1
|
Wang M, Gorelick FS. Ketamine and xylazine effects in murine model of acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1111-G1122. [PMID: 33881355 PMCID: PMC8285583 DOI: 10.1152/ajpgi.00023.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Ketamine and xylazine (Ket/Xyl) are anesthetic agents that target neural pathways and are commonly used in combination in mouse studies. Since neural pathways can modulate acute pancreatitis severity, we asked if Ket/Xyl affect disease severity. C57BL/6 mice were treated with six hourly injections of cerulein to induce mild acute pancreatitis. Mice were also treated with and without ketamine, xylazine, and Ket/Xyl before pancreatitis induction in vivo and in vitro. Ket/Xyl pretreatment in vivo increased selected parameters of pancreatitis severity such as trypsin activity and edema; these effects were predominantly mediated by xylazine. Ket/Xyl also changed markers of autophagy. These in vivo effects of Ket/Xyl were not attenuated by atropine. The drugs had no little to no effect on pancreatitis responses in isolated pancreatic cells or lobules. These findings suggest that Ket/Xyl administration can have substantial effect on acute pancreatitis outcomes through nonmuscarinic neural pathways. Given widespread use of this anesthetic combination in experimental animal models, future studies of inflammation and injury using Ket/Xyl should be interpreted with caution.NEW & NOTEWORTHY Ketamine and xylazine anesthetic agent administration before acute pancreatitis induction in mice lead to changes in pancreatitis responses independent of acute pancreatitis induction. Future studies should consider the potential effects of anesthesia administration when studying disease processes associated with inflammation and injury.
Collapse
Affiliation(s)
- Melinda Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Fred Sanford Gorelick
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
2
|
Powers SK, Ozdemir M, Hyatt H. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy. Antioxid Redox Signal 2020; 33:559-569. [PMID: 31941357 PMCID: PMC7454189 DOI: 10.1089/ars.2019.8000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Skeletal muscles play essential roles in key body functions including breathing, locomotion, and glucose homeostasis; therefore, maintaining healthy skeletal muscles is important. Prolonged periods of muscle inactivity (e.g., bed rest, mechanical ventilation, or limb immobilization) result in skeletal muscle atrophy and weakness. Recent Advances: Disuse skeletal muscle atrophy occurs due to both accelerated proteolysis and decreased protein synthesis with proteolysis playing a leading role in some types of inactivity-induced atrophy. Although all major proteolytic systems are involved in inactivity-induced proteolysis in skeletal muscles, growing evidence indicates that both calpain and autophagy play an important role. Regulation of proteolysis in skeletal muscle is under complex control, but it is established that activation of both calpain and autophagy is directly linked to oxidative stress. Critical Issues: In this review, we highlight the experimental evidence that supports a cause and effect link between reactive oxygen species (ROS) and activation of both calpain and autophagy in skeletal muscle fibers during prolonged inactivity. We also review the sources of oxidant production in muscle fibers during inactivity-induced atrophy, and provide a detailed discussion on how ROS activates both calpain and autophagy during disuse muscle wasting. Future Directions: Future studies are required to delineate the specific mechanisms by which ROS activates both calpain and autophagy in skeletal muscles during prolonged periods of contractile inactivity. This knowledge is essential to develop the most effective strategies to protect against disuse muscle atrophy. Antioxid. Redox Signal. 33, 559-569.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Lin DQ, Cai XY, Wang CH, Yang B, Liang RS. Optimal concentration of necrostatin-1 for protecting against hippocampal neuronal damage in mice with status epilepticus. Neural Regen Res 2020; 15:936-943. [PMID: 31719260 PMCID: PMC6990772 DOI: 10.4103/1673-5374.268903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/10/2019] [Accepted: 08/13/2019] [Indexed: 02/05/2023] Open
