1
|
Cai X, Liu L, Xia F, Papadimos TJ, Wang Q. Apelin-13 reverses bupivacaine-induced cardiotoxicity: an experimental study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:844501. [PMID: 38583586 PMCID: PMC11015498 DOI: 10.1016/j.bjane.2024.844501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats. METHODS A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg-1.min-1, and serial doses of apelin-13 (50, 150 and 450 μg.kg-1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay. RESULTS Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05). CONCLUSION Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.
Collapse
Affiliation(s)
- Xixi Cai
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Zhejiang Province, China
| | - Le Liu
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Zhejiang Province, China
| | - Fangfang Xia
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Zhejiang Province, China
| | - Thomas J Papadimos
- The Ohio State University Wexner Medical Center, Department of Anesthesiology, Ohio, USA
| | - Quanguang Wang
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Zhejiang Province, China.
| |
Collapse
|
2
|
Long B, Chavez S, Gottlieb M, Montrief T, Brady WJ. Local anesthetic systemic toxicity: A narrative review for emergency clinicians. Am J Emerg Med 2022; 59:42-48. [PMID: 35777259 DOI: 10.1016/j.ajem.2022.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Emergency clinicians utilize local anesthetics for a variety of procedures in the emergency department (ED) setting. Local anesthetic systemic toxicity (LAST) is a potentially deadly complication. OBJECTIVE This narrative review provides emergency clinicians with the most current evidence regarding the pathophysiology, evaluation, and management of patients with LAST. DISCUSSION LAST is an uncommon but potentially life-threatening complication of local anesthetic use that may be encountered in the ED. Patients at extremes of age or with organ dysfunction are at higher risk. Inadvertent intra-arterial or intravenous injection, as well as repeated doses and higher doses of local anesthetics are associated with greater risk of developing LAST. Neurologic and cardiovascular manifestations can occur. Early recognition and intervention, including supportive care and intravenous lipid emulsion 20%, are the mainstays of treatment. Using ultrasound guidance, aspirating prior to injection, and utilizing the minimal local anesthetic dose needed are techniques that can reduce the risk of LAST. CONCLUSIONS This focused review provides an update for the emergency clinician to manage patients with LAST.
Collapse
Affiliation(s)
- Brit Long
- SAUSHEC, Emergency Medicine, Brooke Army Medical Center, USA.
| | - Summer Chavez
- Department of Emergency Medicine, UT Health Houston, Houston, TX, USA
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Tim Montrief
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL, USA
| | - William J Brady
- Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Gu S, Mou T, Chen J, Wang J, Zhang Y, Cui M, Hao W, Zhang C, Sun Y, Zhao T, Wei B. Develop a stepwise integrated method to screen biomarkers of Baihe-Dihuang Tang on the treatment of depression in Rats Applying with composition screened, untargeted and targeted metabolomics analysis. J Sep Sci 2022; 45:1656-1671. [PMID: 35234356 DOI: 10.1002/jssc.202100841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/10/2022]
Abstract
