1
|
Camargo A, Dalmagro AP, Altê GA, Zeni ALB, Tasca CI, Rodrigues ALS. NMDA receptor-mediated modulation on glutamine synthetase and glial glutamate transporter GLT-1 is involved in the antidepressant-like and neuroprotective effects of guanosine. Chem Biol Interact 2023; 375:110440. [PMID: 36878458 DOI: 10.1016/j.cbi.2023.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.05 mg/kg, but not 0.01 mg/kg, p. o.) was effective in producing an antidepressant-like effect and protecting hippocampal and prefrontocortical slices against glutamate-induced damage. Our results also unveiled that ketamine (1 mg/kg, but not 0.1 mg/kg, i. p, an NMDA receptor antagonist) effectively elicited antidepressant-like actions and protected hippocampal and prefrontocortical slices against glutamatergic toxicity. Furthermore, the combined administration of sub-effective doses of guanosine (0.01 mg/kg, p. o.) with ketamine (0.1 mg/kg, i. p.) promoted an antidepressant-like effect and augmented glutamine synthetase activity and GLT-1 immunocontent in the hippocampus, but not in the prefrontal cortex. Our results also showed that the combination of sub-effective doses of ketamine and guanosine, at the same protocol schedule that exhibited an antidepressant-like effect, effectively abolished glutamate-induced damage in hippocampal and prefrontocortical slices. Our in vitro results reinforce that guanosine, ketamine, or sub-effective concentrations of guanosine plus ketamine protect against glutamate exposure by modulating glutamine synthetase activity and GLT-1 levels. Finally, molecular docking analysis suggests that guanosine might interact with NMDA receptors at the ketamine or glycine/d-serine co-agonist binding sites. These findings provide support for the premise that guanosine has antidepressant-like effects and should be further investigated for depression management.
Collapse
Affiliation(s)
- Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana P Dalmagro
- Department of Natural Sciences, Center of Natural and Exact Sciences, Universidade Regional de Blumenau, Blumenau CEP, 89030-903, Santa Catarina, Brazil
| | - Glorister A Altê
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia B Zeni
- Department of Natural Sciences, Center of Natural and Exact Sciences, Universidade Regional de Blumenau, Blumenau CEP, 89030-903, Santa Catarina, Brazil
| | - Carla I Tasca
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Wilson SH, Wilson PR, Bridges KH, Bell LH, Clark CA. Nonopioid Analgesics for the Perioperative Geriatric Patient: A Narrative Review. Anesth Analg 2022; 135:290-306. [PMID: 35202007 DOI: 10.1213/ane.0000000000005944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Management of acute perioperative pain in the geriatric patient can be challenging as the physiologic and pharmacokinetic changes associated with aging may predispose older patients to opioid-related side effects. Furthermore, elderly adults are more susceptible to postoperative delirium and postoperative cognitive dysfunction, which may be exacerbated by both poorly controlled postoperative pain and commonly used pain medications. This narrative review summarizes the literature published in the past 10 years for several nonopioid analgesics commonly prescribed to the geriatric patient in the perioperative period. Nonopioid analgesics are broken down as follows: medications prescribed throughout the perioperative period (acetaminophen and nonsteroidal anti-inflammatory drugs), medications limited to the acute perioperative setting (N-methyl-D-aspartate receptor antagonists, dexmedetomidine, dexamethasone, and local anesthetics), and medications to be used with caution in the geriatric patient population (gabapentinoids and muscle relaxants). Our search identified 1757 citations, but only 33 specifically focused on geriatric analgesia. Of these, only 21 were randomized clinical trials' and 1 was a systematic review. While guidance in tailoring pain regimens that focus on the use of nonopioid medications in the geriatric patient is lacking, we summarize the current literature and highlight that some nonopioid medications may extend benefits to the geriatric patient beyond analgesia.
