1
|
Zhang Y, Yan F, Wang Q, Wang Y, Huang L. Pre-anesthetic brain network metrics as predictors of individual propofol sensitivity. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108447. [PMID: 39366070 DOI: 10.1016/j.cmpb.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND OBJECTIVE Numerous factors, including demographic characteristics, have been implicated in modulating individual sensitivity to propofol; however, substantial inter-individual differences persist even after accounting for these factors. This study thus aimed to explore whether pre-anesthesia brain functional network metrics correlate with an individual's sensitivity to propofol. METHODS A total of 54 subjects, including 30 patients and 24 healthy volunteers, were enrolled. Propofol was administered via a target-controlled infusion device, and anesthesia depth was monitored using a bispectral index monitor. Sensitivity to propofol was quantified using the induction time, measured from infusion onset to the bispectral index, which reached 60. Brain functional network metrics indicative of functional integration and segregation, centrality, and network resilience were computed from pre-anesthetic 60-channel EEG recordings. Linear regression analysis and machine learning predictive models were applied to evaluate the contribution of pre-anesthesia network metrics in predicting individual sensitivity to propofol. RESULTS Our analysis results revealed that subjects could be categorized into high- or low-sensitivity groups based on their induction time. Individuals with low sensitivity exhibited a greater network degree, clustering coefficient, global efficiency, and betweenness centrality, along with reduced modularity and assortativity coefficient in the alpha band. Furthermore, alpha band network metrics were significantly correlated with individual induction time. Leveraging these network metrics as features enabled the classification of individuals into high- or low-sensitivity groups with an accuracy of 94%. CONCLUSIONS Using a clinically relevant endpoint that signifies the level of anesthesia suitable for surgical procedures, this study underscored the robust correlation between pre-anesthesia alpha-band network metrics and individual sensitivity to propofol in a cohort that included both patients and healthy volunteers. Our findings offer preliminary insights into the potential utility of pre-anesthetic brain status assessment to predict propofol sensitivity on an individual basis, which may help to develop a more accurate personalized anesthesia plan.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, 710126, PR China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710126, PR China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, 710126, PR China.
| |
Collapse
|
2
|
Nilsen AS, Arena A, Storm JF. Exploring effects of anesthesia on complexity, differentiation, and integrated information in rat EEG. Neurosci Conscious 2024; 2024:niae021. [PMID: 38757120 PMCID: PMC11097907 DOI: 10.1093/nc/niae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of "capacity for consciousness" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (ΦG), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and ΦG) may be complementary and mutually informative when studying altered states of consciousness.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Johan F Storm
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
3
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Wang D, Li H, Xu M, Bo B, Pei M, Liang Z, Thompson GJ. Differential Effect of Global Signal Regression Between Awake and Anesthetized Conditions in Mice. Brain Connect 2024; 14:48-59. [PMID: 38063007 DOI: 10.1089/brain.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Introduction: In resting-state functional magnetic resonance imaging (rs-fMRI) studies, global signal regression (GSR) is a controversial preprocessing strategy. It effectively eliminates global noise driven by motion and respiration but also can introduce artifacts and remove functionally relevant metabolic information. Most preclinical rs-fMRI studies are performed in anesthetized animals, and anesthesia will alter both metabolic and neuronal activity. Methods: In this study, we explored the effect of GSR on rs-fMRI data collected under anesthetized and awake state in mice (n = 12). We measured global signal amplitude, and also functional connectivity (FC), functional connectivity density (FCD) maps, and brain modularity, all commonly used data-driven analysis methods to quantify connectivity patterns. Results: We found that global signal amplitude was similar between the awake and anesthetized states. However, GSR had a different impact on connectivity networks and brain modularity changes between states. We demonstrated that GSR had a more prominent impact on the anesthetized state, with a greater decrease in functional connectivity and increased brain modularity. We classified mice using the change in amplitude of brain modularity coefficient (ΔQ) before and after GSR processing. The results revealed that, when compared with the largest ΔQ group, the smallest ΔQ group had increased FCD in the cortex region in both the awake and anesthetized states. This suggests differences in individual mice may affect how GSR differentially affects awake versus anesthetized functional connectivity. Discussion: This study suggests that, for rs-fMRI studies which compare different physiological states, researchers should use GSR processing with caution.
Collapse
Affiliation(s)
- Da Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hui Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Mengyang Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Binshi Bo
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Mengchao Pei
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhifeng Liang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
5
|
Coetzee E, Absalom AR. Pharmacokinetic and Pharmacodynamic Changes in the Elderly: Impact on Anesthetics. Anesthesiol Clin 2023; 41:549-565. [PMID: 37516494 DOI: 10.1016/j.anclin.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Anesthesiologists are increasingly required to care for frail elderly patients. A detailed knowledge of the influence of age on the pharmacokinetics and dynamics of the anesthetic drugs is essential for optimal safety and care. For most of the anesthetic drugs, the elderly need lower doses to achieve the same plasma concentrations, and at any given plasma and effect-site concentration, they will have more profound clinical effects than younger patients. Caution is required, with close monitoring of clinical effects and active titration of dose administration to achieve the desired level of effect, ideally following the "start low, go slow" principle.
Collapse
Affiliation(s)
- Ettienne Coetzee
- Department of Anaesthesia and Perioperative Medicine, Groote Schuur Hospital, D23, Observatory, Cape Town 7925, Republic of South Africa
| | - Anthony Ray Absalom
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Post Box 30.001, Groningen 9700 RB, the Netherlands.
| |
Collapse
|
6
|
Sleigh JW, Voss L. Anesthesia and the Merry-go-round of Information in the Brain. Anesthesiology 2023; 139:4-5. [PMID: 37279104 DOI: 10.1097/aln.0000000000004571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Jamie W Sleigh
- Department of Anaesthesiology, Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, Hamilton, New Zealand
| | - Logan Voss
- Department of Anaesthesiology, Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, Hamilton, New Zealand
| |
Collapse
|
7
|
Hachenberg T, Scheller B. [Accidental Awareness during General Anaesthesia]. Anasthesiol Intensivmed Notfallmed Schmerzther 2023; 58:380-390. [PMID: 37385244 DOI: 10.1055/a-1768-5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Accidental awareness during general anaesthesia (AAGA) is a rare but severe complication. The reported incidence of AAGA may depend on the assessment of intraoperative awareness with explicit recall and there are substantial variations between subspecialties and groups of patients. The majority of prospective studies using structured interviews reported an incidence of AAGA at 0.1-0.2% during general anaesthesia, however, higher values were observed in paediatric (0.2-1.2%) and obstetric patients (0.47%). Risk factors that predispose to AAGA are patient conditions, ASA status, female gender, patient age, history of AAGA, surgical procedure, anaesthetic drug type, muscle relaxation, dosages of hypnotic or analgesic drugs, monitoring and malfunction of anaesthesia systems. Preventive strategies include careful assessment of risk factors, avoidance of underdosages of hypnotics and analgetics during general anaesthesia and monitoring of depth of anaesthesia in risk patients. The health-related consequences can be serious and psychopharmacological and psychotherapeutic interventions are indicated in patients who have experienced AAGA.
Collapse
|
8
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
9
|
Propofol Anesthesia: A Leap into the Void? Anesthesiology 2022; 136:405-407. [PMID: 35120194 DOI: 10.1097/aln.0000000000004110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|