1
|
Kinashi Y, Tanaka K, Kimura S, Hirota M, Komiyama S, Shindo T, Hashiguchi A, Takahashi D, Shibata S, Karaki SI, Ohno H, Hase K. Intestinal epithelium dysfunctions cause IgA deposition in the kidney glomeruli of intestine-specific Ap1m2-deficient mice. EBioMedicine 2024; 106:105256. [PMID: 39059316 PMCID: PMC11338063 DOI: 10.1016/j.ebiom.2024.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Intestinal epithelial cells (IECs) serve as robust barriers against potentially hostile luminal antigens and commensal microbiota. Epithelial barrier dysfunction enhances intestinal permeability, leading to leaky gut syndrome (LGS) associated with autoimmune and chronic inflammatory disorders. However, a causal relationship between LGS and systemic disorders remains unclear. Ap1m2 encodes clathrin adaptor protein complex 1 subunit mu 2, which facilitates polarized protein trafficking toward the basolateral membrane and contributes to the establishment of epithelial barrier functions. METHODS We generated IEC-specific Ap1m2-deficient (Ap1m2ΔIEC) mice with low intestinal barrier integrity as an LSG model and examined the systemic impact. FINDINGS Ap1m2ΔIEC mice spontaneously developed IgA nephropathy (IgAN)-like features characterized by the deposition of IgA-IgG immune complexes and complement factors in the kidney glomeruli. Ap1m2 deficiency markedly enhanced aberrantly glycosylated IgA in the serum owing to downregulation and mis-sorting of polymeric immunoglobulin receptors in IECs. Furthermore, Ap1m2 deficiency caused intestinal dysbiosis by attenuating IL-22-STAT3 signaling. Intestinal dysbiosis contributed to the pathogenesis of IgAN because antibiotic treatment reduced aberrantly glycosylated IgA production and renal IgA deposition in Ap1m2ΔIEC mice. INTERPRETATION IEC barrier dysfunction and subsequent dysbiosis by AP-1B deficiency provoke IgA deposition in the mouse kidney. Our findings provide experimental evidence of a pathological link between LGS and IgAN. FUNDING AMED, AMED-CREST, JSPS Grants-in-Aid for Scientific Research, JST CREST, Fuji Foundation for Protein Research, and Keio University Program for the Advancement of Next Generation Research Projects.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Keisuke Tanaka
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.
| | - Masato Hirota
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Seiga Komiyama
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Akinori Hashiguchi
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan; Depatment of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shin-Ichiro Karaki
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
2
|
Sakaguchi H, Sato Y, Matsumoto R, Gomikawa J, Yoshida N, Suzuki T, Matsuda M, Iwanami N. Maturation of the medaka immune system depends on reciprocal interactions between the microbiota and the intestinal tract. Front Immunol 2023; 14:1259519. [PMID: 37767090 PMCID: PMC10520778 DOI: 10.3389/fimmu.2023.1259519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The interactions between the host immune system and intestinal microorganisms have been studied in many animals, including fish. However, a detailed analysis has not been performed in medaka, an established fish model for biological studies. Here, we investigated the effect of immunodeficiency on the microbiota composition and the effect of gut bacteria on intestinal epithelial development and immune responses in medaka. Chronological analysis of the intestinal microbiota of interleukin 2 receptor subunit gamma (il2rg) mutant medaka showed a gradual decrease in the evenness of operational taxonomic units, mainly caused by the increased abundance of the Aeromonadaceae family. Exposure of wild-type medaka to high doses of an intestine-derived opportunistic bacterium of the Aeromonadaceae family induced an inflammatory response, suggesting a harmful effect on adult il2rg mutants. In addition, we established germ-free conditions in larval medaka and observed large absorptive vacuoles in intestinal epithelial cells, indicating a block in epithelial maturation. Transcriptome analysis revealed a decrease in the expression of genes involved in the defense response, including the antimicrobial peptide gene hepcidin, whose expression is induced by lipopolysaccharide stimulation in normal larvae. These results show that reciprocal interactions between the microbiome and the intestinal tract are required for the maturation of the medaka immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
3
|