Collapse
Affiliation(s)
- Sylvia H Wilson
- From the Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina
| | | | | | | | | |
Collapse
|
3
|
Burfeind KG, Tirado Navales AA, Togioka BM, Schenning K. Prevention of postoperative delirium through the avoidance of potentially inappropriate medications in a geriatric surgical patient. BMJ Case Rep 2021; 14:14/4/e240403. [PMID: 33875501 PMCID: PMC8057549 DOI: 10.1136/bcr-2020-240403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We demonstrate the utility of risk stratification for postoperative delirium in geriatric patients and show that postoperative delirium can be prevented in high-risk patients when potentially inappropriate medications (PIMs) (medications that are best avoided in older adults) are avoided. In this case, a 65-year-old woman underwent two debridement procedures with similar presurgical risk for postoperative delirium. There was no risk stratification or preoperative cognitive assessment in the first procedure, she received PIMs and developed postoperative delirium. In the second procedure, PIMs were intentionally avoided and postoperative delirium did not occur. This case supports recent recommendations from the European Society of Anaesthesiology, the American Society of Anesthesiologists and the American Geriatrics Society that providers assess a patient's cognitive function and delirium risk profile preoperatively to appropriately guide perioperative management.
Collapse
Affiliation(s)
- Kevin G Burfeind
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Medical Scientist Training Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrés A Tirado Navales
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Brandon Michael Togioka
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Katie Schenning
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Abstract
Postoperative delirium is a common and harrowing complication in older surgical patients. Those with cognitive impairment or dementia are at especially high risk for developing postoperative delirium; ominously, it is hypothesized that delirium can accelerate cognitive decline and the onset of dementia, or worsen the severity of dementia. Awareness of delirium has grown in recent years as various medical societies have launched initiatives to prevent postoperative delirium and alleviate its impact. Unfortunately, delirium pathophysiology is not well understood and this likely contributes to the current state of low-quality evidence that informs perioperative guidelines. Along these lines, recent prevention trials involving ketamine and dexmedetomidine have demonstrated inconsistent findings. Non-pharmacologic multicomponent initiatives, such as the Hospital Elder Life Program, have consistently reduced delirium incidence and burden across various hospital settings. However, a substantial portion of delirium occurrences are still not prevented, and effective prevention and management strategies are needed to complement such multicomponent non-pharmacologic therapies. In this narrative review, we examine the current understanding of delirium neurobiology and summarize the present state of prevention and management efforts.
Collapse
Affiliation(s)
- Phillip Vlisides
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Center for Consciousness Science, University of Michigan Medical School,, Ann Arbor, MI, USA
| | - Michael Avidan
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
5
|
Jickling GC, Sharp FR. Improving the translation of animal ischemic stroke studies to humans. Metab Brain Dis 2015; 30:461-7. [PMID: 24526567 PMCID: PMC4186910 DOI: 10.1007/s11011-014-9499-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/28/2014] [Indexed: 12/18/2022]
Abstract
Despite testing more than 1,026 therapeutic strategies in models of ischemic stroke and 114 therapies in human ischemic stroke, only one agent tissue plasminogen activator has successfully been translated to clinical practice as a treatment for acute stroke. Though disappointing, this immense body of work has led to a rethinking of animal stroke models and how to better translate therapies to patients with ischemic stroke. Several recommendations have been made, including the STAIR recommendations and statements of RIGOR from the NIH/NINDS. In this commentary we discuss additional aspects that may be important to improve the translational success of ischemic stroke therapies. These include use of tissue plasminogen activator in animal studies; modeling ischemic stroke heterogeneity in terms of infarct size and cause of human stroke; addressing the confounding effect of anesthesia; use of comparable therapeutic dosage between humans and animals based on biological effect; modeling the human immune system; and developing outcome measures in animals comparable to those used in human stroke trials. With additional study and improved animal modeling of factors involved in human ischemic stroke, we are optimistic that new stroke therapies will be developed.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, MIND Institute Wet Labs Room 2415, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA, 95817, USA,
