1
|
Georgiou SG, Anagnostou TL, Sideri AI, Gouletsou PG, Athanasiou LV, Kazakos G, Tsioli V, Dermisiadou E, Galatos AD. Effect of classical music on light-plane anaesthesia and analgesia in dogs subjected to surgical nociceptive stimuli. Sci Rep 2024; 14:19511. [PMID: 39174615 PMCID: PMC11341903 DOI: 10.1038/s41598-024-70343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
The objectives of this prospective, randomized, blinded, crossover, experimental study were to detect the potential anaesthetic- and analgesic-sparing effects of classical music provided to dogs undergoing skin surgery, and to investigate the role of substance P as an intraoperative pain indicator. Twenty dogs were included, each subjected to three different treatments: Chopin music, Mozart music and no music. They were premedicated with acepromazine, butorphanol and meloxicam and anaesthetized with propofol and isoflurane. Fentanyl was used as rescue analgesia. The anaesthetic depth was monitored by using the bispectral index along with standard anaesthetic monitoring, and autonomic nervous system responses were used to monitor the adequacy of analgesia. Furthermore, measurements of substance P serum concentration were carried out. Dogs exposed to music required less isoflurane and fentanyl. Furthermore, a statistically significant effect of time on substance P concentration was observed regardless of exposure to music, and there was a significant interaction effect between different timepoints and the type of acoustic stimulus. Classical music seems to have an isoflurane and fentanyl sparing effect on dogs undergoing minor surgery. Following surgical stimulation, the serum substance P concentration increases rapidly, and thus appears to be a potentially useful pain indicator.
Collapse
Affiliation(s)
- S G Georgiou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - T L Anagnostou
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A I Sideri
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - P G Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - L V Athanasiou
- Clinic of Medicine, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - G Kazakos
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V Tsioli
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - E Dermisiadou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - A D Galatos
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece.
| |
Collapse
|
2
|
Zhang D, Liu J, Zhu T, Zhou C. Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System. Curr Neuropharmacol 2021; 20:55-71. [PMID: 34503426 PMCID: PMC9199548 DOI: 10.2174/1570159x19666210909150200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| |
Collapse
|
3
|
Chen L, Li S, Zhou Y, Liu T, Cai A, Zhang Z, Xu F, Manyande A, Wang J, Peng M. Neuronal mechanisms of adenosine A 2A receptors in the loss of consciousness induced by propofol general anesthesia with functional magnetic resonance imaging. J Neurochem 2020; 156:1020-1032. [PMID: 32785947 DOI: 10.1111/jnc.15146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023]
Abstract
Propofol is the most common intravenous anesthetic agent for induction and maintenance of anesthesia, and has been used clinically for more than 30 years. However, the mechanism by which propofol induces loss of consciousness (LOC) remains largely unknown. The adenosine A2A receptor (A2A R) has been extensively proven to have an effect on physiological sleep. It is, therefore, important to investigate the role of A2A R in the induction of LOC using propofol. In the present study, the administration of the highly selective A2A R agonist (CGS21680) and antagonist (SCH58261) was utilized to investigate the function of A2A R under general anesthesia induced by propofol by means of animal behavior studies, resting-state magnetic resonance imaging and c-Fos immunofluorescence staining approaches. Our results show that CGS21680 significantly prolonged the duration of LOC induced by propofol, increased the c-Fos expression in nucleus accumbens (NAc) and suppressed the functional connectivity of NAc-dorsal raphe nucleus (DR) and NAc-cingulate cortex (CG). However, SCH58261 significantly shortened the duration of LOC induced by propofol, decreased the c-Fos expression in NAc, increased the c-Fos expression in DR, and elevated the functional connectivity of NAc-DR and NAc-CG. Collectively, our findings demonstrate the important roles played by A2A R in the LOC induced by propofol and suggest that the neural circuit between NAc-DR maybe controlled by A2A R in the mechanism of anesthesia induced by propofol.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.,Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shuang Li
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Aoling Cai
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Fuqiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, P. R. China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Jie Wang
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
4
|
Gao W, Sha B, Zhao Y, Fan Z, Liu L, Shen X. Comparison of simultaneous and sequential administration of fentanyl-propofol for surgical abortion: a randomized single-blinded controlled trial. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1045-1050. [PMID: 27707001 DOI: 10.1080/21691401.2016.1239106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Propofol lipid emulsion (PLE) is a nanosized sedative, and it is used with a combination of salted antalgic prodrug, fentanyl citrate (FC). To illustrate the synergistic effect of mixing, we compared the sedation/analgesia resulting from simultaneous and sequential administration in surgically induced abortion (No. ChiCTR-IPC-15006153). Simultaneous group showed lower bispectral index, blood pressure, and heart rate, when cannula was inserted into the uterus. It also showed less frequency of hypertension, sinus tachycardia, movement, pain at the injection site, and additional FC. Therefore, premixing of PLE and FC enhanced the sedation and analgesia; stabilized the hemodynamics; lessened the incidence of movement and injection pain; and reduced the requirement of drugs.
