1
|
Li S, Ren X, Guan Y, Zhao F, Cao Y, Geng X, Wang Y, Wu N, Wu L, Zhao X. Genetic etiology study in a large cohort with congenital insensitivity to pain with anhidrosis. Pain 2024; 165:1926-1943. [PMID: 38833577 DOI: 10.1097/j.pain.0000000000003252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/06/2024] [Indexed: 06/06/2024]
Abstract
ABSTRACT Pathogenic variations in the NTRK1 can cause congenital insensitivity to pain with anhidrosis (CIPA), a rare autosomal recessive inherited neuropathy. The precise diagnosis of CIPA relies on the identification of pathogenic genotypes. Therefore, it is essential to expand the NTRK1 variation spectrum and improve molecular diagnosis methods. In this study, 74 probands with typical manifestations of CIPA but unknown genotypes were recruited. A comprehensive molecular genetic analysis was performed to identify variations in the NTRK1 , using techniques including Sanger and next-generation sequencing, bioinformatic analysis, quantitative polymerase chain reaction (qPCR), gap-PCR, short tandem repeat (STR) genotyping, and reverse-transcription PCR. In addition, functional assays were conducted to determine the pathogenicity of variants of uncertain significance (VUS) and further characterized changes in glycosylation and phosphorylation of 14 overexpressed mutant vectors with variants at different domains in the TrkA protein, which is encoded by NTRK1 . A total of 48 variations in the NTRK1 were identified, including 22 novel ones. When combined with data from another 53 CIPA patients examined in our previous work, this study establishes the largest genotypic and phenotypic spectra of CIPA worldwide, including 127 CIPA families. Moreover, functional studies indicated that the pathogenicity of VUS mainly affected insufficient glycosylation in the extracellular domain and abnormal phosphorylation in the intracellular domain. This study not only provides important evidence for precise diagnosis of CIPA but also further enriches our understanding of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Shuang Li
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiuzhi Ren
- Pediatric Orthopedics, Children's Hospital of Soochow University, Suzhou, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Feiyue Zhao
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yixuan Cao
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingzhu Geng
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanzhou Wang
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Xiuli Zhao
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Pediatric Orthopedics, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Rosner J, Negraeff M, Bélanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Christie S, Wilson JR, Dhall S, Charest-Morin R, Street J, Ailon T, Paquette S, Dea N, Fisher CG, Dvorak MF, Finnerup NB, Kwon BK, Kramer JLK. Characterization of Hyperacute Neuropathic Pain after Spinal Cord Injury: A Prospective Study. THE JOURNAL OF PAIN 2021; 23:89-97. [PMID: 34302956 DOI: 10.1016/j.jpain.2021.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
There is currently a lack of information regarding neuropathic pain in the very early stages of spinal cord injury (SCI). In the present study, neuropathic pain was assessed using the Douleur Neuropathique 4 Questions (DN4) for the patient's worst pain within the first 5 days of injury (i.e., hyperacute) and on follow-up at 3, 6, and 12 months. Within the hyperacute time frame (i.e., 5 days), at- and below-level neuropathic pain were reported as the worst pain in 23% (n = 18) and 5% (n = 4) of individuals with SCI, respectively. Compared to the neuropathic pain observed in this hyperacute setting, late presenting neuropathic pain was characterized by more intense painful electrical and cold sensations, but less itching sensations. Phenotypic differences between acute and late neuropathic pain support the incorporation of timing into a mechanism-based classification of neuropathic pain after SCI. The diagnosis of acute neuropathic pain after SCI is challenged by the presence of nociceptive and neuropathic pains, with the former potentially masking the latter. This may lead to an underestimation of the incidence of neuropathic pain during the very early, hyperacute time points post-injury. TRIAL REGISTRATION: ClinicalTrials.gov (Identifier: NCT01279811) PERSPECTIVE: This article presents distinct pain phenotypes of hyperacute and late presenting neuropathic pain after spinal cord injury and highlights the challenges of pain assessments in the acute phase after injury. This information may be relevant to clinical trial design and broaden our understanding of neuropathic pain mechanisms after spinal cord injury.