| | | |
Collapse
|
6
|
Avidan MS, Fritz BA, Maybrier HR, Muench MR, Escallier KE, Chen Y, Ben Abdallah A, Veselis RA, Hudetz JA, Pagel PS, Noh G, Pryor K, Kaiser H, Arya VK, Pong R, Jacobsohn E, Grocott HP, Choi S, Downey RJ, Inouye SK, Mashour GA. The Prevention of Delirium and Complications Associated with Surgical Treatments (PODCAST) study: protocol for an international multicentre randomised controlled trial. BMJ Open 2014; 4:e005651. [PMID: 25231491 PMCID: PMC4166247 DOI: 10.1136/bmjopen-2014-005651] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Postoperative delirium is one of the most common complications of major surgery, affecting 10-70% of surgical patients 60 years and older. Delirium is an acute change in cognition that manifests as poor attention and illogical thinking and is associated with longer intensive care unit (ICU) and hospital stay, long-lasting cognitive deterioration and increased mortality. Ketamine has been used as an anaesthetic drug for over 50 years and has an established safety record. Recent research suggests that, in addition to preventing acute postoperative pain, a subanaesthetic dose of intraoperative ketamine could decrease the incidence of postoperative delirium as well as other neurological and psychiatric outcomes. However, these proposed benefits of ketamine have not been tested in a large clinical trial. METHODS The Prevention of Delirium and Complications Associated with Surgical Treatments (PODCAST) study is an international, multicentre, randomised controlled trial. 600 cardiac and major non-cardiac surgery patients will be randomised to receive ketamine (0.5 or 1 mg/kg) or placebo following anaesthetic induction and prior to surgical incision. For the primary outcome, blinded observers will assess delirium on the day of surgery (postoperative day 0) and twice daily from postoperative days 1-3 using the Confusion Assessment Method or the Confusion Assessment Method for the ICU. For the secondary outcomes, blinded observers will estimate pain using the Behavioral Pain Scale or the Behavioral Pain Scale for Non-Intubated Patients and patient self-report. ETHICS AND DISSEMINATION The PODCAST trial has been approved by the ethics boards of five participating institutions; approval is ongoing at other sites. Recruitment began in February 2014 and will continue until the end of 2016. Dissemination plans include presentations at scientific conferences, scientific publications, stakeholder engagement and popular media. REGISTRATION DETAILS The study is registered at clinicaltrials.gov, NCT01690988 (last updated March 2014). The PODCAST trial is being conducted under the auspices of the Neurological Outcomes Network for Surgery (NEURONS). TRIAL REGISTRATION NUMBER NCT01690988 (last updated December 2013).
Collapse
Affiliation(s)
- Michael S Avidan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bradley A Fritz
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hannah R Maybrier
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maxwell R Muench
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krisztina E Escallier
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yulong Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arbi Ben Abdallah
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert A Veselis
- Department of Anesthesiology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Judith A Hudetz
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul S Pagel
- Clement J. Zablocki VA Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gyujeong Noh
- Department of Anesthesiology, Asan Medical Center, Seoul, South Korea
| | - Kane Pryor
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, USA
| | - Heiko Kaiser
- Department of Anesthesiology, University of Bern, Bern, Switzerland
| | - Virendra Kumar Arya
- Department of Anesthesiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ryan Pong
- Department of Anesthesiology, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Eric Jacobsohn
- Department of Anesthesiology, University of Manitoba-Faculty of Medicine, Winnipeg, Manitoba, Canada
| | - Hilary P Grocott
