1
|
Fedorowski A, Ricci F, Hamrefors V, Sandau KE, Chung TH, Muldowney JAS, Gopinathannair R, Olshansky B. Orthostatic Hypotension: Management of a Complex, But Common, Medical Problem. Circ Arrhythm Electrophysiol 2022; 15:e010573. [PMID: 35212554 PMCID: PMC9049902 DOI: 10.1161/circep.121.010573] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Orthostatic hypotension (OH), a common, often overlooked, disorder with many causes, is associated with debilitating symptoms, falls, syncope, cognitive impairment, and risk of death. Chronic OH, a cardinal sign of autonomic dysfunction, increases with advancing age and is commonly associated with neurodegenerative and autoimmune diseases, diabetes, hypertension, heart failure, and kidney failure. Management typically involves a multidisciplinary, patient-centered, approach to arrive at an appropriate underlying diagnosis that is causing OH, treating accompanying conditions, and providing individually tailored pharmacological and nonpharmacological treatment. We propose a novel streamlined pathophysiological classification of OH; review the relationship between the cardiovascular disease continuum and OH; discuss OH-mediated end-organ damage; provide diagnostic and therapeutic algorithms to guide clinical decision making and patient care; identify current gaps in knowledge and try to define future research directions. Using a case-based learning approach, specific clinical scenarios are presented highlighting various presentations of OH to provide a practical guide to evaluate and manage patients who have OH.
Collapse
Affiliation(s)
- Artur Fedorowski
- Dept of Clinical Sciences, Lund University, Malmö
- Dept of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fabrizio Ricci
- Dept of Clinical Sciences, Lund University, Malmö
- Dept of Neuroscience, Imaging & Clinical Sciences, “G.d’Annunzio” University, Chieti-Pescara
- Casa di Cura Villa Serena, Città Sant’Angelo, Italy
| | - Viktor Hamrefors
- Dept of Clinical Sciences, Lund University, Malmö
- Dept of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | - Tae Hwan Chung
- Dept of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | |
Collapse
|
2
|
Rocha EA, Mehta N, Távora-Mehta MZP, Roncari CF, Cidrão AADL, Elias Neto J. Dysautonomia: A Forgotten Condition - Part II. Arq Bras Cardiol 2021; 116:981-998. [PMID: 34008826 PMCID: PMC8121459 DOI: 10.36660/abc.20200422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eduardo Arrais Rocha
- Hospital Universitário Walter Cantídio da Universidade Federal do Ceará (UFC) - Programa de Pós-graduação em Ciências Cardiovasculares da Faculdade de Medicina da UFC, Fortaleza, CE - Brasil
| | - Niraj Mehta
- Universidade Federal do Paraná, Curitiba, PR - Brasil.,Clínica de Eletrofisiologia do Paraná, Curitiba, PR - Brasil
| | | | - Camila Ferreira Roncari
- Departamento de Fisiologia e Farmacologia - Faculdade de Medicina da Universidade Federal do Ceará (UFC), Fortaleza, CE - Brasil
| | - Alan Alves de Lima Cidrão
- Programa de Pós-graduação em Ciências Cardiovasculares da Faculdade de Medicina da UFC, Fortaleza, CE - Brasil
| | - Jorge Elias Neto
- Serviço de Eletrofisiologia do Vitória Apart Hospital, Vitória, ES - Brasil
| |
Collapse
|
3
|
Coon EA, Ahlskog JE. My Treatment Approach to Multiple System Atrophy. Mayo Clin Proc 2021; 96:708-719. [PMID: 33673922 DOI: 10.1016/j.mayocp.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 10/13/2020] [Indexed: 11/28/2022]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder primarily characterized by autonomic failure plus parkinsonism or cerebellar ataxia. The diagnosis may be challenging and is usually made at a tertiary care center. The long-term management issues are equally challenging and frequently require collaboration with the patient's local care providers. Whereas there is currently no cure for MSA, treatment focuses on the most problematic symptoms experienced by the patient. Autonomic symptoms may include severe orthostatic hypotension with syncope, urinary symptoms culminating in incontinence, constipation, anhidrosis, and erectile dysfunction. Motor symptoms include parkinsonism, cerebellar ataxia, and falls. Although certain motor symptoms may respond partially to medications, some of these medications may exacerbate autonomic problems. In this manuscript, we seek to bridge the gap between tertiary care providers and the patient's local care providers to provide multidisciplinary care to the MSA patient. Patients are often best served by management of their chronic and evolving complex problems with a team approach involving their primary care providers and subspecialists. Treatment guidelines typically list myriad therapeutic options without clarifying the most efficacious and simplest treatment strategies. Herein, we provide a guideline based on what has worked in our MSA clinic, a clinic designed to provide care throughout the disease course with subspecialty integration with the goal of empowering a partnership with the patient's home primary care providers.