Evrensel A. Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:71-90. [PMID: 36949306 DOI: 10.1007/978-981-19-7376-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Microorganisms' flora, which colonize in many parts of our body, stand out as one of the most important components for a healthy life. This microbial organization called microbiome lives in integration with the body as a single and whole organ/system. Perhaps, the human first encounters the microbial activity it carries through the immune system. This encounter and interaction are vital for the development of immune system cells that protect the body against pathogenic organisms and infections throughout life. In recent years, it has been determined that some disruptions in the host-microbiome interaction play an important role in the physiopathology of autoimmune diseases. Although the details of this interaction have not been clarified yet, the focus is on leaky gut syndrome, dysbiosis, toll-like receptor ligands, and B cell dysfunction. Nutritional regulations, prebiotics, probiotics, fecal microbiota transplantation, bacterial engineering, and vaccination are being investigated as new therapeutic approaches in the treatment of problems in these areas. This article reviews recent research in this area.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
- NP Brain Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Sertori R, Jones R, Basheer F, Rivera L, Dawson S, Loke S, Heidary S, Dhillon A, Liongue C, Ward AC. Generation and Characterization of a Zebrafish IL-2Rγc SCID Model. Int J Mol Sci 2022; 23:ijms23042385. [PMID: 35216498 PMCID: PMC8875600 DOI: 10.3390/ijms23042385] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The IL-2 family of cytokines act via receptor complexes that share the interleukin-2 receptor gamma common (IL-2Rγc) chain to play key roles in lymphopoiesis. Inactivating IL-2Rγc mutations results in severe combined immunodeficiency (SCID) in humans and other species. This study sought to generate an equivalent zebrafish SCID model. The zebrafish il2rga gene was targeted for genome editing using TALENs and presumed loss-of-function alleles analyzed with respect to immune cell development and impacts on intestinal microbiota and tumor immunity. Knockout of zebrafish Il-2rγc.a resulted in a SCID phenotype, including a significant reduction in T cells, with NK cells also impacted. This resulted in dysregulated intestinal microbiota and defective immunity to tumor xenotransplants. Collectively, this establishes a useful zebrafish SCID model.
Collapse
Affiliation(s)
- Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Realla Jones
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Samantha Dawson
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Stella Loke
- School of Life and Environmental Science, Deakin University, Burwood, VIC 3125, Australia;
| | - Somayyeh Heidary
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Amardeep Dhillon
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
5
|
Toyofuku E, Takeshita K, Ohnishi H, Kiridoshi Y, Masuoka H, Kadowaki T, Nishikomori R, Nishimura K, Kobayashi C, Ebato T, Shigemura T, Inoue Y, Suda W, Hattori M, Morio T, Honda K, Kanegane H. Dysregulation of the Intestinal Microbiome in Patients With Haploinsufficiency of A20. Front Cell Infect Microbiol 2022; 11:787667. [PMID: 35155270 PMCID: PMC8834539 DOI: 10.3389/fcimb.2021.787667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Haploinsufficiency of A20 (HA20) is a form of inborn errors of immunity (IEI). IEIs are genetically occurring diseases, some of which cause intestinal dysbiosis. Due to the dysregulation of regulatory T cells (Tregs) observed in patients with HA20, gut dysbiosis was associated with Tregs in intestinal lamina propria. Methods Stool samples were obtained from 16 patients with HA20 and 15 of their family members. Infant samples and/or samples with recent antibiotics use were excluded; hence, 26 samples from 13 patients and 13 family members were analyzed. The 16S sequencing process was conducted to assess the microbial composition of samples. Combined with clinical information, the relationship between the microbiome and the disease activity was statistically analyzed. Results The composition of gut microbiota in patients with HA20 was disturbed compared with that in healthy family members. Age, disease severity, and use of immunosuppressants corresponded to dysbiosis. However, other explanatory factors, such as abdominal symptoms and probiotic treatment, were not associated. The overall composition at the phylum level was stable, but some genera were significantly increased or decreased. Furthermore, among the seven operational taxonomic units (OTUs) that increased, two OTUs, Streptococcus mutans and Lactobacillus salivarius, considerably increased in patients with autoantibodies than those without autoantibodies. Discussion Detailed interaction on intestinal epithelium remains unknown; the relationship between the disease and stool composition change helps us understand the mechanism of an immunological reaction to microorganisms.