- Department of Anesthesiology, University of Manitoba-Faculty of Medicine, Winnipeg, Manitoba, Canada
| | - Stephen Choi
- Department of Anesthesiology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Robert J Downey
- Department of Surgery, Thoracic, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Sharon K Inouye
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Wang D, Tan QR, Zhang ZJ. Neuroprotective effects of paeoniflorin, but not the isomer albiflorin, are associated with the suppression of intracellular calcium and calcium/calmodulin protein kinase II in PC12 cells. J Mol Neurosci 2013; 51:581-90. [PMID: 23695964 DOI: 10.1007/s12031-013-0031-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/08/2013] [Indexed: 12/26/2022]
Abstract
The root of Paeonia lactiflora Pall (family Ranunculaceae) or peony root, a herbal medicine, possesses therapeutic potential for neurodegenerative diseases. The isomers paeoniflorin (PF) and albiflorin (AF) are major constituents contained in peony root. Our previous study has shown notable neuroprotective effects of PF. In the present study, we further compared the effects of AF and PF against glutamate (Glu)-induced cell damage and the underlying mechanisms in differentiated PC12 cells. Both AF and PF significantly ameliorated Glu-induced reduction of cell viability, nuclear and mitochondrial apoptotic alteration, reactive oxygen species accumulation, and B-cell lymphoma 2 (Bcl-2)/Bax ratio. The two isomers also enhanced phosphorylation of AKT and its downstream element glycogen synthase kinase-3β, and this effect was abrogated by the AKT inhibitor LY294002. PF, but not AF, however, suppressed intracellular Ca(2+) overload and the expression of calcium/calmodulin protein kinase II (CaMKII). The improvement of cell damage by the CaMKII inhibitor KN93 further confirms the role of CaMKII in PF-mediated neuroprotection. These results suggest that both AF and PF possess robust effects in protecting neuronal cells against Glu toxicity. PF further displayed remarkable effects in preventing intracellular Ca(2+) overload and suppressing overexpression of CaMKII. Differential mechanisms may be involved in neuroprotective action of the two isomers.
Collapse
Affiliation(s)
- Di Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
8
|
Meng-yuan Z, Gong-ming W, Fang-lin L, Ling D, Yan-bing X, Joseph-S C. La ketamina mejora la supervivencia en lesión por quemadura severa en ratas, a través de la expresión de la proteína de choque70. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2013. [DOI: 10.1016/j.rca.2013.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Ketamine improves survival in severe burn injury in rats via the expression of heat shock protein 70. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2013. [DOI: 10.1016/j.rcae.2013.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Ketamine improves survival in severe burn injury in rats via the expression of heat shock protein 70☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2013. [DOI: 10.1097/01819236-201341020-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Inhibition of Neuron-Specific CREB Dephosphorylation is Involved in Propofol and Ketamine-Induced Neuroprotection Against Cerebral Ischemic Injuries of Mice. Neurochem Res 2011; 37:49-58. [DOI: 10.1007/s11064-011-0582-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
|
12
|
Turner RJ, Jickling GC, Sharp FR. Are Underlying Assumptions of Current Animal Models of Human Stroke Correct: from STAIRs to High Hurdles? Transl Stroke Res 2011; 2:138-43. [PMID: 21654913 PMCID: PMC3085747 DOI: 10.1007/s12975-011-0067-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 10/29/2022]
Abstract
Animal models of acute ischemic stroke have been criticized for failing to translate to human stroke. Nevertheless, animal models are necessary to improve our understanding of stroke pathophysiology and to guide the development of new stroke therapies. The rabbit embolic clot model is one animal model that has led to an effective therapy in human acute ischemic stroke, namely tissue plasminogen activator (tPA). We propose that potential compounds that demonstrate efficacy in non-rabbit animal models of acute ischemic stroke should also be tested in the rabbit embolic blood clot model and, where appropriate, compared to tPA prior to investigation in humans. Furthermore, the use of anesthesia needs to be considered as a major confounder in animal models of acute ischemic stroke, and death should be included as an outcome measure in animal stroke studies. These steps, along with the current STAIRs recommendations, may improve the successful translation of experimental therapies to clinical stroke treatments.
