1
|
de Almeida Franzoi AE, da Silva GF, de Souza Somensi E, de Moura Campos MH, Wollmann GM, Fustes OJH, Marques GL, Teive HAG. Polyneuropathy in Patients with Spinocerebellar Ataxias Types 2, 3, and 10: A Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01730-w. [PMID: 39198325 DOI: 10.1007/s12311-024-01730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
Spinocerebellar ataxia (SCA) is an autosomal dominant hereditary disease with a low prevalence, for which more than 50 types have been described. This group of neurodegenerative diseases can present as different phenotypes with varying progression rates and clinical manifestations of different severities. Herein, we systematically reviewed existing medical literature to describe the main characteristics of polyneuropathy in patients with SCA types 2, 3, and 10. Using relevant keywords, 16,972 articles were identified from the databases. Of these, 5,329 duplicate studies were excluded before screening. Subsequently, 11,643 studies underwent title and abstract review, of which only 49 were selected for full-text review. Among these, 24 studies were included. The medical literature suggests peripheral neuropathy - probably in a polyneuropathy phenotype - in SCA types 2 and 3. It is not possible to determine whether there is peripheral neuropathy in patients with SCA type 10, as there is only one case series in Mexico that described peripheral neuropathy in this group. Further studies are required to investigate peripheral neuropathy in patients with SCA types 2, 3, and 10. The study and description of a possible statistical association between CAG repeats and SARA scale scores with the presence of peripheral neuropathy are important points requiring assessment in future research.
Collapse
Affiliation(s)
- André Eduardo de Almeida Franzoi
- Department of Internal Medicine, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Gustavo Figueiredo da Silva
- Department of Internal Medicine, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Eduardo de Souza Somensi
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | - Otto Jesus Hernandez Fustes
- Department of Internal Medicine, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gustavo Lenci Marques
- Department of Internal Medicine, Cardiology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Helio Afonso Ghizoni Teive
- Department of Internal Medicine, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
2
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Fernandez AM, Hernandez E, Guerrero-Gomez D, Miranda-Vizuete A, Torres Aleman I. A network of insulin peptides regulate glucose uptake by astrocytes: Potential new druggable targets for brain hypometabolism. Neuropharmacology 2017; 136:216-222. [PMID: 28859884 DOI: 10.1016/j.neuropharm.2017.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 01/20/2023]
Abstract
Astrocytes are major players in brain glucose metabolism, supporting neuronal needs on demand through mechanisms that are not yet entirely clear. Understanding glucose metabolism in astrocytes is therefore of great consequence to unveil novel targets and develop new drugs to restore brain energy balance in pathology. Contrary to what has been held for many years, we now present evidence that insulin, in association with the related insulin-like growth factor I (IGF-I) modulates brain glucose metabolism through a concerted action on astrocytes. Cooperativity of insulin and IGF-I relies on the IGF-I receptor (IGF-IR), that acts as a scaffold of Glucose Transporter 1 (GluT1) regulating its activity by retaining it in the cytoplasm or, in response to a concerted action of insulin and IGF-I, translocating it to the cell membrane. Regulated translocation of GluT1 to the cell membrane by IGF-IR involves an intricate repertoire of protein-protein interactions amenable to drug modulation, particularly by interfering with IGF-IR/GluT1 interactions. We propose that this mechanism accounts for a substantial proportion of basal and regulated glucose uptake by astrocytes as GluT1 is the major glucose transporter in these brain cells. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Ana M Fernandez
- Cajal Institute, Avda Dr Arce 37, 28002 Madrid, Spain; Ciberned, Madrid, Spain
| | - Edwin Hernandez
- Cajal Institute, Avda Dr Arce 37, 28002 Madrid, Spain; Ciberned, Madrid, Spain
| | - David Guerrero-Gomez
- Institute of Biomedicine (IBiS), Virgen del Rocío Hospital/CSIC/University of Seville, Seville, Spain
| | - Antonio Miranda-Vizuete
- Institute of Biomedicine (IBiS), Virgen del Rocío Hospital/CSIC/University of Seville, Seville, Spain
| | | |
Collapse
|
4
|
Franco C, Genis L, Navarro JA, Perez-Domper P, Fernandez AM, Schneuwly S, Torres Alemán I. A role for astrocytes in cerebellar deficits in frataxin deficiency: Protection by insulin-like growth factor I. Mol Cell Neurosci 2017; 80:100-110. [PMID: 28286293 DOI: 10.1016/j.mcn.2017.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 12/29/2022] Open
Abstract
Inherited neurodegenerative diseases such as Friedreich's ataxia (FRDA), produced by deficiency of the mitochondrial chaperone frataxin (Fxn), shows specific neurological deficits involving different subset of neurons even though deficiency of Fxn is ubiquitous. Because astrocytes are involved in neurodegeneration, we analyzed whether they are also affected by frataxin deficiency and contribute to the disease. We also tested whether insulin-like growth factor I (IGF-I), that has proven effective in increasing frataxin levels both in neurons and in astrocytes, also exerts in vivo protective actions. Using the GFAP promoter expressed by multipotential stem cells during development and mostly by astrocytes in the adult, we ablated Fxn in a time-dependent manner in mice (FGKO mice) and found severe ataxia and early death when Fxn was eliminated during development, but not when deleted in the adult. Analysis of underlying mechanisms revealed that Fxn deficiency elicited growth and survival impairments in developing cerebellar astrocytes, whereas forebrain astrocytes grew normally. A similar time-dependent effect of frataxin deficiency in astrocytes was observed in a fly model. In addition, treatment of FGKO mice with IGF-I improved their motor performance, reduced cerebellar atrophy, and increased survival. These observations indicate that a greater vulnerability of developing cerebellar astrocytes to Fxn deficiency may contribute to cerebellar deficits in this inherited disease. Our data also confirm a therapeutic benefit of IGF-I in early FRDA deficiency.
