1
|
Jiang J, Zhao Y, Liu J, Yang Y, Liang P, Huang H, Wu Y, Kang Y, Zhu T, Zhou C. Signatures of Thalamocortical Alpha Oscillations and Synchronization With Increased Anesthetic Depths Under Isoflurane. Front Pharmacol 2022; 13:887981. [PMID: 35721144 PMCID: PMC9204038 DOI: 10.3389/fphar.2022.887981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Electroencephalography (EEG) recordings under propofol exhibit an increase in slow and alpha oscillation power and dose-dependent phase–amplitude coupling (PAC), which underlie GABAA potentiation and the central role of thalamocortical entrainment. However, the exact EEG signatures elicited by volatile anesthetics and the possible neurophysiological mechanisms remain unclear.Methods: Cortical EEG signals and thalamic local field potential (LFP) were recorded in a mouse model to detect EEG signatures induced by 0.9%, 1.5%, and 2.0% isoflurane. Then, the power of the EEG spectrum, thalamocortical coherence, and slow–alpha phase–amplitude coupling were analyzed. A computational model based on the thalamic network was used to determine the primary neurophysiological mechanisms of alpha spiking of thalamocortical neurons under isoflurane anesthesia.Results: Isoflurane at 0.9% (light anesthesia) increased the power of slow and delta oscillations both in cortical EEG and in thalamic LFP. Isoflurane at 1.5% (surgery anesthesia) increased the power of alpha oscillations both in cortical EEG and in thalamic LFP. Isoflurane at 2% (deep anesthesia) further increased the power of cortical alpha oscillations, while thalamic alpha oscillations were unchanged. Thalamocortical coherence of alpha oscillation only exhibited a significant increase under 1.5% isoflurane. Isoflurane-induced PAC modulation remained unchanged throughout under various concentrations of isoflurane. By adjusting the parameters in the computational model, isoflurane-induced alpha spiking in thalamocortical neurons was simulated, which revealed the potential molecular targets and the thalamic network involved in isoflurane-induced alpha spiking in thalamocortical neurons.Conclusion: The EEG changes in the cortical alpha oscillation, thalamocortical coherence, and slow–alpha PAC may provide neurophysiological signatures for monitoring isoflurane anesthesia at various depths.
Collapse
Affiliation(s)
- Jingyao Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, China
| | - Yongkang Wu
- Intelligent Manufacturing Institute, Chengdu Jincheng College, Chengdu, China
| | - Yi Kang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Zhu, ; Cheng Zhou,
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Zhu, ; Cheng Zhou,
| |
Collapse
|
2
|
Li C, Li Z, Ward BD, Dwinell MR, Lombard JH, Hudetz AG, Pawela CP. Enhancement of resting-state fcMRI networks by prior sensory stimulation. Brain Connect 2015; 4:760-8. [PMID: 25387238 DOI: 10.1089/brain.2014.0326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is important to consider the effect of a previous experimental condition when analyzing resting-state functional connectivity magnetic resonance imaging (fcMRI) data. In this work, a simple sensory stimulation functional MRI (fMRI) experiment was conducted between two resting-state fcMRI acquisitions in anesthetized rats using a high-field small-animal MR scanner. Previous human studies have reported fcMRI network alteration by prior task/stimulus utilizing similar experimental paradigms. An anesthetized rat preparation was used to test whether brain regions with higher level functions are involved in post-task/stimulus fcMRI network alteration. We demonstrate significant fcMRI enhancement poststimulation in the sensory cortical, limbic, and insular brain regions in rats. These brain regions have been previously implicated in vigilance and anesthetic arousal networks. We tested their experimental paradigm in several inbred strains of rats with known phenotypic differences in anesthetic susceptibility and cerebral vascular function. Brown Norway (BN), Dahl Salt-Sensitive (SS), and consomic SSBN13 strains were tested. We have previously shown significant differences in blood oxygen level-dependent fMRI activity and fcMRI networks across these strains. Here we report statistically significant interstrain differences in regional fcMRI poststimulation enhancement. In the SS strain, poststimulation enhancement occurred in posterior sensory and limbic cortical brain regions. In the BN strain, poststimulation enhancement appeared in anterior cingulate and subcortical limbic brain regions. These results imply that a prior condition has a significant impact on fcMRI networks that depend on intersubject difference in genetics and physiology.
Collapse
Affiliation(s)
- Chenxuan Li
- 1 Department of Plastic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | | | | | | | | | | |
Collapse
|