Collapse
|
4
|
Sabino-Carvalho JL, Falquetto B, Takakura AC, Vianna LC. Baroreflex dysfunction in Parkinson's disease: integration of central and peripheral mechanisms. J Neurophysiol 2021; 125:1425-1439. [PMID: 33625931 DOI: 10.1152/jn.00548.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The incidence of Parkinson's disease (PD) is increasing worldwide. Although the PD hallmark is the motor impairments, nonmotor dysfunctions are now becoming more recognized. Recently, studies have suggested that baroreflex dysfunction is one of the underlying mechanisms of cardiovascular dysregulation observed in patients with PD. However, the large body of literature on baroreflex function in PD is unclear. The baroreflex system plays a major role in the autonomic, and ultimately blood pressure and heart rate, adjustments that accompany acute cardiovascular stressors on a daily basis. Therefore, impaired baroreflex function (i.e., decreased sensitivity or gain) can lead to altered neural cardiovascular responses. Since PD affects parasympathetic and sympathetic branches of the autonomic nervous system and both are orchestrated by the baroreflex system, understanding of this crucial mechanism in PD is necessary. In the present review, we summarize the potential altered central and peripheral mechanisms affecting the feedback-controlled loops that comprise the reflex arc in patients with PD. Major factors including arterial stiffness, reduced number of C1 and activation of non-C1 neurons, presence of central α-synuclein aggregation, cardiac sympathetic denervation, attenuated muscle sympathetic nerve activity, and lower norepinephrine release could compromise baroreflex function in PD. Results from patients with PD and from animal models of PD provide the reader with a clearer picture of baroreflex function in this clinical condition. By doing so, our intent is to stimulate future studies to evaluate several unanswered questions in this research area.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
5
|
Rivasi G, Rafanelli M, Mossello E, Brignole M, Ungar A. Drug-Related Orthostatic Hypotension: Beyond Anti-Hypertensive Medications. Drugs Aging 2020; 37:725-738. [PMID: 32894454 PMCID: PMC7524811 DOI: 10.1007/s40266-020-00796-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Orthostatic hypotension (OH) is an abnormal blood pressure response to standing, which is associated with an increased risk of adverse outcomes such as syncope, falls, cognitive impairment, and mortality. Medical therapy is one the most common causes of OH, since numerous cardiovascular and psychoactive medications may interfere with the blood pressure response to standing, leading to drug-related OH. Additionally, hypotensive medications frequently overlap with other OH risk factors (e.g., advanced age, neurogenic autonomic dysfunction, and comorbidities), thus increasing the risk of symptoms and complications. Consequently, a medication review is recommended as a first-line approach in the diagnostic and therapeutic work-up of OH, with a view to minimizing the risk of drug-related orthostatic blood pressure impairment. If symptoms persist after the review of hypotensive medications, despite adherence to non-pharmacological interventions, specific drug treatment for OH can be considered. In this narrative review we present an overview of drugs acting on the cardiovascular and central nervous system that may potentially impair the orthostatic blood pressure response and we provide practical suggestions that may be helpful to guide medical therapy optimization in patients with OH. In addition, we summarize the available strategies for drug treatment of OH in patients with persistent symptoms despite non-pharmacological interventions.
Collapse
Affiliation(s)
- Giulia Rivasi
- Syncope Unit and Referral Centre for Hypertension Management in Older Adults, Division of Geriatric and Intensive Care Medicine, Careggi Hospital and University of Florence and Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50139, Florence, Italy.
| | - Martina Rafanelli
- Syncope Unit and Referral Centre for Hypertension Management in Older Adults, Division of Geriatric and Intensive Care Medicine, Careggi Hospital and University of Florence and Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50139, Florence, Italy
| | - Enrico Mossello
- Syncope Unit and Referral Centre for Hypertension Management in Older Adults, Division of Geriatric and Intensive Care Medicine, Careggi Hospital and University of Florence and Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50139, Florence, Italy
| | - Michele Brignole
- IRCCS, Istituto Auxologico Italiano, Cardiology Unit and Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital, Milan, Italy
| | - Andrea Ungar
- Syncope Unit and Referral Centre for Hypertension Management in Older Adults, Division of Geriatric and Intensive Care Medicine, Careggi Hospital and University of Florence and Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50139, Florence, Italy
| |
Collapse
|
6
|
Ortiz JF, Betté S, Tambo W, Tao F, Cozar JC, Isaacson S. Multiple System Atrophy - Cerebellar Type: Clinical Picture and Treatment of an Often-Overlooked Disorder. Cureus 2020; 12:e10741. [PMID: 33173654 PMCID: PMC7645310 DOI: 10.7759/cureus.10741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare, progressive, fatal, neurodegenerative disorder. There are two main types: the parkinsonian type (MSA-P) and cerebellar type (MSA-C). The disease usually presents with genitourinary dysfunction, orthostatic hypotension, and rapid eye movement (REM) sleep behavior disorder. Patients rapidly develop balance, speech, and coordination abnormalities. We present a review of the clinical picture and the actualized treatment modalities of the MSA cerebellar type. For the study methods, a PubMed search was done using the following medical subject headings (MeSH) terms: “multiple system atrophy/therapy". Inclusion criteria included studies in English, full papers, human studies, and publications in the last 30 years. Case reports and series were excluded. A total of 157 papers were extracted after applying the inclusion and exclusion criteria, and 41 papers were included for the discussion of this review. This review underlines the therapeutic strategies as well as the clinical picture of multiple system atrophy, and how MSA-C and MSA-P differ from each other. We discussed this review in four topics: ataxia, autonomic dysfunction (neurogenic orthostatic hypotension and urinary disorders), parkinsonism, and REM sleep disorder. In conclusion, the treatment of MSA-C is mainly symptomatic; there are not many studies on MSA-C. The ataxic component and fewer parkinsonian symptoms are the main difference of MSA-C as opposed to MSA-P.