Collapse
Affiliation(s)
- Etsushi Toyofuku
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Kiridoshi
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Hiroaki Masuoka
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomonori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Kenichi Nishimura
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chie Kobayashi
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takasuke Ebato
- Department of Pediatrics, Kitasato University Hospital, Sagamihara, Japan
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuzaburo Inoue
- Department of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
6
|
Chen M, Qin S, Yang S, Chen H, Lu L, Qin X. Analytical comparison between two automated biochemical analyzer systems: Roche Cobas 8000 and Mindray BS2000M. J Med Biochem 2021; 41:306-315. [PMID: 36042904 PMCID: PMC9375536 DOI: 10.5937/jomb0-34328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022] Open
Abstract
Summary
Background. The values of biomarkers play a central role in routine clinical decision-making. Whereas, the performances of different automated chemical analyzers remain unclear. To determine the performances of different platforms, we evaluated the capability between Roche Cobas 8000 and Mindray BS2000M.
Methods. A total of 1869 remaining serum samples were collected. CK, LDH-1, RBP, Cys-c, IgA, IgM and IgG were assessed by using paired-t test, Passing-Bablok regression analysis and Bland Altman analysis according to CLSI EP5-A3.
Results. There were significant in average bias of all items between two machines (P < 0.001). Due to the 95% confidence interval of intercept A included 0, CK, LDH-1, Cys-c and IgG were not show systemic error in Passing-Bablok regression analysis. Except for IgA, the r values and correlation coefficient of all items were higher than 0.91, which showed that the correlation and consistency is good. The Bland-Altman analysis showed that two instruments had more than 95% of the points apart from CK, LDH-1, and IgA.
Conclusions. It can be considered that the two instruments have good correlation and consistency in CK, LDH-1, RBP, Cys-c, IgM and IgG, and the two instruments are interchangeable and can replace each other.
Collapse
Affiliation(s)
- Mingxing Chen
- First Affiliated Hospital of Guangxi Medical University, Department of Clinical Laboratory, China
| | - Simeng Qin
- First Affiliated Hospital of Guangxi Medical University, Department of Clinical Laboratory, China
| | - Sitao Yang
- First Affiliated Hospital of Guangxi Medical University, Department of Clinical Laboratory, China
| | - Huaping Chen
- First Affiliated Hospital of Guangxi Medical University, Department of Clinical Laboratory, China
| | - Liuyi Lu
- First Affiliated Hospital of Guangxi Medical University, Department of Clinical Laboratory, China
| | - Xue Qin
- First Affiliated Hospital of Guangxi Medical University, Department of Clinical Laboratory, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The current understanding of the relationship of the microbiota to clinical manifestation in patients with primary immunodeficiency, specifically the inflammatory processes caused by or that result in microbial dysbiosis, and their potential therapeutic options in primary immunodeficiency diseases (PID), is the basis of this review. RECENT FINDINGS PIDs are heterogeneous diseases with variable presentations, genetic backgrounds, complications, and severity. The immune-mediators may be extrinsic, such as therapeutic regimens that patients are on, including immunoglobin, biologics, antibiotics and diet, or intrinsic, like cytokines, microRNA and microbiome. The microbiome in PID, in particular, appears to play a crucial role in helping the host's immune system maintain hemostatic control in the intestine. Many of the clinical manifestations and complications of PID may be attributed to inflammatory and immune dysregulatory processes connected to the imbalances of the diet-microbiota-host-immunity axis, as shown by data pointing to the loss of microbial diversity, dysbiosis, in PID. SUMMARY The gut microbiome is a promising area of study in PID. Although the connection of the microbiome to humoral immunodeficiency is evident, the possibility of utilizing the association of humoral and cellular immunodeficiency and the microbiome for therapeutic benefit is still under investigation.