Collapse
Affiliation(s)
- Renée J. Turner
- Department of Neurology, University of California at Davis, Sacramento, CA 95817 USA
- M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817 USA
- Discipline of Pathology, The University of Adelaide, North Terrace, Adelaide, 5005 SA Australia
| | - Glen C. Jickling
- Department of Neurology, University of California at Davis, Sacramento, CA 95817 USA
- M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817 USA
| | - Frank R. Sharp
- Department of Neurology, University of California at Davis, Sacramento, CA 95817 USA
- M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817 USA
| |
Collapse
|
13
|
Schifilliti D, Grasso G, Conti A, Fodale V. Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs 2010; 24:893-907. [PMID: 20932063 DOI: 10.2165/11584760-000000000-00000] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In designing the anaesthetic plan for patients undergoing surgery, the choice of anaesthetic agent may often appear irrelevant and the best results obtained by the use of a technique or a drug with which the anaesthesia care provider is familiar. Nevertheless, in those surgical procedures (cardiopulmonary bypass, carotid surgery and cerebral aneurysm surgery) and clinical situations (subarachnoid haemorrhage, stroke, brain trauma and post-cardiac arrest resuscitation) where protecting the CNS is a priority, the choice of anaesthetic drug assumes a fundamental role. Treating patients with a neuroprotective agent may be a consideration in improving overall neurological outcome. Therefore, a clear understanding of the relative degree of protection provided by various agents becomes essential in deciding on the most appropriate anaesthetic treatment geared to these objectives. This article surveys the current literature on the effects of the most commonly used anaesthetic drugs (volatile and gaseous inhalation, and intravenous agents) with regard to their role in neuroprotection. A systematic search was performed in the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINHAL®) and Cochrane Library databases using the following keywords: 'brain' (with the limits 'newborn' or 'infant' or 'child' or 'neonate' or 'neonatal' or 'animals') AND 'neurodegeneration' or 'apoptosis' or 'toxicity' or 'neuroprotection' in combination with individual drug names ('halothane', 'isoflurane', 'desflurane', 'sevoflurane', 'nitrous oxide', 'xenon', 'barbiturates', 'thiopental', 'propofol', 'ketamine'). Over 600 abstracts for articles published from January 1980 to April 2010, including studies in animals, humans and in vitro, were examined, but just over 100 of them were considered and reviewed for quality. Taken as a whole, the available data appear to indicate that anaesthetic drugs such as barbiturates, propofol, xenon and most volatile anaesthetics (halothane, isoflurane, desflurane, sevoflurane) show neuroprotective effects that protect cerebral tissue from adverse events--such as apoptosis, degeneration, inflammation and energy failure--caused by chronic neurodegenerative diseases, ischaemia, stroke or nervous system trauma. Nevertheless, in several studies, the administration of gaseous, volatile and intravenous anaesthetics (especially isoflurane and ketamine) was also associated with dose-dependent and exposure time-dependent neurodegenerative effects in the developing animal brain. At present, available experimental data do not support the selection of any one anaesthetic agent over the others. Furthermore, the relative benefit of one anaesthetic versus another, with regard to neuroprotective potential, is unlikely to form a rational basis for choice. Each drug has some undesirable adverse effects that, together with the patient's medical and surgical history, appear to be decisive in choosing the most suitable anaesthetic agent for a specific situation. Moreover, it is important to highlight that many of the studies in the literature have been conducted in animals or in vitro; hence, results and conclusions of most of them may not be directly applied to the clinical setting. For these reasons, and given the serious implications for public health, we believe that further investigation--geared mainly to clarifying the complex interactions between anaesthetic drug actions and specific mechanisms involved in brain injury, within a setting as close as possible to the clinical situation--is imperative.