Baihe-Dihuang Tang is a commonly prescribed remedy for depression. In this study, component screening with untargeted and targeted metabolomics was used to to identify potential biomarkers for depression in chronic unpredictable mildly-stressed rats. Using this novel identification method, the screening of organic acids, lily saponins, iridoids, and other ingredients formed the basis for subsequent metabolomics research. Baihe-Dihuang Tang supplementation in chronic unpredictable mild-stress -induced depression models, increased their body weight, sucrose preference, brain-derived neurotrophic factor deposition, and spatial exploring. Untargeted metabolomics revealed that Baihe-Dihuang Tang exerts its antidepressant effects by regulating the levels of lipids, organic acids and its derivatives, and benzenoids in the brain, plasma, and urine of the depressed rats. Moreover, it also modulates the D-glutamine and D-glutamate metabolism and purine metabolism. Targeted metabolomics demonstrated significant reduction in L-glutamate levels in the brains of depressed rats. This could be a potential biomarker for depression. Baihe-Dihuang Tang alleviated depression by regulating the levels of L-glutamate, xanthine, and adenine in the brains of depressed rats. Together, these findings conclusively established the promising therapeutic effect of Baihe-Dihuang Tang on depression and also unraveled the underlying molecular mechanism of its potential antidepressant function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuo Gu
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Tingting Mou
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Jian Chen
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Jing Wang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Ying Zhang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Meirong Cui
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Wenqian Hao
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Chengqin Zhang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Yue Sun
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Tiantian Zhao
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Binbin Wei
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| |
Collapse
|
4
|
Wang C, Sun S, Jiao J, Yu X, Huang S. Effects of delta-opioid receptor agonist pretreatment on the cardiotoxicity of bupivacaine in rats. BMC Anesthesiol 2022; 22:19. [PMID: 35021986 PMCID: PMC8753886 DOI: 10.1186/s12871-022-01568-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background Delta-opioid receptor is widely expressed in human and rodent hearts, and has been proved to protect cardiomyocytes against ischemia/reperfusion and heart failure. The antagonist of delta-opioid receptor could block the rescue effect of lipid emulsion against local anesthetic cardiotoxicity. However, no evidence is available for the direct effect of delta-opioid-receptor agonists on the cardiotoxicity of local anesthetics. Methods Anesthetized Sprague Dawley rats were divided into five groups. Group NS received 2 ml·kg−1·min−1 normal saline, group LE received 2 ml·kg−1·min−1 30% lipid emulsion and group BW received 0.1, 1.0, or 5.0 mg/kg BW373U86, a delta-opioid-receptor agonist, for 5 min. Then 0.5% bupivacaine was infused intravenously at a rate of 3.0 mg·kg−1·min−1 until asystole. The time of arrhythmia, 50% mean arterial pressure-, 50% heart rate-reduction and asystole were recorded, and the dose of bupivacaine at each time point was calculated. Results All three different doses of BW373U86 did not affect the arrhythmia, 50% mean arterial pressure-reduction, 50% heart rate-reduction and asystole dose of bupivacaine compared with group NS. 30% LE significantly increased the bupivacaine threshold of 50% mean arterial pressure-reduction (17.9 [15.4–20.7] versus 7.2 [5.9–8.7], p = 0.018), 50% heart rate-reduction (18.7 ± 4.2 versus 8.8 ± 1.7, p < 0.001) and asystole (26.5 [21.0–29.1] versus 11.3 [10.7–13.4], p = 0.008) compared with group NS. There was no difference between group LE and group NS in the arrhythmia dose of bupivacaine (9.9 [8.9–11.7] versus 5.6 [4.5–7.0], p = 0.060). Conclusions Our data show that BW373U86 does not affect the cardiotoxicity of bupivacaine compared with NS control in rats. 30% LE pretreatment protects the myocardium against bupivacaine-induced cardiotoxicity.