Abstract
Hippocampal neurons undergo various forms of cell death after status epilepticus. Necrostatin-1 specifically inhibits necroptosis mediated by receptor interacting protein kinase 1 (RIP1) and RIP3 receptors. However, there are no reports of necroptosis in mouse models of status epilepticus. Therefore, in this study, we investigated the effects of necrostatin-1 on hippocampal neurons in mice with status epilepticus, and, furthermore, we tested different amounts of the compound to identify the optimal concentration for inhibiting necroptosis and apoptosis. A mouse model of status epilepticus was produced by intraperitoneal injection of kainic acid, 12 mg/kg. Different concentrations of necrostatin-1 (10, 20, 40, and 80 μM) were administered into the lateral ventricle 15 minutes before kainic acid injection. Hippocampal damage was assessed by hematoxylin-eosin staining 24 hours after the model was successfully produced. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, western blot assay and immunohistochemistry were used to evaluate the expression of apoptosis-related and necroptosis-related proteins. Necrostatin-1 alleviated damage to hippocampal tissue in the mouse model of epilepsy. The 40 μM concentration of necrostatin-1 significantly decreased the number of apoptotic cells in the hippocampal CA1 region. Furthermore, necrostatin-1 significantly downregulated necroptosis-related proteins (MLKL, RIP1, and RIP3) and apoptosis-related proteins (cleaved-Caspase-3, Bax), and it upregulated the expression of anti-apoptotic protein Bcl-2. Taken together, our findings show that necrostatin-1 effectively inhibits necroptosis and apoptosis in mice with status epilepticus, with the 40 μM concentration of the compound having an optimal effect. The experiments were approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2016-032) on November 9, 2016.
Collapse
Affiliation(s)
- Dong-Qi Lin
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin-Ying Cai
- Clinical Research Center, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong Province, China
| | - Chun-Hua Wang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bin Yang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ri-Sheng Liang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Correspondence to: Ri-Sheng Liang, .
| |
Collapse
|
4
|
Wei L, Wu J, Li D, Shan Z. Intraperitoneal injection of ketamine enhances apoptosis in urothelium via autophagy in rats. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220935661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ketamine abusing is associated with ulcerative cystitis, but the mechanisms remain unclear. This study aimed to investigate the existence of ketamine-induced symptom in a rat model and evaluate the underlining mechanisms. Sprague-Dawley rats were chosen and randomly divided into 12 groups (n = 8), such as the control group, low dose of ketamine (10 mg/kg/day), middle dose of ketamine (30 mg/kg/day) and high dose of ketamine (50 mg/kg/day) groups. The experimental groups were administrated ketamine i.p. daily, whereas the control groups were administrated with saline. After 1, 3, and 6 months of treatment, the bladder tissues were collected. Haematoxylin and eosin (HE) staining and a transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to evaluate the bladder epithelium pathology and urothelial apoptosis, respectively. The protein expression levels of LC3, p62, Beclin1 were assessed by Western blotting. HE staining results of the experimental rats showed the bladder tissue denudation of the urothelial epithelium with edema and congestion compared with the control groups. TUNEL staining showed a significantly higher number of apoptotic cells in experimental groups than in the control groups. The protein LC3 and Beclin1 had significantly higher levels compared with control groups. The protein p62 had lower levels compared with control groups. The expression levels correlated with contraction of ketamine and treatment time. HE staining, TUNEL staining and Western blot results showed dose-dependent, time-dependent autophage in ketamine-treated rats. All the results suggested that autophagy proteins might be involved in inflammatory response in rats.