Collapse
Affiliation(s)
- C Franco
- Cajal Institute, CSIC, Madrid, Spain; CIBERNED, Spain
| | - L Genis
- Cajal Institute, CSIC, Madrid, Spain; CIBERNED, Spain
| | | | | | - A M Fernandez
- Cajal Institute, CSIC, Madrid, Spain; CIBERNED, Spain
| | | | | |
Collapse
|
5
|
Matilla-Dueñas A, Corral-Juan M, Rodríguez-Palmero Seuma A, Vilas D, Ispierto L, Morais S, Sequeiros J, Alonso I, Volpini V, Serrano-Munuera C, Pintos-Morell G, Álvarez R, Sánchez I. Rare Neurodegenerative Diseases: Clinical and Genetic Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1031:443-496. [PMID: 29214587 DOI: 10.1007/978-3-319-67144-4_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
More than 600 human disorders afflict the nervous system. Of these, neurodegenerative diseases are usually characterised by onset in late adulthood, progressive clinical course, and neuronal loss with regional specificity in the central nervous system. They include Alzheimer's disease and other less frequent dementias, brain cancer, degenerative nerve diseases, encephalitis, epilepsy, genetic brain disorders, head and brain malformations, hydrocephalus, stroke, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS or Lou Gehrig's Disease), Huntington's disease, and Prion diseases, among others. Neurodegeneration usually affects, but is not limited to, the cerebral cortex, intracranial white matter, basal ganglia, thalamus, hypothalamus, brain stem, and cerebellum. Although the majority of neurodegenerative diseases are sporadic, Mendelian inheritance is well documented. Intriguingly, the clinical presentations and neuropathological findings in inherited neurodegenerative forms are often indistinguishable from those of sporadic cases, suggesting that converging genomic signatures and pathophysiologic mechanisms underlie both hereditary and sporadic neurodegenerative diseases. Unfortunately, effective therapies for these diseases are scarce to non-existent. In this chapter, we highlight the clinical and genetic features associated with the rare inherited forms of neurodegenerative diseases, including ataxias, multiple system atrophy, spastic paraplegias, Parkinson's disease, dementias, motor neuron diseases, and rare metabolic disorders.
Collapse
Affiliation(s)
- Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias-IGTP, Can Ruti Campus, Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain.
| | - Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias-IGTP, Can Ruti Campus, Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Agustí Rodríguez-Palmero Seuma
- Department of Pediatrics, University Hospital Germans Trias i Pujol (HUGTP) and Health Sciences Research Institute, Can Ruti Campus, Ctra. de Canyet s/n, 08916, Badalona, Barcelona, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service and Neurosciences Department, University Hospital Germans Trias i Pujol (HUGTP), Ctra. de Canyet s/n, Can Ruti Campus, 08916, Badalona, Barcelona, Spain
| | - Lourdes Ispierto
- Neurodegenerative Diseases Unit, Neurology Service and Neurosciences Department, University Hospital Germans Trias i Pujol (HUGTP), Ctra. de Canyet s/n, Can Ruti Campus, 08916, Badalona, Barcelona, Spain
| | - Sara Morais
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Víctor Volpini
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Carmen Serrano-Munuera
- Department of Internal Medicine, Hospital St. Joan de Déu, Martorell, Spain.,Manresa University, Martorell, Barcelona, Spain
| | - Guillem Pintos-Morell
- Department of Pediatrics, University Hospital Germans Trias i Pujol (HUGTP) and Health Sciences Research Institute, Can Ruti Campus, Ctra. de Canyet s/n, 08916, Badalona, Barcelona, Spain
| | - Ramiro Álvarez
- Neurodegenerative Diseases Unit, Neurology Service and Neurosciences Department, University Hospital Germans Trias i Pujol (HUGTP), Ctra. de Canyet s/n, Can Ruti Campus, 08916, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional Biology and Experimental Therapeutics Laboratory, Functional and Translational Neurogenetics Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias-IGTP, Can Ruti Campus, Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
6
|
Truant R, Raymond LA, Xia J, Pinchev D, Burtnik A, Atwal RS. Canadian Association of Neurosciences Review: Polyglutamine Expansion Neurodegenerative Diseases. Can J Neurol Sci 2014; 33:278-91. [PMID: 17001815 DOI: 10.1017/s031716710000514x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT:Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases. To date, nine distinct genes are known to be linked to polyglutamine diseases, including Huntington's disease, Machado-Joseph Disease and spinobulbar muscular atrophy or Kennedy's disease. Most of the polyglutamine diseases are characterized clinically as spinocerebellar ataxias. Here we discuss recent successes and advancements in polyglutamine disease research, comparing these different diseases with a common genetic flaw at the level of molecular biology and early drug design for a family of diseases where many new research tools for these genetic disorders have been developed. Polyglutamine disease research has successfully used interdisciplinary collaborative efforts, informative multiple mouse genetic models and advanced tools of pharmaceutical industry research to potentially serve as the prototype model of therapeutic research and development for rare neurodegenerative diseases.
Collapse
Affiliation(s)
- Ray Truant
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Perlman SL. Treatment and management issues in ataxic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:635-54. [PMID: 21827924 DOI: 10.1016/b978-0-444-51892-7.00046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Abstract
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of neurodegenerative diseases characterized by progressive cerebellar ataxia in association with some or all of the following conditions: ophthalmoplegia, pyramidal signs, movement disorders, pigmentary retinopathy, peripheral neuropathy, cognitive dysfunction and dementia. OBJECTIVE: To carry out a clinical and genetic review of the main types of SCA. METHOD: The review was based on a search of the PUBMED and OMIM databases. RESULTS: Thirty types of SCAs are currently known, and 16 genes associated with the disease have been identified. The most common types are SCA type 3, or Machado-Joseph disease, SCA type 10 and SCA types 7, 2, 1 and 6. SCAs are genotypically and phenotypically very heterogeneous. A clinical algorithm can be used to distinguish between the different types of SCAs. CONCLUSIONS: Detailed clinical neurological examination of SCA patients can be of great help when assessing them, and the information thus gained can be used in an algorithm to screen patients before molecular tests to investigate the correct etiology of the disease are requested.
Collapse
|
9
|
Massella A, Gusciglio M, D'Intino G, Sivilia S, Ferraro L, Calzà L, Giardino L. Gabapentin treatment improves motor coordination in a mice model of progressive ataxia. Brain Res 2009; 1301:135-42. [DOI: 10.1016/j.brainres.2009.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 02/07/2023]
|
10
|
|
11
|
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that generally begins in middle age with abnormalities of movement, cognition, personality, and mood. Neuronal loss is most marked among the medium-sized projection neurons of the dorsal striatum. HD is an autosomal dominant genetic disorder caused by a CAG expansion in exon 1 of the HD gene, encoding an expanded polyglutamine (polyQ) tract near the N-terminus of the protein huntingtin. Despite identification of the gene mutation more than a decade ago, the normal function of this ubiquitously expressed protein is still under investigation and the mechanisms underlying selective neurodegeneration in HD remain poorly understood. Detailed postmortem analyses of brains of HD patients have provided important clues, and HD transgenic and knock-in mouse models have facilitated investigations into potential pathogenic mechanisms. Subcellular fractionation and immunolocalization studies suggest a role for huntingtin in organelle transport, protein trafficking, and regulation of energy metabolism. Consistent with this, evidence from vertebrate and invertebrate models of HD indicates that expression of the polyQ-expanded form of huntingtin results in early impairment of axonal transport and mitochondrial function. As well, alteration in activity of the N-methyl-d-aspartate (NMDA) type glutamate receptor, which has been implicated as a main mediator of excitotoxic neuronal death, especially in the striatum, is an early effect of mutant huntingtin. Proteolysis and nuclear localization of huntingtin also occur relatively early, while formation of ubiquitinated aggregates of huntingtin and transcriptional dysregulation occur as late effects of the gene mutation. Although each of these processes may contribute to neuronal loss in HD, here we review the data to support a strong role for NMDA receptor (NMDAR)-mediated excitotoxicity and mitochondrial dysfunction in conferring selective neuronal vulnerability in HD.