Collapse
Affiliation(s)
- Juan Fernando Ortiz
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sagari Betté
- Neurology, Parkinson's Disease and Movement Disorder Center of Boca Raton, Boca Raton, USA
| | - Willians Tambo
- Neurology, Universidad San Francisco de Quito, Quito, ECU
| | - Feiyang Tao
- Neurology, School of Medicine, University of California, Irvine, Irvine, USA
| | - Jazmin Carolina Cozar
- Medicine, Universidad de las Américas, Quito, ECU.,Family Medicine, Open Door Family Medical Center, Portchester, USA
| | - Stuart Isaacson
- Neurology, Parkinson's Disease and Movement Disorder Center of Boca Raton, Boca Raton, USA
| |
Collapse
|
7
|
Kalra DK, Raina A, Sohal S. Neurogenic Orthostatic Hypotension: State of the Art and Therapeutic Strategies. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2020; 14:1179546820953415. [PMID: 32943966 PMCID: PMC7466888 DOI: 10.1177/1179546820953415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
Neurogenic orthostatic hypotension (nOH) is a subtype of orthostatic hypotension in which patients have impaired regulation of standing blood pressure due to autonomic dysfunction. Several primary and secondary causes of this disease exist. Patients may present with an array of symptoms making diagnosis difficult. This review article addresses the epidemiology, pathophysiology, causes, clinical features, and management of nOH. We highlight various pharmacological and non-pharmacological approaches to treatment, and review the recent guidelines and our approach to nOH.
Collapse
Affiliation(s)
- Dinesh K Kalra
- Division of Cardiology, Rush University Medical Center, Chicago, IL, USA
| | - Anvi Raina
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sumit Sohal
- Division of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This article reviews the diagnosis and management of the most common disorders of orthostatic intolerance: postural tachycardia syndrome (POTS) and neurally mediated syncope. RECENT FINDINGS POTS is a heterogeneous syndrome caused by several pathophysiologic mechanisms that may coexist (limited autonomic neuropathy, hyperadrenergic state, hypovolemia, venous pooling, joint hypermobility, deconditioning). Neurally mediated syncope occurs despite intact autonomic reflexes. Management of orthostatic intolerance aims to increase functional capacity, including standing time, performance of daily activities, and exercise tolerance. Nonpharmacologic strategies (fluid and salt loading, physical countermaneuvers, compression garments, exercise training) are fundamental for patients with POTS, occasionally complemented by medications to raise blood pressure or slow heart rate. Neurally mediated syncope is best managed by recognition and avoidance of triggers. SUMMARY Significant negative effects on quality of life occur in patients with POTS and in patients with recurrent neurally mediated syncope, which can be mitigated through targeted evaluation and thoughtful management.
Collapse
|
9
|
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a clinically heterogeneous disorder with multiple contributing pathophysiologic mechanisms manifesting as symptoms of orthostatic intolerance in the setting of orthostatic tachycardia (increase in heart rate by at least 30 beats per minute upon assuming an upright position) without orthostatic hypotension. The three major pathophysiologic mechanisms include partial autonomic neuropathy, hypovolemia, and hyperadrenergic state. Patients often will exhibit overlapping characteristics from more than one of these mechanisms. The approach to the treatment of POTS centers on treating the underlying pathophysiologic mechanism. Stockings, abdominal binders, and vasoconstrictors are used to enhance venous return in partial neuropathic POTS. Exercise and volume expansion are the main treatment strategies for hypo-volemic POTS. For hyperadrenergic POTS, beta-blockers and avoidance of norepinephrine reuptake inhibitors is important. Attempts should be made to discern which pathophysiologic mechanism(s) may be afflicting patients so that treatment regimens can be individualized.
Collapse
Affiliation(s)
- Philip L. Mar
- Division of Cardiology, Department of Medicine, St. Louis University School of Medicine, St. Louis, Missouri 63110, USA
| | - Satish R. Raj
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
10
|
Cutsforth-Gregory JK, Sandroni P. Clinical neurophysiology of postural tachycardia syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:429-445. [PMID: 31307619 DOI: 10.1016/b978-0-444-64142-7.00066-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Postural tachycardia syndrome (POTS) is one of several disorders of orthostatic intolerance (OI). It is defined by the development of symptoms of cerebral hypoperfusion or sympathetic activation and a sustained heart rate increment of 30 beats/min or more (40 beats/min for teenagers) within 10min of standing or head-up tilt in the absence of orthostatic hypotension; the standing heart rate is often 120 beats/min or higher. POTS is approximately five times more common in women than men. This heterogeneous syndrome is caused by several pathophysiologic mechanisms (limited autonomic neuropathy, hyperadrenergic state, hypovolemia, venous pooling, deconditioning), which are not mutually exclusive. Anxiety and somatic hypervigilance play significant roles in POTS. Common comorbidities include visceral pain and dysmotility, chronic fatigue and fibromyalgia, migraine, joint hypermobility, mitral valve prolapse, and inappropriate sinus tachycardia. Patients with suspected POTS should undergo comprehensive cardiac and neurologic examinations and autonomic and laboratory tests to determine the most likely pathophysiologic basis of OI. The objectives of POTS management are to (1) increase the time that patients can stand, perform daily activities, and exercise and (2) avoid syncope. Management involves nonpharmacologic (fluid and salt loading, physical countermaneuvers, compression garments, exercise training) and pharmacologic (β-blockers, pyridostigmine, fludrocortisone, midodrine) approaches.
