1
|
Baskin K, Vural O, Haskologlu S, Erman B, Uyar Gocun P, Okur A, Dogu F, Pinarli FG, Ikinciogullari A. Pediatric Plasmablastic Lymphoma in the Setting of CD70 Deficiency. J Pediatr Hematol Oncol 2024; 46:438-441. [PMID: 39262383 DOI: 10.1097/mph.0000000000002948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Combined immunodeficiency due to CD70 deficiency is characterized by increased susceptibility to infections, hypogammaglobulinemia, and malignancy. These patients typically present with chronic Epstein Barr virus (EBV) viremia, severe EBV-related hemophagocytic lymphohistiocytosis, lymphoproliferation, and Hodgkin and non-Hodgkin lymphomas. Plasmablastic lymphoma (PBL) is an extremely rare malignancy in all ages and is predominantly seen in male adults with human immunodeficiency virus infection. EBV infection, immunosuppression, solid organ transplantation, and age-related immune deterioration are also suspected causes of PBL. Nevertheless, there is scarce data about its association with primary immunodeficiencies in the literature. Here, we present the first case of a CD70 -deficient pediatric patient with PBL.
Collapse
Affiliation(s)
| | | | | | - Baran Erman
- Department of Medical Pathology, School of Medicine, Gazi University
- Institute of Child Health, Hacettepe University
| | - Pinar Uyar Gocun
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Türkiye
| | | | - Figen Dogu
- Can Sucak Research Laboratory for Translational Immunology
| | | | | |
Collapse
|
2
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
4
|
Delavari S, Wang Y, Moeini shad T, Pashangzadeh S, Nazari F, Salami F, Abolhassani H. Clinical and Immunologic Characteristics of Non-Hematologic Cancers in Patients with Inborn Errors of Immunity. Cancers (Basel) 2023; 15:cancers15030764. [PMID: 36765721 PMCID: PMC9913767 DOI: 10.3390/cancers15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of inherited disorders, and almost 500 genes associated with these disorders have been identified. Defects in IEI genes lead to diverse clinical manifestations including increased susceptibility to recurrent or prolonged infections, immune dysregulation phenotypes (such as severe atopy, allergy, autoimmunity, and uncontrolled inflammation, lymphoproliferation), as well as predisposition to malignancies. Although the majority of IEI patients present hematologic cancers, the characteristics of other types of cancers are not well described in these groups of patients. By investigating 5384 IEI patients registered in the Iranian national registry the clinical and immunologic phenotypes of patients with non-hematologic cancers were compared with other malignant and non-malignant patients. Solid tumors were reported <20% of malignant IEI patients (n = 27/144 patients) and appeared to be very heterogeneous by type and localization as well as molecular defects (mainly due to DNA repair defect resulted from ATM deficiency). The correlation between the type of malignancy and survival status was remarkable as patients with non-hematologic cancers survive higher than IEI patients with hematologic cancers. Our findings showed that different types of malignancy could be associated with specific entities of IEI. Therefore, the education of physicians about the risk of malignancies in IEI is required for personalized treatment and appropriate management of patients.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, 14183 Stockholm, Sweden
| | - Tannaz Moeini shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Farzad Nazari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, 14183 Stockholm, Sweden
- Correspondence:
| |
Collapse
|