Collapse
Affiliation(s)
- Maryam Ali Al-Nesf
- Allergy and Immunology Section, Hamad Medical Corporation, Doha, Qatar
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - David Morgan
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Vidya Mohamed-Ali
- Anti-Doping Laboratory Qatar, Doha, Qatar
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, London, UK
| |
Collapse
|
8
|
Morawska I, Kurkowska S, Bębnowska D, Hrynkiewicz R, Becht R, Michalski A, Piwowarska-Bilska H, Birkenfeld B, Załuska-Ogryzek K, Grywalska E, Roliński J, Niedźwiedzka-Rystwej P. The Epidemiology and Clinical Presentations of Atopic Diseases in Selective IgA Deficiency. J Clin Med 2021; 10:3809. [PMID: 34501259 PMCID: PMC8432128 DOI: 10.3390/jcm10173809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency disease (PID), with an estimated occurrence from about 1:3000 to even 1:150, depending on population. sIgAD is diagnosed in adults and children after the 4th year of age, with immunoglobulin A level below 0.07 g/L and normal levels of IgM and IgG. Usually, the disease remains undiagnosed throughout the patient's life, due to its frequent asymptomatic course. If symptomatic, sIgAD is connected to more frequent viral and bacterial infections of upper respiratory, urinary, and gastrointestinal tracts, as well as autoimmune and allergic diseases. Interestingly, it may also be associated with other PIDs, such as IgG subclasses deficiency or specific antibodies deficiency. Rarely sIgAD can evolve to common variable immunodeficiency disease (CVID). It should also be remembered that IgA deficiency may occur in the course of other conditions or result from their treatment. It is hypothesized that allergic diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed with this particular PID. Selective IgA deficiency, although usually mildly symptomatic, can be difficult for clinicians. The aim of the study is to summarize the connection between selective IgA deficiency and atopic diseases.
Collapse
Affiliation(s)
- Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Hanna Piwowarska-Bilska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Bożena Birkenfeld
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Katarzyna Załuska-Ogryzek
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | | |
Collapse
|
9
|
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,*Correspondence: Koji Hase,
| |
Collapse
|
10
|
Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunol 2021; 12:673708. [PMID: 33968085 PMCID: PMC8100306 DOI: 10.3389/fimmu.2021.673708] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|
12
|
Gut Microbiota-Host Interactions in Inborn Errors of Immunity. Int J Mol Sci 2021; 22:ijms22031416. [PMID: 33572538 PMCID: PMC7866830 DOI: 10.3390/ijms22031416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host's innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.
Collapse
|
13
|
Isung J, Williams K, Isomura K, Gromark C, Hesselmark E, Lichtenstein P, Larsson H, Fernández de la Cruz L, Sidorchuk A, Mataix-Cols D. Association of Primary Humoral Immunodeficiencies With Psychiatric Disorders and Suicidal Behavior and the Role of Autoimmune Diseases. JAMA Psychiatry 2020; 77:1147-1154. [PMID: 32520326 PMCID: PMC7287945 DOI: 10.1001/jamapsychiatry.2020.1260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE The hypothesis that disrupted immune function is implicated in the pathophysiology of psychiatric disorders and suicide is gaining traction, but the underlying mechanisms are largely unknown. Primary humoral immunodeficiencies (PIDs) are rare deficiencies of the immune system-mainly dysfunction of antibody production-and are associated with adverse health problems, such as recurrent infections and autoimmune diseases. OBJECTIVE To establish whether PIDs that affect antibody function and level are associated with lifetime psychiatric disorders and suicidal behavior and whether this association is explained by the co-occurrence of autoimmune diseases. DESIGN, SETTING, AND PARTICIPANTS This population- and sibling-based cohort study included more than 14 million individuals living in Sweden from January 1, 1973, through December 31, 2013. Register-based data on exposure, outcomes, and covariates were collected through December 31, 2013. Individuals with a record of PID were linked to their full siblings, and a family identification number was created. Data were analyzed from May 17, 2019, to February 21, 2020. EXPOSURES Lifetime records of PID and autoimmune disease. MAIN OUTCOMES AND MEASURES Lifetime records of 12 major psychiatric disorders and suicidal behavior, including suicide attempts and death by suicide. RESULTS A lifetime diagnosis of PID affecting immunoglobulin levels was identified in 8378 patients (4947 women [59.0%]; median age at first diagnosis, 47.8 [interquartile range, 23.8-63.4] years). A total of 4776 clusters of full