Collapse
Affiliation(s)
| | - Paola Sandroni
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
11
|
Ali A, Ali NS, Waqas N, Bhan C, Iftikhar W, Sapna F, Jitidhar F, Cheema AM, Ahmad MQ, Nasir U, Sami SA, Zulfiqar A, Ahmed A. Management of Orthostatic Hypotension: A Literature Review. Cureus 2018; 10:e3166. [PMID: 30357001 PMCID: PMC6197501 DOI: 10.7759/cureus.3166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the older population, especially the hospitalized patients who are prone to dehydration and hypovolemia, orthostatic hypotension (OH) presents as a debilitating disease. How different pharmacological and non-pharmacological interventions affect the incapacitating symptoms (falls and episodes of syncope), morbidity, and mortality related to OH has become a topic of debate. OH can predispose to ischemic heart disease (IHD). A non-pharmacological approach consisting of mobilization, early lifestyle changes, and therapeutic maneuvers is the first choice in the management of these patients. Individuals with persistent symptoms require pharmaceutical therapy to increase blood volume and peripheral vascular resistance. This article summarizes the management of OH that is vital to cope with the needs of the growing geriatric populations.
Collapse
Affiliation(s)
- Asad Ali
- Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | - Neha Waqas
- Surgery, Shaikh Khalifa Bin Zayed Al Nahyan Medical & Dental College, Broken Bow, PAK
| | - Chandur Bhan
- Internal Medicine, Chandka Medical College Hospital, Larkana, PAK
| | - Waleed Iftikhar
- Internal Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Fnu Sapna
- Internal Medicine, Burhani Hospital, Karachi, PAK
| | - Fnu Jitidhar
- Internal Medicine, Orthopedic and Medical Institute, Karachi, PAK
| | - Abbas M Cheema
- Internal Medicine, Combined Military Hospital, Lahore, PAK
| | | | - Usama Nasir
- Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | - Annum Zulfiqar
- Internal Medicine, Sheikh Zayed Medical College/Hospital, Lahore, PAK
| | - Asma Ahmed
- Fatima Jinnah Medical University, Punjab, PAK
| |
Collapse
|
12
|
Use caution when treating supine hypertension in patients with neurogenic orthostatic hypotension. DRUGS & THERAPY PERSPECTIVES 2018. [DOI: 10.1007/s40267-017-0460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Wecht JM, Bauman WA. Implication of altered autonomic control for orthostatic tolerance in SCI. Auton Neurosci 2018; 209:51-58. [DOI: 10.1016/j.autneu.2017.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/16/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
|
14
|
Eschlböck S, Wenning G, Fanciulli A. Evidence-based treatment of neurogenic orthostatic hypotension and related symptoms. J Neural Transm (Vienna) 2017; 124:1567-1605. [PMID: 29058089 PMCID: PMC5686257 DOI: 10.1007/s00702-017-1791-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
Neurogenic orthostatic hypotension, postprandial hypotension and exercise-induced hypotension are common features of cardiovascular autonomic failure. Despite the serious impact on patient’s quality of life, evidence-based guidelines for non-pharmacological and pharmacological management are lacking at present. Here, we provide a systematic review of the literature on therapeutic options for neurogenic orthostatic hypotension and related symptoms with evidence-based recommendations according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE). Patient’s education and non-pharmacological measures remain essential, with strong recommendation for use of abdominal binders. Based on quality of evidence and safety issues, midodrine and droxidopa reach a strong recommendation level for pharmacological treatment of neurogenic orthostatic hypotension. In selected cases, a range of alternative agents can be considered (fludrocortisone, pyridostigmine, yohimbine, atomoxetine, fluoxetine, ergot alkaloids, ephedrine, phenylpropanolamine, octreotide, indomethacin, ibuprofen, caffeine, methylphenidate and desmopressin), though recommendation strength is weak and quality of evidence is low (atomoxetine, octreotide) or very low (fludrocortisone, pyridostigmine, yohimbine, fluoxetine, ergot alkaloids, ephedrine, phenylpropanolamine, indomethacin, ibuprofen, caffeine, methylphenidate and desmopressin). In case of severe postprandial hypotension, acarbose and octreotide are recommended (strong recommendation, moderate level of evidence). Alternatively, voglibose or caffeine, for which a weak recommendation is available, may be useful.