Collapse
Affiliation(s)
- Liqin Wei
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Danxia Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhengfei Shan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
5
|
Li Y, Li X, Zhao J, Li L, Wang Y, Zhang Y, Chen Y, Liu W, Gao L. Midazolam Attenuates Autophagy and Apoptosis Caused by Ketamine by Decreasing Reactive Oxygen Species in the Hippocampus of Fetal Rats. Neuroscience 2018; 388:460-471. [DOI: 10.1016/j.neuroscience.2018.03.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
|
6
|
Chen X, Li LY, Jiang JL, Li K, Su ZB, Zhang FQ, Zhang WJ, Zhao GQ. Propofol elicits autophagy via endoplasmic reticulum stress and calcium exchange in C2C12 myoblast cell line. PLoS One 2018; 13:e0197934. [PMID: 29795639 PMCID: PMC5967754 DOI: 10.1371/journal.pone.0197934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated the relationship between propofol and autophagy and examined whether this relationship depends on ER stress, production of ROS (reactive oxygen species), and disruption of calcium (Ca2+) homeostasis. To this end, we measured C2C12 cell apoptosis in vitro, along with Ca2+ levels; ROS production; and expression of proteins and genes associated with autophagy, Ca2+ homeostasis, and ER stress, including LC3 (microtubule-associate protein 1 light chain 3), p62, AMPK (adenosine 5'-monophosphate (AMP)-activated protein kinase), phosphorylated AMPK, mTOR (the mammalian target of rapamycin), phosphorylated mTOR, CHOP (C/BEP homologous protein), and Grp78/Bip (78 kDa glucose-regulated protein). We found that propofol treatment induced autophagy, ER stress, and Ca2+ release. The ratio of phosphorylated AMPK to AMPK increased, whereas the ratio of phosphorylated mTOR to mTOR decreased. Collectively, the data suggested that propofol induced autophagy in vitro through ER stress, resulting in elevated ROS and Ca2+. Additionally, co-administration of an ER stress inhibitor blunted the effect of propofol.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin-Lan Jiang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhen-Bo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Qiang Zhang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wen-Jing Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
7
|
Chen X, Li K, Zhao G. Propofol Inhibits HeLa Cells by Impairing Autophagic Flux via AMP-Activated Protein Kinase (AMPK) Activation and Endoplasmic Reticulum Stress Regulated by Calcium. Med Sci Monit 2018; 24:2339-2349. [PMID: 29667627 PMCID: PMC5926273 DOI: 10.12659/msm.909144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Propofol has antitumor effects against various cancers. However, the mechanism of action of propofol in HeLa human cervical cancer cells has not been elucidated. Material/Methods We treated HeLa human cervical cancer cells with different concentrations of propofol. Cell viability was evaluated with Cell Counting Kit-8 and apoptosis was analyzed by annexin V-fluorescein isothiocyanate and propidium iodide staining and flow cytometry. Autophagosome formation was evaluated based on microtubule-associated protein light chain (LC)3 conversion and light chain 3 puncta formation. Autophagosome clearance was assessed according to p62 protein level and autolysosome generation. Results We found that propofol decreased cell viability and increased autophagosome generation in HeLa cells. Autophagosome formation was evaluated based on LC3 conversion and LC3 puncta formation. Autophagosome clearance was assessed according to p62 protein level. The AMPK/mTOR signaling pathway was found to be activated in propofol-induced autophagosome accumulation. Fluorescence analysis using LysoTracker dye revealed that propofol blocked autophagosome–lysosome fusion. Administration of rapamycin increased autophagosome clearance in propofol-treated HeLa cells. Additionally, propofol induced endoplasmic reticulum (ER) stress and disrupted intracellular Ca2+ balance, thereby enhancing autophagosome accumulation. Suppressing ER stress by treatment with tauroursodeoxycholic acid (TUDCA) enhanced these effects, suggesting that the cytotoxicity of propofol is related to induction of ER stress. Conclusions This study is the first to provide evidence that propofol-mediated autophagy regulation is an underlying part of the mechanism by which propofol regulates HeLa cells progression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
8
|
Li X, Li Y, Zhao J, Li L, Wang Y, Zhang Y, Li Y, Chen Y, Liu W, Gao L. Administration of Ketamine Causes Autophagy and Apoptosis in the Rat Fetal Hippocampus and in PC12 Cells. Front Cell Neurosci 2018; 12:21. [PMID: 29456493 PMCID: PMC5801406 DOI: 10.3389/fncel.2018.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Drug abuse during pregnancy is a serious problem. Like alcohol, anticonvulsants, sedatives, and anesthetics, such as ketamine, can pass through the placental barrier and affect the growing fetus. However, the mechanism by which ketamine causes damage to fetal rats is not well understood. Therefore, in this study, we anesthetized pregnant rats with ketamine and evaluated the Total Antioxidant Capacity (T-AOC), Reactive Oxygen Species (ROS), and Malondialdehyde (MDA). Moreover, we determined changes in the levels of Cleaved-Caspase-3 (C-Caspase-3), Beclin-1, B-cell lymphoma-2 (Bcl-2), Bcl-2 Associated X Protein (Bax), Autophagy-related gene 4 (Atg4), Atg5, p62 (SQSTM1), and marker of autophagy Light Chain 3 (LC3). In addition, we cultured PC12 cells in vitro to determine the relationship between ROS, autophagy, and apoptosis following ketamine treatment. The results showed that ketamine induced changes in autophagy- and apoptosis-related proteins, reduced T-AOC, and generated excessive levels of ROS and MDA. In vitro experiments showed similar results, indicating that apoptosis levels can be inhibited by 3-MA. We also found that autophagy and apoptosis can be inhibited by N-acetyl-L-cysteine (Nac). Thus, anesthesia with ketamine in pregnant rats may increase the rate of autophagy and apoptosis in the fetal hippocampus and the mechanism may be through inhibition of antioxidant activity and ROS accumulation.