Collapse
|
5
|
Liu Y, Zhang J, Yu P, Niu J, Yu S. Mechanisms and Efficacy of Intravenous Lipid Emulsion Treatment for Systemic Toxicity From Local Anesthetics. Front Med (Lausanne) 2021; 8:756866. [PMID: 34820396 PMCID: PMC8606423 DOI: 10.3389/fmed.2021.756866] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Local anesthetics are widely used clinically for perioperative analgesia to achieve comfort in medical treatment. However, when the concentration of local anesthetics in the blood exceeds the tolerance of the body, local anesthetic systemic toxicity (LAST) will occur. With the development and popularization of positioning technology under direct ultrasound, the risks and cases of LAST associated with direct entry of the anesthetic into the blood vessel have been reduced. Clinical occurrence of LAST usually presents as a series of severe toxic reactions such as myocardial depression, which is life-threatening. In addition to basic life support (airway management, advanced cardiac life support, etc.), intravenous lipid emulsion (ILE) has been introduced as a treatment option in recent years and has gradually become the first-line treatment for LAST. This review introduces the mechanisms of LAST and identifies the clinical symptoms displayed by the central nervous system and cardiovascular system. The paper features the multimodal mechanism of LAST reversal by ILE, describes research progress in the field, and identifies other anesthetics involved in the resuscitation process of LAST. Finally, the review presents key issues in lipid therapy. Although ILE has achieved notable success in the treatment of LAST, adverse reactions and contraindications also exist; therefore, ILE requires a high degree of attention during use. More in-depth research on the treatment mechanism of ILE, the resuscitation dosage and method of ILE, and the combined use with other resuscitation measures is needed to improve the efficacy and safety of clinical resuscitation after LAST in the future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangfeng Niu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
6
|
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a terrible disease which results in the dysfunction and structural damage of brain tissues. Growing evidence implies that miR-455-5p is implicated in the regulation of pathogenesis of several diseases. The aim of this study is to reveal the role of miR-455-5p in cerebral I/R injury and the regulatory mechanism. We established a vitro model by inducing SH-SY5Y and PC-12 cells with oxygen-glucose deprivation and reoxygenation. The experimental cerebral I/R rat model was established by middle cerebral artery occlusion operation. The findings indicated that miR-455-5p expression was downregulated in oxygen-glucose deprivation and reoxygenation induced cells and I/R rat model. In addition, miR-455-5p upregulation inhibited SH-SY5Y cell apoptosis and cerebral damage, whereas miR-455-5p silencing promoted SH-SY5Y cell apoptosis and cerebral damage. Mechanistically, luciferase reporter assay corroborated that miR-455-5p could bind with feline mcDonough sarcoma-like tyrosine kinase 3 (FLT3) mRNA. However, the role of FLT3 in cerebral I/R injury was rarely investigated. Real-time polymerase chain reaction revealed that FTL3 expression was negatively regulated by miR-455-5p. FTL3 upregulation reversed the inhibitory effects of miR-455-5p upregulation on PC-12 and SH-SY5Y cell apoptosis. Therefore, our study verified that miR-455-5p improved cerebral I/R injury by targeting FLT3, which suggests a potential new target for the prevention of cerebral I/R injury.
Collapse
|
7
|
Arumugam S, Contino V, Kolli S. Local Anesthetic Systemic Toxicity (LAST) – a Review and Update. CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00381-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
|
9
|
Ok SH, Hong JM, Lee SH, Sohn JT. Lipid Emulsion for Treating Local Anesthetic Systemic Toxicity. Int J Med Sci 2018; 15:713-722. [PMID: 29910676 PMCID: PMC6001420 DOI: 10.7150/ijms.22643] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid emulsion has been shown to be an effective treatment for systemic toxicity induced by local anesthetics, which is reflected in case reports. A systemic review and meta-analysis confirm the efficacy of this treatment. Investigators have suggested mechanisms associated with the lipid emulsion-mediated recovery of cardiovascular collapse caused by local anesthetic systemic toxicity; these mechanisms include lipid sink, a widely accepted theory in which highly soluble local anesthetics (particularly bupivacaine) are absorbed into the lipid phase of plasma from tissues (e.g., the heart) affected by local-anesthetic-induced toxicity; enhanced redistribution (lipid shuttle); fatty acid supply; reversal of mitochondrial dysfunction; inotropic effects; glycogen synthase kinase-3β phosphorylation associated with inhibition of the mitochondrial permeability transition pore opening; inhibition of nitric oxide release; and reversal of cardiac sodium channel blockade. The current review includes the following: 1) an introduction, 2) a list of the proposed mechanisms, 3) a discussion of the best lipid emulsion treatment for reversal of local anesthetic toxicity, 4) a description of the effect of epinephrine on lipid emulsion-mediated resuscitation, 5) a description of the recommended lipid emulsion treatment, and 6) a conclusion.
Collapse
Affiliation(s)
- Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, 52727, Republic of Korea
| | - Jeong-Min Hong
- Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, 52727, Republic of Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, 52727, Republic of Korea
| |
Collapse
|