Collapse
Affiliation(s)
- Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor Wenning
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alessandra Fanciulli
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Shen WK, Sheldon RS, Benditt DG, Cohen MI, Forman DE, Goldberger ZD, Grubb BP, Hamdan MH, Krahn AD, Link MS, Olshansky B, Raj SR, Sandhu RK, Sorajja D, Sun BC, Yancy CW. 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2017; 136:e60-e122. [DOI: 10.1161/cir.0000000000000499] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Win-Kuang Shen
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | | | - David G. Benditt
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Mitchell I. Cohen
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Daniel E. Forman
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Zachary D. Goldberger
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Blair P. Grubb
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Mohamed H. Hamdan
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Andrew D. Krahn
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Mark S. Link
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Brian Olshansky
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Satish R. Raj
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Roopinder Kaur Sandhu
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Dan Sorajja
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Benjamin C. Sun
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Clyde W. Yancy
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| |
Collapse
|
16
|
|
17
|
Abstract
Neurogenic orthostatic hypotension (NOH) can be present in a number of disorders, including synucleinopathies, autoimmune disorders, and various genetic disorders. All are characterized by defective norepinephrine release from sympathetic terminals upon standing, resulting in impaired vasoconstriction. NOH is defined as a drop in systolic blood pressure ≥20 mmHg or diastolic blood pressure ≥10 mmHg, or both, within 3 minutes of standing or head up-tilt at a minimum of 60°. However, approximately 50% of patients have associated supine hypertension, which greatly complicates treatment. Supine hypertension not only is a common side effect of many anti-hypotensive agents but is also present in untreated patients, suggesting it is, in part, innate to the pathophysiology of autonomic dysfunction. Pathological mechanisms differ depending on the underlying autonomic disorder. In central neurodegenerative disorders, residual post-ganglionic sympathetic activity is likely the primary mechanism, whereas plasma angiotensin, aldosterone, and inappropriate mineralocorticoid receptor activity may contribute in peripheral autonomic lesions. Baroreflex failure/loss of baroreflex buffering is common to both. More work is required. Clinically, there is much dispute regarding the treatment of supine hypertension when there is a risk of exacerbating orthostatic hypotension. However, given the similar levels of end-organ damage (i.e., heart attack and stroke) seen with transient hypertension, it seems clear that treatment is important. Current therapies for both NOH and supine hypertension include a combination of pharmacological and conservative measures. However, in addition to the current standard of care, protocols may consider 24-h blood pressure monitoring and potential future examination of the peripheral post-ganglionic sympathetic nerves in order to apply individualized adjunct therapies. Finally, no anti-hypertensive agents are currently approved for use in this patient population, and development of novel therapies should focus on short-acting agents, selective to the supine position, that act primarily at night when hypertension is most severe/prolonged.
Collapse
Affiliation(s)
- Jacquie Baker
- School of Kinesiology, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Rm. C7-131, University Hospital, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada
| | - Kurt Kimpinski
- School of Kinesiology, Western University, London, ON, Canada. .,Department of Clinical Neurological Sciences, Rm. C7-131, University Hospital, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada. .,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
18
|
2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: Executive summary. Heart Rhythm 2017; 14:e218-e254. [DOI: 10.1016/j.hrthm.2017.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 01/05/2023]
|
19
|
Shen WK, Sheldon RS, Benditt DG, Cohen MI, Forman DE, Goldberger ZD, Grubb BP, Hamdan MH, Krahn AD, Link MS, Olshansky B, Raj SR, Sandhu RK, Sorajja D, Sun BC, Yancy CW. 2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm 2017; 14:e155-e217. [PMID: 28286247 DOI: 10.1016/j.hrthm.2017.03.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 12/26/2022]
|
20
|
Shen WK, Sheldon RS, Benditt DG, Cohen MI, Forman DE, Goldberger ZD, Grubb BP, Hamdan MH, Krahn AD, Link MS, Olshansky B, Raj SR, Sandhu RK, Sorajja D, Sun BC, Yancy CW. 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 2017; 70:620-663. [PMID: 28286222 DOI: 10.1016/j.jacc.2017.03.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Shen WK, Sheldon RS, Benditt DG, Cohen MI, Forman DE, Goldberger ZD, Grubb BP, Hamdan MH, Krahn AD, Link MS, Olshansky B, Raj SR, Sandhu RK, Sorajja D, Sun BC, Yancy CW. 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2017; 136:e25-e59. [PMID: 28280232 DOI: 10.1161/cir.0000000000000498] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Win-Kuang Shen
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | | | - David G Benditt
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Mitchell I Cohen
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Daniel E Forman
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Zachary D Goldberger
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Blair P Grubb
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Mohamed H Hamdan
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Andrew D Krahn
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Mark S Link
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Brian Olshansky
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Satish R Raj
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Roopinder Kaur Sandhu
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Dan Sorajja
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Benjamin C Sun
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| | - Clyde W Yancy
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison.,Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ACC/AHA Representative. HRS Representative. ACEP and SAEM Joint Representative. ACC/AHA Task Force on Performance Measures Liaison
| |
Collapse
|
22
|
Gibbons CH, Schmidt P, Biaggioni I, Frazier-Mills C, Freeman R, Isaacson S, Karabin B, Kuritzky L, Lew M, Low P, Mehdirad A, Raj SR, Vernino S, Kaufmann H. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol 2017; 264:1567-1582. [PMID: 28050656 PMCID: PMC5533816 DOI: 10.1007/s00415-016-8375-x] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
Neurogenic orthostatic hypotension (nOH) is common in patients with neurodegenerative disorders such as Parkinson’s disease, multiple system atrophy, pure autonomic failure, dementia with Lewy bodies, and peripheral neuropathies including amyloid or diabetic neuropathy. Due to the frequency of nOH in the aging population, clinicians need to be well informed about its diagnosis and management. To date, studies of nOH have used different outcome measures and various methods of diagnosis, thereby preventing the generation of evidence-based guidelines to direct clinicians towards ‘best practices’ when treating patients with nOH and associated supine hypertension. To address these issues, the American Autonomic Society and the National Parkinson Foundation initiated a project to develop a statement of recommendations beginning with a consensus panel meeting in Boston on November 7, 2015, with continued communications and contributions to the recommendations through October of 2016. This paper summarizes the panel members’ discussions held during the initial meeting along with continued deliberations among the panel members and provides essential recommendations based upon best available evidence as well as expert opinion for the (1) screening, (2) diagnosis, (3) treatment of nOH, and (4) diagnosis and treatment of associated supine hypertension.
