1
|
Poto R, Fusco W, Rinninella E, Cintoni M, Kaitsas F, Raoul P, Caruso C, Mele MC, Varricchi G, Gasbarrini A, Cammarota G, Ianiro G. The Role of Gut Microbiota and Leaky Gut in the Pathogenesis of Food Allergy. Nutrients 2023; 16:92. [PMID: 38201921 PMCID: PMC10780391 DOI: 10.3390/nu16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Food allergy (FA) is a growing public health concern, with an increasing prevalence in Western countries. Increasing evidence suggests that the balance of human gut microbiota and the integrity of our intestinal barrier may play roles in the development of FA. Environmental factors, including industrialization and consumption of highly processed food, can contribute to altering the gut microbiota and the intestinal barrier, increasing the susceptibility to allergic sensitization. Compositional and functional alterations to the gut microbiome have also been associated with FA. In addition, increased permeability of the gut barrier allows the translocation of allergenic molecules, triggering Th2 immune responses. Preclinical and clinical studies have highlighted the potential of probiotics, prebiotics, and postbiotics in the prevention and treatment of FA through enhancing gut barrier function and promoting the restoration of healthy gut microbiota. Finally, fecal microbiota transplantation (FMT) is now being explored as a promising therapeutic strategy to prevent FA in both experimental and clinical studies. In this review article, we aim to explore the complex interplay between intestinal permeability and gut microbiota in the development of FA, as well as depict potential therapeutic strategies.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
| | - Pauline Raoul
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Cristiano Caruso
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Wei Y, Peng J, Wang S, Ding Z, Chen G, Sun J. Probiotics and the Potential of Genetic Modification as a Possible Treatment for Food Allergy. Nutrients 2023; 15:4159. [PMID: 37836443 PMCID: PMC10574749 DOI: 10.3390/nu15194159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Food allergy is a common condition that affects millions of people worldwide. It is caused by an abnormal immune response to harmless food antigens, which is influenced by genetics and environmental factors. Modulating the gut microbiota and immune system with probiotics or genetically modified probiotics confers health benefits to the host and offers a novel strategy for preventing and treating food allergy. This systematic review aims to summarize the current proof of the role of probiotics in food allergy and propose a promising future research direction of using probiotics as a possible strategy of treatment for food allergy.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Peng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Siyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Guixi Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
3
|
Gao Y, Stokholm J, O'Hely M, Ponsonby AL, Tang MLK, Ranganathan S, Saffery R, Harrison LC, Collier F, Gray L, Burgner D, Molloy J, Sly PD, Brix S, Frøkiær H, Vuillermin P. Gut microbiota maturity mediates the protective effect of siblings on food allergy. J Allergy Clin Immunol 2023; 152:667-675. [PMID: 37150361 DOI: 10.1016/j.jaci.2023.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The mechanisms underlying the protective effect of older siblings on allergic disease remain unclear but may relate to the infant gut microbiota. OBJECTIVE We sought to investigate whether having older siblings decreases the risk of IgE-mediated food allergy by accelerating the maturation of the infant gut microbiota. METHODS In a birth cohort assembled using an unselected antenatal sampling frame (n = 1074), fecal samples were collected at 1 month, 6 months, and 1 year, and food allergy status at 1 year was determined by skin prick test and in-hospital food challenge. We used 16S rRNA gene amplicon sequencing to derive amplicon sequence variants. Among a random subcohort (n = 323), microbiota-by-age z scores at each time point were calculated using fecal amplicon sequence variants to represent the gut microbiota maturation over the first year of life. RESULTS A greater number of siblings was associated with a higher microbiota-by-age z score at age 1 year (β = 0.15 per an additional sibling; 95% CI, 0.05-0.24; P = .003), which was in turn associated with decreased odds of food allergy (odds ratio, 0.45; 95% CI, 0.33-0.61; P < .001). Microbiota-by-age z scores mediated 63% of the protective effect of siblings. Analogous associations were not observed at younger ages. CONCLUSIONS The protective effect of older siblings on the risk of developing IgE-mediated food allergy during infancy is substantially mediated by advanced maturation of the gut microbiota at age 1 year.