Collapse
Affiliation(s)
- Jan Rosner
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Michael Negraeff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Lise M Bélanger
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Angela Tsang
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Leanna Ritchie
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Jean-Marc Mac-Thiong
- Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Sean Christie
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Sanjay Dhall
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Raphaële Charest-Morin
- Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamir Ailon
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Paquette
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Dea
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles G Fisher
- Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcel F Dvorak
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, British Columbia, Canada.
| |
Collapse
|
3
|
Jing Y, Bai F, Yu Y. Spinal cord injury and gut microbiota: A review. Life Sci 2020; 266:118865. [PMID: 33301807 DOI: 10.1016/j.lfs.2020.118865] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
After spinal cord injury (SCI), intestinal dysfunction has a serious impact on physical and mental health, quality of life, and social participation. Recent data from rodent and human studies indicated that SCI causes gut dysbiosis. Remodeling gut microbiota could be beneficial for the recovery of intestinal function and motor function after SCI. However, few studies have explored SCI with focus on the gut microbiota and "microbiota-gut-brain" axis. In this review, the complications following SCI, including intestinal dysfunction, anxiety and depression, metabolic disorders, and neuropathic pain, are directly or indirectly related to gut dysbiosis, which may be mediated by "gut-brain" interactions. Furthermore, we discuss the research strategies that can be beneficial in this regard, including germ-free animals, fecal microbiota transplantation, probiotics, phages, and brain imaging techniques. The current microbial research has shifted from descriptive to mechanismal perspective, and future research using new technologies may further demonstrate the pathophysiological mechanism of association of SCI with gut microbiota, elucidate the mode of interaction of gut microbiota and hosts, and help develop personalized microbiota-targeted therapies and drugs based on microbiota or corresponding metabolites.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, Beijing 100068, China; Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing 100068, China; Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yan Yu
- China Rehabilitation Science Institute, Beijing 100068, China; Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing 100068, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China.
| |
Collapse
|
4
|
Gedde MH, Lilleberg HS, Aßmus J, Gilhus NE, Rekand T. Traumatic vs non-traumatic spinal cord injury: A comparison of primary rehabilitation outcomes and complications during hospitalization. J Spinal Cord Med 2019; 42:695-701. [PMID: 30943115 PMCID: PMC6830275 DOI: 10.1080/10790268.2019.1598698] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective: To compare outcome for patients with traumatic (TSCI) and non-traumatic spinal cord injuries (NTSCI) after primary rehabilitation regarding neurological improvement measured by the American Spinal Injury Association Impairment Scale (AIS), length of stay and complications.Design: Retrospective comparative cohort study on patients with TSCI and NTSCI, hospitalized during a ten-year period at Haukeland University Hospital, Norway. Impairment, length of stay and complications during first in-patient rehabilitation period were analyzed. Uni- and multivariate analysis was performed.Setting: Spinal Cord Rehabilitation Unit, Haukeland University Hospital, NorwayParticipants: A total of 174 persons with a spinal cord injury (SCI) were included; 102 with TSCI and 72 with NTSCI.Outcome measures: Neurological improvement measured by AIS from admission to discharge, number of weeks in the hospital, frequency and significance of complications were compared.Results: Improvement in AIS after primary rehabilitation did not differ between TSCI and NTSCI. Length of stay was in average 3.4 weeks longer for TSCI. Urinary tract infections and pressure ulcers significantly influenced length of stay in both groups. Urinary tract infections were more frequent in TSCI (67%) vs NTSCI (42%). Pressure ulcers were more frequent among NTSCI (24%) vs TSCI (14%). Pneumonia and neuropathic pain did not depend on etiology and did not influence length of stay.Conclusions: Patients with SCI have a rehabilitation potential regardless of etiology. Complications are frequent in both groups and often prolong hospitalization. Complication patterns differ in the two groups, and specific prevention and optimal treatment will shorten and optimize the length of primary rehabilitation.
Collapse
Affiliation(s)
- Marie Hidle Gedde
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Jörg Aßmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Tiina Rekand
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Sahlgrenska Academy, Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| |
Collapse
|