Collapse
Affiliation(s)
| | | | | | | | - Roy Freeman
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stuart Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | | | - Louis Kuritzky
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Mark Lew
- Keck/USC School of Medicine, Los Angeles, CA, USA
| | | | - Ali Mehdirad
- Saint Louis University Hospital, St. Louis, MO, USA
| | | | - Steven Vernino
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
23
|
Abstract
Objective: To review the efficacy of pyridostigmine bromide for the treatment of orthostatic intolerance. Data Sources: MEDLINE and International Pharmaceutical Abstracts were searched (1966–December 2006) using the terms pyridostigmine, acetylcholinesterase inhibitor, orthostatic intolerance, orthostatic hypotension, neurogenic orthostatic hypotension, postural tachycardia syndrome, tachycardia, and orthostatic tachycardia. Study Selection and Data Extraction: Pertinent English-language human clinical trials, case reports, and background material were evaluated for safety and efficacy data. The references of reviewed articles were reviewed and used to identify additional sources. Data Synthesis: Pyridostigmine bromide has been associated with improved baroreceptor sensitivity and presents a novel approach to treatment of orthostatic intolerance. Four single-dose trials and a follow-up survey encompassing a total of 106 patients were identified. One open-label and one placebo-controlled single-dose trial in patients with neurogenic orthostatic hypotension (NOH) found statistically significant improvement in standing diastolic blood pressures (DBP). Absolute improvements in standing DBP were 3.7 and 6.4 mm Hg in the open-label and controlled trials, respectively. Long-term data consist of a single survey of patients receiving open-label pyridostigmine bromide. Twenty-nine percent of patients who initiated maintenance pyridostigmine bromide discontinued therapy. Concomitant NOH medications were taken by 75% of patients, and 85% of patients reported receiving benefit from pyridostigmine bromide. When evaluated for postural tachycardia syndrome, pyridostigmine bromide significantly reduced standing heart rate (10%). Pyridostigmine bromide significantly reduced symptom scores when compared with baseline but not placebo. The majority of patients included in these trials did not have supine hypertension. Conclusions: Single doses of pyridostigmine bromide produced modest but statistically significant improvements in hemodynamic measurements. At this time, long-term data are insufficient to support recommending the routine use of pyridostigmine bromide for treatment of orthostatic intolerance.
Collapse
Affiliation(s)
- Barry J Gales
- Department of Pharmacy Practice, College of Pharmacy, Southwestern Oklahoma State University, Oklahoma City, OK, USA.
| | | |
Collapse
|
24
|
|
25
|
In Sinn D, Gibbons CH. Pathophysiology and Treatment of Orthostatic Hypotension in Parkinsonian Disorders. Curr Treat Options Neurol 2016; 18:28. [DOI: 10.1007/s11940-016-0410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Sternberg Z. Promoting sympathovagal balance in multiple sclerosis; pharmacological, non-pharmacological, and surgical strategies. Autoimmun Rev 2016; 15:113-23. [DOI: 10.1016/j.autrev.2015.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Pintér A, Cseh D, Sárközi A, Illigens BM, Siepmann T. Autonomic Dysregulation in Multiple Sclerosis. Int J Mol Sci 2015; 16:16920-52. [PMID: 26213927 PMCID: PMC4581177 DOI: 10.3390/ijms160816920] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment.
Collapse
Affiliation(s)
- Alexandra Pintér
- Institute of Human Physiology and Clinical Experimental Research, Faculty of Medicine, Semmelweis University, Budapest 1085, Hungary.
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden 01067, Germany.
| | - Domonkos Cseh
- Institute of Human Physiology and Clinical Experimental Research, Faculty of Medicine, Semmelweis University, Budapest 1085, Hungary.
| | - Adrienn Sárközi
- Institute of Human Physiology and Clinical Experimental Research, Faculty of Medicine, Semmelweis University, Budapest 1085, Hungary.
| | - Ben M Illigens
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Timo Siepmann
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden 01067, Germany.
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| |
Collapse
|
28
|
Wecht JM, Cirnigliaro CM, Azarelo F, Bauman WA, Kirshblum SC. Orthostatic responses to anticholinesterase inhibition in spinal cord injury. Clin Auton Res 2015; 25:179-87. [PMID: 25916633 DOI: 10.1007/s10286-015-0272-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/02/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acetylcholine (Ach) is the pre-synaptic neurotransmitter of the sympathetic nervous system. Increased pre-synaptic Ach may augment post-synaptic release of norepinephrine, thereby increasing systemic blood pressure (BP). OBJECTIVES The primary objective of this investigation was to determine the hemodynamic effect of pyridostigmine bromide (PYRIDO: 60 mg), an Ach inhibitor (AchI), compared to no-drug (NO-D) during head-up tilt (HUT) in individuals with spinal cord injury (SCI). Secondarily, we aimed to determine the effects of PYRIDO compared to NO-D on symptoms of orthostatic intolerance (OI) and adverse event reporting (AE). METHODS Ten individuals with SCI (C4-C7) were studied on two occasions: visit (1) NO-D and visit (2) PYRIDO. On each visit subjects underwent a progressive HUT maneuver to 15°, 25°, 35° for 5 min at each angle and 45 min at 45°. Supine and orthostatic heart rate (HR), systolic and diastolic BP (SBP and DBP), as well as monitored and symptoms of OI and AE were monitored and recorded. RESULTS Supine hemodynamics did not differ between the trials. The significant fall in SBP during the NO-D trial was diminished with PYRIDO, and five subjects had an increased DBP during HUT with PYRIDO compared to the NO-D trial. Individuals that responded to PYRIDO with an increase in orthostatic BP had significantly lower resting HR than non-responders (p < 0.01), which suggests increased levels of pre-synaptic Ach. Subjective symptoms of OI and AE reporting did not differ between the two trials. CONCLUSIONS These preliminary data suggest that PYRIDO is safe and may be effective at ameliorating the orthostatic fall in BP in select individuals with SCI.