siblings discordant for PID was identified. After adjusting for comorbid autoimmune diseases, PIDs were associated with greater odds of any psychiatric disorder (adjusted odds ratio [AOR], 1.91; 95% CI, 1.81-2.01) and any suicidal behavior (AOR, 1.84; 95% CI, 1.66-2.04). The associations were also significant for all individual psychiatric disorders (range of AORs, 1.34 [95% CI, 1.17-1.54] for schizophrenia and other psychotic disorders to 2.99 [95% CI, 2.42-3.70] for autism spectrum disorders), death by suicide (AOR, 1.84; 95% CI, 1.25-2.71), and suicide attempts (AOR, 1.84; 95% CI, 1.66-2.04). In the sibling comparisons, the associations were attenuated but remained significant for aggregated outcomes (AOR for any psychiatric disorder, 1.64 [95% CI, 1.48-1.83]; AOR for any suicidal behavior, 1.37 [95% CI, 1.14-1.66]), most individual disorders (range of AORs, 1.46 [95% CI, 1.23-1.73] for substance use disorders to 2.29 [95% CI, 1.43-3.66] for autism spectrum disorders), and suicide attempts (AOR, 1.41; 95% CI, 1.17-1.71). Joint exposure for PID and autoimmune disease resulted in the highest odds for any psychiatric disorder (AOR, 2.77; 95% CI, 2.52-3.05) and any suicidal behavior (AOR, 2.75; 95% CI, 2.32-3.27). The associations with psychiatric outcomes (AORs, 2.42 [95% CI, 2.24-2.63] vs 1.65 [95% CI, 1.48-1.84]) and suicidal behavior (AORs, 2.43 [95% CI, 2.09-2.82] vs 1.40 [95% CI, 1.12-1.76]) were significantly stronger for women than for men with PID. CONCLUSIONS AND RELEVANCE Primary humoral immunodeficiencies were robustly associated with psychopathology and suicidal behavior, particularly in women. The associations could not be fully explained by co-occurring autoimmune diseases, suggesting that antibody dysfunction may play a role, although other mechanisms are possible. Individuals with both PID and autoimmune disease had the highest risk of psychiatric disorders and suicide, suggesting an additive effect. Future studies should explore the underlying mechanisms of these associations.
Collapse
Affiliation(s)
- Josef Isung
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kyle Williams
- Department of Psychiatry, Massachusetts General Hospital, Boston,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kayoko Isomura
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Caroline Gromark
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Eva Hesselmark
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Lorena Fernández de la Cruz
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Anna Sidorchuk
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
14
|
Berbers RM, Mohamed Hoesein FAA, Ellerbroek PM, van Montfrans JM, Dalm VASH, van Hagen PM, Paganelli FL, Viveen MC, Rogers MRC, de Jong PA, Uh HW, Willems RJL, Leavis HL. Low IgA Associated With Oropharyngeal Microbiota Changes and Lung Disease in Primary Antibody Deficiency. Front Immunol 2020; 11:1245. [PMID: 32636843 PMCID: PMC7318304 DOI: 10.3389/fimmu.2020.01245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Common Variable Immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) are primary antibody deficiencies characterized by hypogammaglobulinemia and recurrent infections, which can lead to structural airway disease (AD) and interstitial lung disease (ILD). We investigated associations between serum IgA, oropharyngeal microbiota composition and severity of lung disease in these patients. In this cross-sectional multicentre study we analyzed oropharyngeal microbiota composition of 86 CVID patients, 12 XLA patients and 49 healthy controls (HC) using next-generation sequencing of the 16S rRNA gene. qPCR was used to estimate bacterial load. IgA was measured in serum. High resolution CT scans were scored for severity of AD and ILD. Oropharyngeal bacterial load was increased in CVID patients with low IgA (p = 0.013) and XLA (p = 0.029) compared to HC. IgA status was associated with distinct beta (between-sample) diversity (p = 0.039), enrichment of (Allo)prevotella, and more severe radiographic lung disease (p = 0.003), independently of recent antibiotic use. AD scores were positively associated with Prevotella, Alloprevotella, and Selenomonas, and ILD scores with Streptococcus and negatively with Rothia. In clinically stable patients with CVID and XLA, radiographic lung disease was associated with IgA deficiency and expansion of distinct oropharyngeal bacterial taxa. Our findings highlight IgA as a potential driver of upper respiratory tract microbiota homeostasis.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Joris M van Montfrans
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Virgil A S H Dalm
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - P Martin van Hagen
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Hae-Won Uh
- Department of Biostatistics and Research Support, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|