Collapse
Affiliation(s)
- Xinran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yanan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Jinghua Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Lina Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yuxin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Ueki R, Liu L, Kashiwagi S, Kaneki M, Khan MAS, Hirose M, Tompkins RG, Martyn JAJ, Yasuhara S. Role of Elevated Fibrinogen in Burn-Induced Mitochondrial Dysfunction: Protective Effects of Glycyrrhizin. Shock 2018; 46:382-9. [PMID: 27172157 DOI: 10.1097/shk.0000000000000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Skeletal muscle wasting and weakness with mitochondrial dysfunction (MD) are major pathological problems in burn injury (BI) patients. Fibrinogen levels elevated in plasma is an accepted risk factor for poor prognosis in many human diseases, and is also designated one of damage-associated molecular pattern (DAMPs) proteins. The roles of upregulated fibrinogen on muscle changes of critical illness including BI are unknown. The hypothesis tested was that BI-upregulated fibrinogen plays a pivotal role in the inflammatory responses and MD in muscles, and that DAMPs inhibitor, glycyrrhizin mitigates the muscle changes. METHODS After third degree BI to mice, fibrinogen levels in the plasma and at skeletal muscles were compared between BI and sham-burn (SB) mice. Fibrinogen effects on inflammatory responses and mitochondrial membrane potential (MMP) loss were analyzed in C2C12 myotubes. In addition to survival, the anti-inflammatory and mitochondrial protective effects of glycyrrhizin were tested using in vivo microscopy of skeletal muscles of BI and SB mice. RESULTS Fibrinogen in plasma and its extravasation to muscles significantly increased in BI versus SB mice. Fibrinogen applied to myotubes evoked inflammatory responses (increased MCP-1 and TNF-α; 32.6 and 3.9-fold, respectively) and reduced MMP; these changes were ameliorated by glycyrrhizin treatment. In vivo MMP loss and superoxide production in skeletal muscles of BI mice were significantly attenuated by glycyrrhizin treatment, together with improvement of BI survival rate. CONCLUSIONS Inflammatory responses and MMP loss in myotubes induced by fibrinogen were reversed by glycyrrhizin. Anti-inflammatory and mitochondrial protective effect of glycyrrhizin in vivo leads to amelioration of muscle MD and improvement of BI survival rate.
