1
|
Maria Frare J, Rodrigues P, Andrighetto Ruviaro N, Trevisan G. Chronic post-ischemic pain (CPIP) a model of complex regional pain syndrome (CRPS-I): Role of oxidative stress and inflammation. Biochem Pharmacol 2024; 229:116506. [PMID: 39182734 DOI: 10.1016/j.bcp.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Complex regional pain syndrome (CRPS) presents as a persistent and distressing pain condition often stemming from limb trauma or ischemia, manifesting as either CRPS-I (without initial nerve injury) or CRPS-II (accompanied by nerve injury). Despite its prevalence and significant impact on functionality and emotional well-being, standard treatments for CRPS remain elusive. The multifaceted nature of CRPS complicates the identification of its underlying mechanisms. In efforts to elucidate these mechanisms, researchers have turned to animal models such as chronic post-ischemic pain (CPIP), which mirrors the symptoms of CRPS-I. Various mechanisms have been proposed to underlie the acute and chronic pain experienced in CRPS-I, including oxidative stress and inflammation. Traditional treatment approaches often involve antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and opioids. However, these methods frequently fall short of providing adequate relief. Accordingly, there is a growing interest in exploring alternative treatments, such as antioxidant supplementation, anti-inflammatory agents, and non-pharmacological interventions. Future research directions should focus on optimizing treatment strategies and addressing remaining gaps in knowledge to improve patient outcomes. This review aims to delve into the pathophysiological mechanisms implicated in the CPIP model, specifically focusing on oxidative stress and inflammation, with the ultimate goal of proposing innovative therapeutic strategies for alleviating the symptoms of CRPS-I.
Collapse
Affiliation(s)
- Julia Maria Frare
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Patrícia Rodrigues
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Náthaly Andrighetto Ruviaro
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil; Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
The Effect of Super-Repressor IkB-Loaded Exosomes (Exo-srIκBs) in Chronic Post-Ischemia Pain (CPIP) Models. Pharmaceutics 2023; 15:pharmaceutics15020553. [PMID: 36839876 PMCID: PMC9958867 DOI: 10.3390/pharmaceutics15020553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Complex regional pain syndrome (CRPS) is a condition associated with neuropathic pain that causes significant impairment of daily activities and functioning. Nuclear factor kappa B (NFκB) is thought to play an important role in the mechanism of CRPS. Recently, exosomes loaded with super-repressor inhibitory kappa B (Exo-srIκB, IκB; inhibitor of NFκB) have been shown to have potential anti-inflammatory effects in various inflammatory disease models. We investigated the therapeutic effect of Exo-srIκB on a rodent model with chronic post-ischemia pain (CPIP), a representative animal model of Type I CRPS. After intraperitoneal injection of a vehicle, Exo-srIκB, and pregabalin, the paw withdrawal threshold (PWT) was evaluated up to 48 h. Administration of Exo-srIκB increased PWT compared to the vehicle and pregabalin, and the relative densities of p-IκB and IκB showed significant changes compared to the vehicle 24 h after Exo-srIκB injection. The levels of several cytokines and chemokines were reduced by the administration of Exo-srIκB in mice with CPIP. In conclusion, our results showed more specifically the role of NFκB in the pathogenesis of CRPS and provided a theoretical background for novel treatment options for CRPS.