Collapse
Affiliation(s)
- Jill M Wecht
- The National Center of Excellence, James J. Peters VAMC, Bronx, NY, USA,
| | | | | | | | | |
Collapse
|
29
|
Abstract
Neurogenic orthostatic hypotension (NOH) is a debilitating condition associated with many central and peripheral neurological disorders. It has a complex pathophysiology and variable clinical presentation, which makes diagnosis and treatment difficult. Neurogenic orthostatic hypotension is often confused with other disorders of orthostatic intolerance, hypovolemic states and systemic conditions. Diagnosis is usually made by an autonomic specialist following characteristic responses to head-up tilt. Symptom control can be achieved through a combination of patient education, nonpharmacologic and pharmacologic therapy. The purpose of this review is to provide the clinician with a practical approach to the diagnosis and management of NOH.
Collapse
|
30
|
Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Adding the acetylcholinesterase inhibitor, donepezil, to losartan treatment markedly improves long-term survival in rats with chronic heart failure. Eur J Heart Fail 2014; 16:1056-65. [DOI: 10.1002/ejhf.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 01/31/2023] Open
Affiliation(s)
- Meihua Li
- Department of Cardiovascular Dynamics; National Cerebral and Cardiovascular Center; Osaka Japan
| | - Can Zheng
- Department of Cardiovascular Dynamics; National Cerebral and Cardiovascular Center; Osaka Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics; National Cerebral and Cardiovascular Center; Osaka Japan
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics; National Cerebral and Cardiovascular Center; Osaka Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics; National Cerebral and Cardiovascular Center; Osaka Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics; National Cerebral and Cardiovascular Center; Osaka Japan
| |
Collapse
|
31
|
Mar PL, Raj SR. Neuronal and hormonal perturbations in postural tachycardia syndrome. Front Physiol 2014; 5:220. [PMID: 24982638 PMCID: PMC4059278 DOI: 10.3389/fphys.2014.00220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The Postural Tachycardia Syndrome (POTS) is the most common disorder seen in autonomic clinics. Cardinal hemodynamic feature of this chronic and debilitating disorder of orthostatic tolerance is an exaggerated orthostatic tachycardia (≥30 bpm increase in HR with standing) in the absence of orthostatic hypotension. There are multiple pathophysiological mechanisms that underlie POTS. Some patients with POTS have evidence of elevated sympathoneural tone. This hyperadrenergic state is likely a driver of the excessive orthostatic tachycardia. Another common pathophysiological mechanism in POTS is a hypovolemic state. Many POTS patients with a hypovolemic state have been found to have a perturbed renin-angiotensin-aldosterone profile. These include inappropriately low plasma renin activity and aldosterone levels with resultant inadequate renal sodium retention. Some POTS patients have also been found to have elevated plasma angiotensin II (Ang-II) levels, with some studies suggesting problems with decreased angiotensin converting enzyme 2 activity and decreased Ang-II degradation. An understanding of these pathophysiological mechanisms in POTS may lead to more rational treatment approaches that derive from these pathophysiological mechanisms.
Collapse
Affiliation(s)
- Philip L Mar
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Satish R Raj
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine Nashville, TN, USA
| |
Collapse
|
32
|
Abstract
Most patients who present to a cardiologist with syncope have vasovagal (reflex) syncope. A busy syncope practice often also sees patients with postural tachycardia syndrome, often presenting with severe recurrent presyncope. Recognition of this syncope confounder might be difficult without adequate knowledge of their presentation, and this can adversely affect optimal management. Postural tachycardia syndrome can often be differentiated from vasovagal syncope by its hemodynamic pattern during tilt table test and differing clinical characteristics. This article reviews the presentation of postural tachycardia syndrome and its putative pathophysiology and presents an approach to nonpharmacologic and pharmacologic management.