Collapse
Affiliation(s)
- Ryusuke Ueki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Anesthetic agents provide patient comfort and optimize conditions for surgical and procedural interventions. These agents have been shown to modulate autophagy, which is a cellular mechanism that maintains tissue homeostasis by degrading and recycling excess, aged, or dysfunctional proteins. However, it is not always clear if upregulated autophagy is beneficial or harmful. This review assesses the anesthetic effects on autophagy. In the vast majority of studies, anesthetic modulation of autophagy is beneficial for cell survival.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Zhi-Yi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Propofol Affects Neurodegeneration and Neurogenesis by Regulation of Autophagy via Effects on Intracellular Calcium Homeostasis. Anesthesiology 2017; 127:490-501. [PMID: 28614084 DOI: 10.1097/aln.0000000000001730] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In human cortical neural progenitor cells, we investigated the effects of propofol on calcium homeostasis in both the ryanodine and inositol 1,4,5-trisphosphate calcium release channels. We also studied propofol-mediated effects on autophagy, cell survival, and neuro- and gliogenesis. METHODS The dose-response relationship between propofol concentration and duration was studied in neural progenitor cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays. The effects of propofol on cytosolic calcium concentration were evaluated using Fura-2, and autophagy activity was determined by LC3II expression levels with Western blot. Proliferation and differentiation were evaluated by bromodeoxyuridine incorporation and immunostaining with neuronal and glial markers. RESULTS Propofol dose- and time-dependently induced cell damage and elevated LC3II expression, most robustly at 200 µM for 24 h (67 ± 11% of control, n = 12 to 19) and 6 h (2.4 ± 0.5 compared with 0.6 ± 0.1 of control, n = 7), respectively. Treatment with 200 μM propofol also increased cytosolic calcium concentration (346 ± 71% of control, n = 22 to 34). Propofol at 10 µM stimulated neural progenitor cell proliferation and promoted neuronal cell fate, whereas propofol at 200 µM impaired neuronal proliferation and promoted glial cell fate (n = 12 to 20). Cotreatment with ryanodine and inositol 1,4,5-trisphosphate receptor antagonists and inhibitors, cytosolic Ca chelators, or autophagy inhibitors mostly mitigated the propofol-mediated effects on survival, proliferation, and differentiation. CONCLUSIONS These results suggest that propofol-mediated cell survival or neurogenesis is closely associated with propofol's effects on autophagy by activation of ryanodine and inositol 1,4,5-trisphosphate receptors.
Collapse
|
12
|
Rituximab Downregulates Gene Expression Associated with Cell Proliferation, Survival, and Proteolysis in the Peripheral Blood from Rheumatoid Arthritis Patients: A Link between High Baseline Autophagy-Related ULK1 Expression and Improved Pain Control. ARTHRITIS 2016; 2016:4963950. [PMID: 27057353 PMCID: PMC4745296 DOI: 10.1155/2016/4963950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/22/2015] [Accepted: 01/03/2016] [Indexed: 12/29/2022]
Abstract
Objective. To clarify molecular mechanisms for the response to rituximab in a longitudinal study. Methods. Peripheral blood from 16 RA patients treated with rituximab for a single treatment course and 26 healthy controls, blood and knee articular cartilages from 18 patients with long-standing RA, and cartilages from 14 healthy subjects were examined. Clinical response was assessed using ESR, ACPA, CRP, RF, DAS28 levels, CD19+ B-cell counts, bone erosion, and joint space narrowing scores. Protein expression in PBMCs was quantified using ELISA. Gene expression was performed with quantitative real-time PCR. Results. A decrease (p < 0.05) in DAS28, ESR, and CRP values after rituximab treatment was associated with the downregulation of MTOR, p21, caspase 3, ULK1, TNFα, IL-1β, and cathepsin K gene expression in the peripheral blood to levels found in healthy subjects. MMP-9 expression remained significantly higher compared to controls although decreased (p < 0.05) versus baseline. A negative correlation between baseline ULK1 gene expression and the number of tender joints at the end of follow-up was observed. Conclusions. The response to rituximab was associated with decreased MTOR, p21, caspase 3, ULK1, TNFα, IL-1β, and cathepsin K gene expression compared to healthy subjects. Residual increased expression in MMP-9, IFNα, and COX2 might account for remaining inflammation and pain. High baseline ULK1 gene expression indicates a good response in respect to pain.