Collapse
Affiliation(s)
- Wei Gao
- a Department of Anesthesiology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Baoyong Sha
- b School of Basic Medical Science, Xi'an Medical University , Xi'an , P.R. China
| | - Yuan Zhao
- a Department of Anesthesiology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Zhe Fan
- a Department of Anesthesiology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Lin Liu
- a Department of Anesthesiology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Xin Shen
- a Department of Anesthesiology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , P.R. China
| |
Collapse
|
5
|
Differential effects of general anesthetics on anxiety-like behavior in formalin-induced pain: involvement of ERK activation in the anterior cingulate cortex. Psychopharmacology (Berl) 2015; 232:4433-44. [PMID: 26400403 DOI: 10.1007/s00213-015-4071-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/31/2015] [Indexed: 01/19/2023]
Abstract
RATIONALE Pain-related anxiety and depression are well known to be comorbid with chronic pain and adversely affect patient quality of life. Recent studies have shown that anxiety-like behaviors also develop with acute surgical pain, but the effects of general anesthetics on acute pain-related anxiety are unknown. OBJECTIVE The present study aimed to compare the effects of different general anesthetics on anxiety-like behaviors that follow formalin-induced acute pain in a rat model. METHODS Formalin-induced acute inflammatory pain was established by intraplantar injection of 1% formalin without anesthesia or with anesthesia using the clinical anesthetics sevoflurane, propofol, or pentobarbital sodium. Anxiety-like behaviors were studied using the open-field test and elevated plus maze. Phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2 expression in the anterior cingulate cortex (ACC) and spinal cord was examined using immunohistochemistry. RESULTS Anxiety-like behaviors were observed at 24 and 72 h post-formalin injection. Concomitantly, p-ERK 1/2 expression was upregulated in the ACC at 1 and 24 h post-formalin injection. While all three general anesthetics effectively blocked nociceptive responses and activation of ERK in the rat ACC following formalin injection during anesthesia, only sevoflurane inhibited ERK activation in the spinal cord and ACC at 24 h post-injection. CONCLUSIONS This study suggests that sevoflurane, but not intravenous anesthetics, inhibits pain-related anxiety, along with ERK activation in the ACC, probably through inhibition of spinal nociceptive transmission. Intraoperative application of inhaled anesthetics may be a better choice to reduce postoperative anxiety.
Collapse
|
6
|
Tochiki KK, Maiarù M, Miller JRC, Hunt SP, Géranton SM. Short-term anesthesia inhibits formalin-induced extracellular signal-regulated kinase (ERK) activation in the rostral anterior cingulate cortex but not in the spinal cord. Mol Pain 2015; 11:49. [PMID: 26272725 PMCID: PMC4536792 DOI: 10.1186/s12990-015-0052-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/31/2015] [Indexed: 01/11/2023] Open
Abstract
Background The rostral anterior cingulate cortex (rACC) has been implicated in the negative affective response to injury, and importantly, it has been shown that activation of extracellular signal-regulated kinase (ERK) signaling in the rACC contributes to the full expression of the affective component of pain in rodents. In this study, we investigated whether administration of anesthesia at the time of injury could reduce phosphorylated-ERK (PERK) expression in the rACC, which might eliminate the negative affective component of noxious stimulation. Intraplantar hindpaw formalin stimulation, an aversive event in the awake animal, was given with or without general isoflurane anesthesia, and PERK expression was subsequently quantified in the rACC using immunohistochemistry. Furthermore, as numerous studies have demonstrated the importance of spinal ERK signaling in the regulation of nociceptive behaviour, we also examined PERK in the superficial dorsal horn of the spinal cord. Findings Formalin injection with and without short-term (<10 min) general isoflurane anesthesia induced the same level of PERK expression in spinal cord laminae I–II. However, PERK expression was significantly inhibited across all laminae of the rACC in animals anesthetized during formalin injection. The effect of anesthesia was such that levels of PERK were the same in formalin and sham treated anesthesized animals. Conclusions This study is the first to demonstrate that isoflurane anesthesia can inhibit formalin-induced PERK in the rACC and therefore might eliminate the unpleasantness of restraint associated with awake hindpaw injection.