Collapse
Affiliation(s)
- Victor C Nwazue
- Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Center, Vanderbilt University School of Medicine, AA3228 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232-2195, USA
| | | |
Collapse
|
33
|
|
34
|
|
35
|
Benarroch EE. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin Proc 2012; 87:1214-25. [PMID: 23122672 PMCID: PMC3547546 DOI: 10.1016/j.mayocp.2012.08.013] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
Postural tachycardia syndrome (POTS) is defined by a heart rate increment of 30 beats/min or more within 10 minutes of standing or head-up tilt in the absence of orthostatic hypotension; the standing heart rate is often 120 beats/min or higher. POTS manifests with symptoms of cerebral hypoperfusion and excessive sympathoexcitation. The pathophysiology of POTS is heterogeneous and includes impaired sympathetically mediated vasoconstriction, excessive sympathetic drive, volume dysregulation, and deconditioning. POTS is frequently included in the differential diagnosis of chronic unexplained symptoms, such as inappropriate sinus tachycardia, chronic fatigue, chronic dizziness, or unexplained spells in otherwise healthy young individuals. Many patients with POTS also report symptoms not attributable to orthostatic intolerance, including those of functional gastrointestinal or bladder disorders, chronic headache, fibromyalgia, and sleep disturbances. In many of these cases, cognitive and behavioral factors, somatic hypervigilance associated with anxiety, depression, and behavioral amplification contribute to symptom chronicity. The aims of evaluation in patients with POTS are to exclude cardiac causes of inappropriate tachycardia; elucidate, if possible, the most likely pathophysiologic basis of postural intolerance; assess for the presence of treatable autonomic neuropathies; exclude endocrine causes of a hyperadrenergic state; evaluate for cardiovascular deconditioning; and determine the contribution of emotional and behavioral factors to the patient's symptoms. Management of POTS includes avoidance of precipitating factors, volume expansion, physical countermaneuvers, exercise training, pharmacotherapy (fludrocortisone, midodrine, β-blockers, and/or pyridostigmine), and behavioral-cognitive therapy. A literature search of PubMed for articles published from January 1, 1990, to June 15, 2012, was performed using the following terms (or combination of terms): POTS; postural tachycardia syndrome, orthostatic; orthostatic; syncope; sympathetic; baroreceptors; vestibulosympathetic; hypovolemia; visceral pain; chronic fatigue; deconditioning; headache; Chiari malformation; Ehlers-Danlos; emotion; amygdala; insula; anterior cingulate; periaqueductal gray; fludrocortisone; midodrine; propranolol; β-adrenergic; and pyridostigmine. Studies were limited to those published in English. Other articles were identified from bibliographies of the retrieved articles.
Collapse
|
36
|
Prolonged cardioprotective effect of pyridostigmine encapsulated in liposomes. Life Sci 2010; 86:17-23. [DOI: 10.1016/j.lfs.2009.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/28/2009] [Accepted: 10/20/2009] [Indexed: 11/21/2022]
|
37
|
Carew S, Connor MO, Cooke J, Conway R, Sheehy C, Costelloe A, Lyons D. A review of postural orthostatic tachycardia syndrome. Europace 2009; 11:18-25. [PMID: 19088364 DOI: 10.1093/europace/eun324] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A 21-year-old female reports an 18-month history of light-headedness on standing. This is often associated with palpitations and a feeling of intense anxiety. She has had two black-outs in the past 12 months. She is not taking any regular medications. Her supine blood pressure was 126/84 mmHg with a heart rate of 76 bpm, and her upright blood pressure was 122/80 mmHg with a heart rate of 114 bpm. A full system examination was otherwise normal. She had a 12-lead electrocardiogram performed which was unremarkable. She was referred for head-up tilt testing. She was symptomatic during the test and lost consciousness at 16 min. Figure 1 summarizes her blood pressure and heart rate response to tilting. A diagnosis of postural orthostatic tachycardia syndrome with overlapping vasovagal syncope was made.
Collapse
Affiliation(s)
- Sheila Carew
- Blood Pressure Unit, Mid Western Regional Hospital, Limerick, Ireland
| | | | | | | | | | | | | |
Collapse
|
38
|
Bharucha AE, Camilleri M, Burton D. Pilot study of pyridostigmine in constipated patients with autonomic neuropathy. Clin Auton Res 2008; 18:194-202. [PMID: 18622640 PMCID: PMC2536749 DOI: 10.1007/s10286-008-0476-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/02/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND The effects of cholinesterase inhibitors, which increase colonic motility in health, on chronic constipation are unknown. Our aims were to evaluate the efficacy of cholinesterase inhibitors for dysautonomia and chronic constipation and to assess whether acute effects could predict the long term response. METHODS In this single-blind study, 10 patients with autonomic neuropathy and constipation were treated with placebo (2 weeks), followed by an escalating dose of pyridostigmine to the maximum tolerated dose (i.e., 180-540 mg daily) for 6 weeks. Symptoms and gastrointestinal transit were assessed at 2 and 8 weeks. The acute effects of neostigmine on colonic transit and motility were also assessed. RESULTS At baseline, 4, 6, and 3 patients had delayed gastric, small intestinal, and colonic transit respectively. Pyridostigmine was well tolerated in most patients, improved symptoms in 4 patients, and accelerated the geometric center for colonic transit at 24 h by > or =0.7 unit in 3 patients. The effects of i.v. neostigmine on colonic transit and compliance predicted (P < 0.05) the effects of pyridostigmine on colonic transit. CONCLUSIONS Pyridostigmine improves colonic transit and symptoms in some patients with autonomic neuropathy and constipation. The motor response to neostigmine predicted the response to oral pyridostigmine.
Collapse
Affiliation(s)
- Adil E. Bharucha
- Clinical and Enteric Neuroscience Translational and Epidemiological Research Program (C.E.N.T.E.R.) Mayo Clinic 200 First St. S.W. Rochester (MN) 55905, USA Tel.: +1-507/538-5854 Fax: +1-507/538-5820 E-Mail:
| | - Michael Camilleri
- Clinical and Enteric Neuroscience Translational and Epidemiological Research Program (C.E.N.T.E.R.) Mayo Clinic 200 First St. S.W. Rochester (MN) 55905, USA Tel.: +1-507/538-5854 Fax: +1-507/538-5820 E-Mail:
| | - Duane Burton
- Clinical and Enteric Neuroscience Translational and Epidemiological Research Program (C.E.N.T.E.R.) Mayo Clinic 200 First St. S.W. Rochester (MN) 55905, USA Tel.: +1-507/538-5854 Fax: +1-507/538-5820 E-Mail:
| |
Collapse
|