Collapse
Affiliation(s)
- Daniela Schifilliti
- Department of Neuroscience Psychiatric and Anesthesiological Sciences, University of Messina, Messina, Italy
| | | | | | | |
Collapse
|
14
|
Meade AJ, Meloni BP, Mastaglia FL, Watt PM, Knuckey NW. AP-1 inhibitory peptides attenuate in vitro cortical neuronal cell death induced by kainic acid. Brain Res 2010; 1360:8-16. [PMID: 20833150 DOI: 10.1016/j.brainres.2010.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 08/19/2010] [Accepted: 09/01/2010] [Indexed: 01/27/2023]
Abstract
This study has assessed the neuroprotective efficacy of five AP-1 inhibitory peptides in an in vitro excitotoxicity model. The five AP-1 inhibitory peptides and controls of the JNK inhibitor peptide (JNKI-1D-TAT) and TAT cell-penetrating-peptide were administered to primary cortical neuronal cultures prior to kainic acid exposure. All five AP-1 inhibitory peptides and JNKI-1D-TAT provided significant neuroprotection from kainic acid induced neuronal cell death. Kainic acid exposure induced caspase and calpain activation in neuronal cultures, with caspase-induced cleavage of α-fodrin reduced by administration of the AP-1 inhibitory peptides. Sequence analysis of the AP-1 inhibitory peptides did not reveal the presence of any secondary structures; however two peptides shared 66% amino-acid sequence homology. As a result, truncated sequences were designed and synthesised to identify the active region of the peptides. All truncated peptides were significantly neuroprotective following kainic acid and glutamate exposure. We have shown for the first time the neuroprotective efficacy of full-length and truncated AP-1 inhibitory peptides in kainic acid and glutamate neuronal excitotoxicity models. The identification of therapeutic targets, such as the AP-1 complex, is an important step for the development of pharmaceuticals to reduce neuronal loss in disorders with a prevalence of excitotoxic cell death such as epilepsy, cerebral ischaemia, and traumatic brain injury.
Collapse
Affiliation(s)
- Amanda J Meade
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | | | | | | | | |
Collapse
|
15
|
Labombarda F, González SL, Lima A, Roig P, Guennoun R, Schumacher M, de Nicola AF. Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia 2009; 57:884-97. [PMID: 19053058 DOI: 10.1002/glia.20814] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progesterone is emerging as a myelinizing factor for central nervous system injury. Successful remyelination requires proliferation and differentiation of oligodendrocyte precursor cells (OPC) into myelinating oligodendrocytes, but this process is incomplete following injury. To study progesterone actions on remyelination, we administered progesterone (16 mg/kg/day) to rats with complete spinal cord injury. Rats were euthanized 3 or 21 days after steroid treatment. Short progesterone treatment (a) increased the number of OPC without effect on the injury-induced reduction of mature oligodendrocytes, (b) increased mRNA and protein expression for the myelin basic protein (MBP) without effects on proteolipid protein (PLP) or myelin oligodendrocyte glycoprotein (MOG), and (c) increased the mRNA for Olig2 and Nkx2.2 transcription factors involved in specification and differentiation of the oligodendrocyte lineage. Furthermore, long progesterone treatment (a) reduced OPC with a concomitant increase of oligodendrocytes; (b) promoted differentiation of cells that incorporated bromodeoxyuridine, early after injury, into mature oligodendrocytes; (c) increased mRNA and protein expression of PLP without effects on MBP or MOG; and (d) increased mRNA for the Olig1 transcription factor involved in myelin repair. These results suggest that early progesterone treatment enhanced the density of OPC and induced their differentiation into mature oligodendrocytes by increasing the expression of Olig2 and Nkx2.2. Twenty-one days after injury, progesterone favors remyelination by increasing Olig1 (involved in repair of demyelinated lesions), PLP expression, and enhancing oligodendrocytes maturation. Thus, progesterone effects on oligodendrogenesis and myelin proteins may constitute fundamental steps for repairing traumatic injury inflicted to the spinal cord.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
|