Collapse
|
13
|
Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy. PLoS One 2016; 11:e0144219. [PMID: 26751695 PMCID: PMC4709082 DOI: 10.1371/journal.pone.0144219] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/03/2015] [Indexed: 01/07/2023] Open
Abstract
Ganglioside GM1, which is particularly abundant in the central nervous system (CNS), is closely associated with the protection against several CNS disorders. However, controversial findings have been reported on the role of GM1 following ischemic stroke. In the present study, using a rat middle cerebral artery occlusion (MCAO) model, we investigated whether GM1 can protect against ischemic brain injury and whether it targets the autophagy pathway. GM1 was delivered to Sprague-Dawley male rats at 3 doses (25 mg/kg, 50 mg/kg, 100 mg/kg) by intraperitoneal injection soon after reperfusion and then once daily for 2 days. The same volume of saline was given as a control. Tat–Beclin-1, a specific autophagy inducer, was administered by intraperitoneal injection at 24 and 48 hours post-MCAO. Infarction volume, mortality and neurological function were assessed at 72 hours after ischemic insult. Immunofluorescence and Western blotting were performed to determine the expression of autophagy-related proteins P62, LC3 and Beclin-1 in the penumbra area. No significant changes in mortality and physiological variables (heart rate, blood glucose levels and arterial blood gases) were observed between the different groups. However, MCAO resulted in enhanced conversion of LC3-I into LC3-II, P62 degradation, high levels of Beclin-1, a large area infarction (26.3±3.6%) and serious neurobehavioral deficits. GM1 (50 mg/kg) treatment significantly reduced the autophagy activation, neurobehavioral dysfunctions, and infarction volume (from 26.3% to 19.5%) without causing significant adverse side effects. However, this biological function could be abolished by Tat–Beclin-1. In conclusion: GM1 demonstrated safe and robust neuroprotective effects that are associated with the inhibition of autophagy following experimental stroke.
Collapse
|
14
|
Li ZQ, Li LX, Mo N, Cao YY, Kuerban B, Liang YX, Fan DS, Chui DH, Guo XY. Duration-dependent regulation of autophagy by isoflurane exposure in aged rats. Neurosci Bull 2015; 31:505-13. [PMID: 26254062 DOI: 10.1007/s12264-015-1549-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
Current evidence suggests a central role for autophagy in many inflammatory brain disorders, including Alzheimer's disease (AD). Furthermore, it is also well accepted that some inhalation anesthetics, such as isoflurane, may cause AD-like neuropathogenesis and resultant postoperative cognitive dysfunction, especially in the elderly population. However, the impact of inhalation anesthetics on autophagic components in the brain remains to be documented. Hence, our objective was to investigate the effects of different durations of isoflurane exposure on hippocampus-dependent learning and hippocampal autophagy in aged rats. Aged Sprague-Dawley rats (20 months old) were randomly exposed to 1.5% isoflurane or 100% oxygen for 1 or 4 h. Animals were then trained in the Morris water maze (4 trials/day for 5 consecutive days). Hippocampal phagophore formation markers, beclin 1 and protein microtubule-associated protein 1 light chain-3B (LC3B), as well as p62, an indicator of autophagic flux, were quantified by western blotting. There was no significant difference in the escape latencies and time spent in the target quadrant, as well as hippocampal expression of beclin 1, LC3B-II, and p62 at 24 h post-anesthesia between the 1-h isoflurane-exposed rats and their controls (P >0.05). Four-hour exposure to isoflurane resulted in spatial learning and memory deficits, as evidenced by prolonged escape latencies on days 4 and 5 post-anesthesia and less time spent in the target quadrant than sham-exposed animals (P <0.05). These events were accompanied by a decline in hippocampal expression of LC3B-I, LC3B-II, and beclin 1 24 h after isoflurane (P <0.01 and P <0.05). Nevertheless, no significant change in p62 expression was found. Further kinetics study of autophagic changes induced by 4 h of isoflurane showed a transient upregulation of LC3B-I, LC3B-II, and beclin 1 at the end of exposure and a subsequent striking decrease within 12-24 h post-anesthesia (P <0.05). Hippocampal p62 peaked at 6 h but subsequently resolved. These results from our pilot in vivo study support a duration-dependent relationship between 1.5% isoflurane exposure, and spatial cognitive function as well as hippocampal phagophore formation.
Collapse
Affiliation(s)
- Zheng-Qian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|