Collapse
Affiliation(s)
- Yuan Gao
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Martin O'Hely
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Leonard C Harrison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Fiona Collier
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia
| | - Lawrence Gray
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - John Molloy
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia; Faculty of Health, Deakin University, Geelong, Australia
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hanne Frøkiær
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Vuillermin
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia.
| |
Collapse
|
4
|
Furci F, Caminati M, Crisafulli E, Senna G, Gangemi S. The intriguing possibility of using probiotics in allergen-specific immunotherapy. World Allergy Organ J 2023; 16:100751. [PMID: 36852412 PMCID: PMC9958496 DOI: 10.1016/j.waojou.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 02/22/2023] Open
Abstract
Allergen immunotherapy (AIT) can be considered the etiological therapy for allergic rhinitis and hymenoptera venom allergy. Its role is increasingly emerging in the context of IgE mediated food allergy, where the achievement of tolerance, or the permanent resolution of an allergy, represents the optimal goal of AIT. AIT treatment, indicated in adults and children with allergic rhinitis, has a preventative effect on the development of asthma and can also be used when asthma is associated to rhinitis; however, it is not the first choice for treatment of isolated asthma. While knowledge on immunological mechanisms, efficacy, and safety of AIT is known, an intriguing line of investigation has arisen on how the action of AIT is modulated by the use of probiotics, starting from awareness that the microbiome is altered in allergic conditions: the use of probiotics in inducing the stimulation of innate immunity via toll-like receptor activation, thus acting as adjuvants in AIT, is hereby examined. Therefore, by analyzing literature on AIT and probiotics, we intend to draw attention to how the role and use of AIT are emerging as being increasingly important for both the short- and long-term management of allergic diseases and how recourse probiotics may represent an additional therapeutic strategy to modulate the effectiveness of AIT. However, further investigations are needed to better identify which probiotics to use, the dosage, and the optimal duration to obtain correct immunomodulation, and how to best customize their use, including a "AIT + probiotics" strategy in the field of precision medicine.
Collapse
Affiliation(s)
- Fabiana Furci
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, Verona, Italy
| | - Marco Caminati
- Allergy, Asthma and Clinical Immunology, Department of Medicine, University of Verona and Verona University Hospital, Verona, Italy,Corresponding author. Department of Medicine, University of Verona and Verona University Hospital, Verona, Italy.
| | - Ernesto Crisafulli
- Respiratory Medicine Unit and Section of Internal Medicine, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gianenrico Senna
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, Verona, Italy,Allergy, Asthma and Clinical Immunology, Department of Medicine, University of Verona and Verona University Hospital, Verona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Policlinico “G. Martino”, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Schinnerling K, Penny HA, Soto JA, Melo-Gonzalez F. Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:3-24. [PMID: 37093419 DOI: 10.1007/978-3-031-26163-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Host barriers such as the skin, the lung mucosa, the intestinal mucosa and the oral cavity are crucial at preventing contact with potential threats and are populated by a diverse population of innate and adaptive immune cells. Alterations in antigen recognition driven by genetic and environmental factors can lead to autoimmune systemic diseases such rheumatoid arthritis, systemic lupus erythematosus and food allergy. Here we review how different immune cells residing at epithelial barriers, host-derived signals and environmental signals are involved in the initiation and progression of autoimmune responses in these diseases. We discuss how regulation of innate responses at these barriers and the influence of environmental factors such as the microbiota can affect the susceptibility to develop local and systemic autoimmune responses particularly in the cases of food allergy, systemic lupus erythematosus and rheumatoid arthritis. Induction of pathogenic autoreactive immune responses at host barriers in these diseases can contribute to the initiation and progression of their pathogenesis.
Collapse
Affiliation(s)
| | - Hugo A Penny
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Jorge A Soto
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To highlight the current evidence on food desensitization in children with food allergy. RECENT FINDINGS Food Allergen Specific Immunotherapy (FA-AIT) is currently recognised as a treatment option for treating children with allergy at least to the main common foods (i.e. milk, egg and peanut). The oral route of administration has been proven to be the most effective in achieving desensitisation. Efforts are devoted to overcome the current unmet needs mainly related to safety issues and long-term efficacy, as well as adherence to the treatment and improvement of health-related quality of life. In this perspective, alternative routes of administration and adjunctive treatments are under investigation. SUMMARY The future of food allergy management is a personalised approach based on a shared decision-making that takes into account the needs of patients and families. Health professionals will be able to offer multiple treatment options, including FA-AIT with adjunctive or alternative therapies. Thus, patients should be correctly identified, using validated predictive factors, in order to select appropriate candidates for these therapies.
Collapse
|
7
|
Emerging approaches in the diagnosis and therapy in shellfish allergy. Curr Opin Allergy Clin Immunol 2022; 22:202-212. [DOI: 10.1097/aci.0000000000000827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Yang T, Li C, Xue W, Huang L, Wang Z. Natural immunomodulating substances used for alleviating food allergy. Crit Rev Food Sci Nutr 2021; 63:2407-2425. [PMID: 34494479 DOI: 10.1080/10408398.2021.1975257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.
Collapse
Affiliation(s)
- Tian Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Affiliation(s)
| | - Motohiro Ebisawa
- National Hospital Organization Sagamihara National Hospital, Japan
| |
Collapse
|