Collapse
|
3
|
Bruehl S, Milne G, Schildcrout J, Shi Y, Anderson S, Shinar A, Polkowski G, Mishra P, Billings FT. Perioperative oxidative stress predicts subsequent pain-related outcomes in the 6 months after total knee arthroplasty. Pain 2023; 164:111-118. [PMID: 35507374 PMCID: PMC9633585 DOI: 10.1097/j.pain.0000000000002670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Total knee arthroplasty (TKA) is effective for pain reduction in most patients, but 15% or more report unsatisfactory long-term pain outcomes. We tested whether oxidative stress (OS) related to extended tourniquet application during TKA and subsequent ischemic reperfusion (IR) contributed to adverse post-TKA pain outcomes. Blood samples were obtained in 91 patients with osteoarthritis (63% female) undergoing TKA before tourniquet placement (T1), 45 minutes after tourniquet inflation (T2), and 15 minutes after tourniquet removal (T3). Plasma levels of F 2 -isoprostanes and isofurans, the most specific measures of in vivo OS, were quantified. Pain intensity and function were assessed at baseline and again at 6 weeks and 6 months after TKA. Results indicated that higher Combined OS (F 2 -isoprostanes + isofurans/2) at T1 baseline and larger increases in Combined OS from T1 to T2 were associated with higher baseline-corrected past 24-hour worst and average pain intensity (numeric rating scale) and higher past week McGill Pain Questionnaire-2 total scores at 6-month follow-up ( P 's < 0.05). Increases in Combined OS from T1 to T3, which should most directly capture OS and IR injury related to tourniquet use, were not associated with short-term or long-term post-TKA pain outcomes. Longer ischemia duration was unexpectedly associated with lower baseline-corrected pain intensity at 6-month follow-up. Combined OS was not linked to functional outcomes at either follow-up. Elevated perioperative OS seems to exert small but significant adverse effects on long-term post-TKA pain outcomes, although this OS seems unrelated to IR injury associated with extended tourniquet use.
Collapse
Affiliation(s)
- Stephen Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger Milne
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Schildcrout
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaping Shi
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Anderson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Shinar
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory Polkowski
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Puneet Mishra
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frederic T. Billings
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Guo W, Imai S, Yang JL, Zou S, Li H, Xu H, Moudgil KD, Dubner R, Wei F, Ren K. NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief. Front Integr Neurosci 2018; 12:49. [PMID: 30459569 PMCID: PMC6232783 DOI: 10.3389/fnint.2018.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain hypersensitivity. This effect involves BMSC's ability to interact with the immune system and activation of the endogenous opioid receptors in the pain modulatory circuitry. The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that regulates gene expression involved in immunity. We tested the hypothesis that the NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway, that has been shown to play an important role in BMSC-produced antihyperalgesia. In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL), BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited predominant neuronal localization in the RVM with scattered distribution in glial cells. At 1 week, but not 8 weeks after BMSC infusion, western blot and immunostaining showed that p65 of NF-κB was significantly increased in the RVM. Given that chemokine signaling is critical to BMSCs' pain-relieving effect, we further evaluated a role of chemokine signaling in p65 upregulation. Prior to infusion of BMSCs, we transduced BMSCs with Ccl4 shRNA, incubated BMSCs with RS 102895, a CCR2b antagonist, or maraviroc, a CCR5 antagonist. The antagonism of chemokines significantly reduced BMSC-induced upregulation of p65, suggesting that upregulation of p65 was related to BMSCs' pain-relieving effect. We then tested the effect of a selective NF-κB activation inhibitor, BAY 11-7082. The mechanical hyperalgesia of the rat was assessed with the von Frey method. In the pre-treatment experiment, BAY 11-7082 (2.5 and 25 pmol) was injected into the RVM at 2 h prior to BMSC infusion. Pretreatment with BAY 11-7082 attenuated BMSCs' antihyperalgesia, but post-treatment at 5 weeks post-BMSC was not effective. On the contrary, in TL rats receiving BAY 11-7082 without BMSCs, TL-induced hyperalgesia was attenuated, consistent with dual roles of NF-κB in pain hypersensitivity and BMSC-produced pain relief. These results indicate that the NF-κB signaling pathway in the descending circuitry is involved in initiation of BMSC-produced behavioral antihyperalgesia.