Collapse
Affiliation(s)
- Keri K Tochiki
- Department of Cell and Developmental Biology, University College London, London, UK.
| | - Maria Maiarù
- Department of Cell and Developmental Biology, University College London, London, UK.
| | - James R C Miller
- Department of Cell and Developmental Biology, University College London, London, UK.
| | - Stephen P Hunt
- Department of Cell and Developmental Biology, University College London, London, UK.
| | - Sandrine M Géranton
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
7
|
Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:822-6. [PMID: 26557972 PMCID: PMC4633466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signals. The objective of this study was to investigate the effects of increasing dosage of propofol on the release of glutamate (Glu), γ-aminobutyric acid (GABA) and glycine (Gly) in the spinal dorsal horn. MATERIALS AND METHODS The efflux of Glu, GABA or Gly in the spinal dorsal horn of rats was detected using transverse spinal microdialysis under an awake condition and various depths of propofol anesthesia. The infusion rates of propofol were, in order, 400 µg/(kg·min), 600 µg/(kg·min) and 800 µg/(kg·min), with a 20 min infusion period being maintained at each infusion rate. RESULTS Propofol decreased the glutamate efflux within spinal dorsal horn in a dose-dependent manner, and the maximum decrease was 56.8 ± 6.0% at high-dose propofol infusion producing immobility. The inhibitory GABA and Gly efflux was also decreased about 15-20% at low-dose propofol infusion only producing sedation, but did not continue to drop with higher doses of propofol. CONCLUSION Propofol decreased both excitatory and inhibitory amino acids efflux in spinal dorsal horn, and the preferential suppression of the excitatory amino acid might be associated with the analgesic effect of propofol.
Collapse
|
8
|
Akiyama T, Curtis E, Nguyen T, Carstens MI, Carstens E. Anatomical evidence of pruriceptive trigeminothalamic and trigeminoparabrachial projection neurons in mice. J Comp Neurol 2015; 524:244-56. [PMID: 26099199 DOI: 10.1002/cne.23839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/06/2022]
Abstract
Itch is relayed to higher centers by projection neurons in the spinal and medullary dorsal horn. We employed a double-label method to map the ascending projections of pruriceptive and nociceptive trigeminal and spinal neurons. The retrograde tracer fluorogold (FG) was stereotaxically injected into the right thalamus or lateral parabrachial area (LPb) in mice. Seven days later, mice received intradermal (id) microinjection of histamine, chloroquine, capsaicin, or vehicle into the left cheek. Histamine, chloroquine, and capsaicin intradermally elicited similar distributions of Fos-positive neurons in the medial aspect of the superficial medullary and spinal dorsal horn from the trigeminal subnucleus caudalis to C2. Among neurons retrogradely labeled from the thalamus, 43%, 8%, and 22% were Fos-positive following id histamine, chloroquine, or capsaicin. Among the Fos-positive neurons following pruritic or capsaicin stimuli, ∼1-2% were retrogradely labeled with FG. Trigeminoparabrachial projection neurons exhibited a higher incidence of double labeling in the superficial dorsal horn. Among the neurons retrogradely labeled from LPb, 36%, 29%, and 33% were Fos positive following id injection of histamine, chloroquine, and capsaicin, respectively. Among Fos-positive neurons elicited by id histamine, chloroquine, and capsaicin, respectively, 3.7%, 4.3%, and 4.1% were retrogradely labeled from LPb. The present results indicate that, overall, relatively small subpopulations of pruriceptive and/or nociceptive neurons innervating the cheek project to thalamus or LPb. These results imply that the vast majority of pruritogen- and algogen-responsive spinal neurons are likely to function as interneurons relaying information to projection neurons and/or participating in segmental nocifensive circuits.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Temple Itch Center, Department of Dermatology, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Eric Curtis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| | - Tony Nguyen
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California, 95616
| |
Collapse
|