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Psychiatry, Division of Neuroscience, Brain Research Centre University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | |
Collapse
|
12
|
Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I. Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? ACTA ACUST UNITED AC 2005; 50:134-41. [PMID: 15950289 DOI: 10.1016/j.brainresrev.2005.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 12/21/2022]
Abstract
In the present work we review evidence supporting the use of insulin-like growth factor I (IGF-I) for treatment of cerebellar ataxia, a heterogeneous group of neurodegenerative diseases of low incidence but high societal impact. Most types of ataxia display not only motor discoordination, but also additional neurological problems including peripheral nerve dysfunctions. Therefore, a feasible therapy should combine different strategies aimed to correct the various disturbances specific for each type of ataxia. For cerebellar deficits, and most probably also for other types of brain deficits, the use of a wide-spectrum neuroprotective factor such as IGF-I may prove beneficial. Intriguingly, both ataxic animals as well as human patients show altered serum IGF-I levels. While the pathogenic significance of IGF-I, if any, in this varied group of diseases is difficult to envisage, disrupted IGF-I neuroprotective signaling may constitute a common stage in the pathological cascade associated to neuronal death. Indeed, treatment with IGF-I has proven effective in animal models of ataxia. Based on this pre-clinical evidence we propose that IGF-I should be tested in clinical trials of cerebellar ataxia in those cases where either serum IGF-I deficiency (as in primary cerebellar atrophy) or loss of sensitivity to IGF-I (as in ataxia telangiectasia) has been reported. Taking advantage of the widely protective and anabolic actions of IGF-I on peripheral tissues, this neurotrophic factor may provide additional therapeutic advantages for many of the disturbances commonly associated to ataxia such as cardiopathy, muscle wasting, or immune dysfunction.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Avda. Dr. Arce 37, 28002 Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Sang TK, Li C, Liu W, Rodriguez A, Abrams JM, Zipursky SL, Jackson GR. Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis. Hum Mol Genet 2004; 14:357-72. [PMID: 15590702 DOI: 10.1093/hmg/ddi032] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Huntington's disease (HD) is caused by expansion of a polyglutamine tract near the N-terminal of huntingtin. Mutant huntingtin forms aggregates in striatum and cortex, where extensive cell death occurs. We used a Drosophila polyglutamine peptide model to assess the role of specific cell death regulators in polyglutamine-induced cell death. Here, we report that polyglutamine-induced cell death was dramatically suppressed in flies lacking Dark, the fly homolog of human Apaf-1, a key regulator of apoptosis. Dark appeared to play a role in the accumulation of polyglutamine-containing aggregates. Suppression of cell death, caspase activation and aggregate formation were also observed when mutant huntingtin exon 1 was expressed in homozygous dark mutant animals. Expanded polyglutamine induced a marked increase in expression of Dark, and Dark was observed to colocalize with ubiquitinated protein aggregates. Apaf-1 also was found to colocalize with huntingtin-containing aggregates in a murine model and HD brain, suggesting a common role for Dark/Apaf-1 in polyglutamine pathogenesis in invertebrates, mice and man. These findings suggest that limiting Apaf-1 activity may alleviate both pathological protein aggregation and neuronal cell death in HD.
Collapse
Affiliation(s)
- Tzu-Kang Sang
- Neurogenetics Program, Department of Neurology, Neuropsychiatric Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND The progressive ataxias are a diverse group of neurologic diseases that share features of degeneration of the cerebellum and its inflow/outflow pathways but differ in etiology, course, and associated noncerebellar system involvement. Some will have treatable causes, but for most, the pathophysiology is incompletely known. REVIEW SUMMARY Treatment strategies will include (1) definitive therapy when available, (2) symptomatic treatment and prevention of complications, and (3) rehabilitation and support resources. The physician will have to decide whether to introduce or approve the use of therapies based on as yet-unproven mechanisms or the use of complementary medicine approaches. CONCLUSIONS There are as yet no drugs that have been approved by the Food and Drug Administration for the treatment of the progressive ataxias and relatively few disease-modifying therapies, but symptomatic and rehabilitation interventions can greatly improve the quality of life of individuals with these disabling neurodegenerative disorders.
Collapse
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California, Los Angeles 90095, USA.
| |
Collapse
|