Collapse
Affiliation(s)
- Wei Guo
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Satoshi Imai
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Clinical Pharmacology & Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Jia-Le Yang
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Shiping Zou
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Huijuan Li
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Neurology, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huakun Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Kamal D Moudgil
- Department of Microbiology & Immunology, University of Maryland, Baltimore, MD, United States
| | - Ronald Dubner
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
5
|
Wang J, Zhang XS, Tao R, Zhang J, Liu L, Jiang YH, Ma SH, Song LX, Xia LJ. Upregulation of CX3CL1 mediated by NF-κB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration. Mol Pain 2018; 13:1744806917726256. [PMID: 28849713 PMCID: PMC5580849 DOI: 10.1177/1744806917726256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Painful peripheral neuropathy is a severe side effect in oxaliplatin therapy that compromises cancer patients' quality of life. However, its underlying pathogenic mechanisms remain largely unknown. Here, we found that intraperitoneal consecutive administration of oxaliplatin significantly increased excitability of small diameter dorsal root ganglion neurons and induced thermal hyperalgesia in rats. Furthermore, the CX3CL1 expression was significantly increased after oxaliplatin treatment, and intrathecal injection of a neutralizing antibody against CX3CL1 markedly attenuated the enhanced excitability of dorsal root ganglion neurons and thermal hyperalgesia. Importantly, the upregulated CX3CL1 is mediated by the NF-κB signaling pathway, as inhibition of NF-κB p65 activation with pyrrolidine dithiocarbamate or p65 siRNA inhibited the upregulation of CX3CL1, the enhanced excitability of dorsal root ganglion neurons, and thermal hyperalgesia induced by oxaliplatin. Further studies with chromatin immunoprecipitation found that oxaliplatin treatment increased the recruitment of NF-κB p65 to the CX3Cl1 promoter region. Our results suggest that upregulation of CX3CL1 in dorsal root ganglion mediated by NF-κB activation contributes to the peripheral sensitization and chronic pain induced by oxaliplatin administration.
Collapse
Affiliation(s)
- Jing Wang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin-Sheng Zhang
- 2 Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Rong Tao
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- 3 Department of Rehabilitation Medicine, Guangdong Woman and Children Hospital, Guangzhou, China
| | - Lin Liu
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Ying-Hai Jiang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Song-He Ma
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Lin-Xia Song
- 4 College of Life Science, Shandong University of Technology, Zibo, China
| | - Ling-Jie Xia
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Tian G, Luo X, Tang C, Cheng X, Chung SK, Xia Z, Cheung CW, Guo Q. Astrocyte contributes to pain development via MMP2-JNK1/2 signaling in a mouse model of complex regional pain syndrome. Life Sci 2016; 170:64-71. [PMID: 27919822 DOI: 10.1016/j.lfs.2016.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The activation of spinal glial cells (astrocyte and microglia) is reported in patient with complex regional pain syndrome (CRPS). However, the roles of spinal glial activities in the pathophysiology of CRPS are unclear. Here, we explored the roles of spinal astrocyte and microglia and the molecular mechanisms underlying CRPS using a mouse model of chronic post-ischemia pain (CPIP). RESULTS CPIP injury increased the level of glial fibrillary acidic protein (GFAP, reactive astrocyte biomarker), but had no significant impact on ionized calcium binding adaptor molecule 1 (IBA1, reactive microglia biomarker), in the ipsilateral dorsal horn on post-injury day (PID) 3 when the pain threshold started to reduce significantly. Astrocytic inhibition with fluorocitrate but not microglial inhibition with minocycline attenuated the development of allodynia in CPIP-injured mice, which was concomitant with increased spinal levels of phosphorylated c-jun N-terminal kinase 1/2 (pJNK1/2) on PID 3. Furthermore, the intrathecal administration of SP600125 (JNK inhibitor) prevented the development of allodynia in CPIP-injured mice. Double immunofluorescence staining showed that pJNK1/2 was mainly co-localized with GFAP. Subsequently, increased levels of pJNK1/2 were reversed by intrathecal fluorocitrate. Furthermore, the level of spinal matrix metalloproteinase-2 (MMP2) was increased and mainly expressed in NeuN (neuron biomarker) on PID 3 in the CPIP-injured mice, while intrathecal APR 100 (MMP2 inhibitor) delayed the development of allodynia and decreased spinal levels of GFAP and pJNK1/2 on PID 3. CONCLUSION This study shows that activation of astrocyte MMP2/JNK1/2 signaling pathway contributes to the pathogenesis of pain hypersensitivity in the CPIP model.
Collapse
Affiliation(s)
- Guogang Tian
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China; Department of Anesthesiology and Pain Medicine, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| | - Xin Luo
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Chaoliang Tang
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Xiang Cheng
- Department of Anesthesiology and Pain Medicine, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| | - Sookja Kim Chung
- Department of Anatomy, The University of Hong Kong, HKSAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|