpha1,3 galactosyltransferase gene responsible for gal carbohydrate expression results in a higher level of binding of 'anti-non-gal' xenoantibodies to transduced GalTKO cells expressing the gal carbohydrate, suggesting that anti-non-gal xenoantibodies cross react with carbohydrate xenoantigens. The galactosyltransferase two gene encoding isoglobotriaosylceramide synthase (iGb3 synthase) is not expressed in GalTKO pig cells. Our results demonstrate that anti-non-gal xenoantibodies in primates are encoded by IgV(H) genes that are restricted to IGHV3-21 and bind to an epitope that is structurally related to but distinct from the Gal carbohydrate.
Collapse
Affiliation(s)
- Kathleen Kiernan
- Department of Cardiothoracic Surgery Saban Research Institute of the Childrens Hospital of Los Angeles,University of Southern California Keck School of Medicine 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027
| | - Ivan Harnden
- Department of Cardiothoracic Surgery Saban Research Institute of the Childrens Hospital of Los Angeles,University of Southern California Keck School of Medicine 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027
| | - Mirja Gunthart
- Department of Cardiothoracic Surgery Saban Research Institute of the Childrens Hospital of Los Angeles
| | - Clare Gregory
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA. 95616
| | - Jessica Meisner
- Department of Cardiothoracic Surgery Saban Research Institute of the Childrens Hospital of Los Angeles,University of Southern California Keck School of Medicine 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027
| | - Mary Kearns-Jonker
- Department of Cardiothoracic Surgery Saban Research Institute of the Childrens Hospital of Los Angeles,University of Southern California Keck School of Medicine 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027
| |
Collapse
|
7
|
Distribution of the alphaGal- and the non-alphaGal T-antigens in the pig kidney: potential targets for rejection in pig-to-man xenotransplantation. Immunol Cell Biol 2008; 86:363-71. [PMID: 18301385 DOI: 10.1038/icb.2008.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carbohydrate antigens, present on pig vascular endothelial cells, seem to be the prime agents responsible for graft rejection, and although genetically modified animals that express less amounts of carbohydrate antigen are available, it is still useful to decide the localization of the reactive xenoantigens in organs contemplated for xenotransplantation. Here we compare the distribution in pig kidney of antigens important in xenograft destruction, namely the Galalpha1-3Gal (alphaGal) glycans, with the localization of the T-antigen (Galbeta1-3GalNAc). The alpha-galactose-specific lectin Griffonia simplicifolia isolectin 1B4 was used to detect the Galalpha1-3Gal glycans, whereas Arachis hypogaea (PNA) lectin and a monoclonal antibody (3C9) detected T-antigen. In addition, two vascular markers (anti-caveolin-1 and anti-von Willebrand factor) served to identify vascular structures of the kidney. Both conventional fluorescence and confocal microscopy were used to distinguish lectin and immunohistochemical staining. On the basis of fluorescence signals, the results indicate that the carbohydrate antigens are heterogeneously distributed in the pig kidney. alphaGal epitopes were sparse in the capillary loops forming the glomeruli and in the capillaries surrounding the convoluted tubules, but showed stronger staining in capillaries surrounding the limbs of Henle. In addition, the brush border and basement membranes of the convoluted tubules strongly reacted with the GS1-B4-lectin. Finally, the Galalpha1-3Gal glycans were also present on epithelial cells of the large collecting tubules. Regarding the T-antigen, PNA and 3C9 reacted with different glomerular cells, whereas both reacted strongly with the endothelial cells lining the large kidney vessels. Human serum incubation of pig kidney sections, in which the alphaGal epitopes were blocked by unconjugated GS1-B4, showed staining of the same vascular structures as were obtained after incubation with the T-antigen-detecting agents. The study thus proves a complex spatial distribution of carbohydrate antigens relevant for xenotransplantation of pig kidney.
Collapse
|
8
|
Li Y, Teneberg S, Thapa P, Bendelac A, Levery SB, Zhou D. Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry. Glycobiology 2007; 18:158-65. [PMID: 18056651 DOI: 10.1093/glycob/cwm129] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycosphingolipids serve as ligands for receptors involved in signal transduction and immune recognition, as exemplified by isoglobotrihexosylceramide, an antigenic ligand for T cell receptors. Mechanistic studies on the regulation of isoglobotrihexosylceramide require biochemical measurement of its lysosomal precursor, isoglobotetraglycosylceramide. It remains a challenge to distinguish between complex tetraglycosylceramide glycosphingolipid isomers with the same sugar components but diverse internal linkages. Here we established a simple and sensitive method to separate globo- and isoglobotetraglycosylceramide by MS5 ion trap mass spectrometry, and report the identification of isoglobotetraglycosylceramide in a CHO cell line transfected by iGb3 synthase, as well as in human thymus.
Collapse
Affiliation(s)
- Yunsen Li
- Department of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | | | |
Collapse
|
9
|
Response to commentaries on "alpha1,3-galactosyltransferase gene-knockout pigs for xenotransplantation: where do we go from here?". Transplantation 2007; 84:1212-3. [PMID: 17998882 DOI: 10.1097/01.tp.0000287551.18714.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|