1
|
Pirmoradi Z, Esmaili Z, Nakhaie M, Kohlmeier KA, Shabani M, Razavinasab M, Ilaghi M. Therapeutic Potential of Agmatine in Essential Tremor Through Regulation of Lingo-1 and Inflammatory Pathways. Brain Behav 2025; 15:e70241. [PMID: 39779480 PMCID: PMC11710932 DOI: 10.1002/brb3.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Essential tremor (ET) is a prevalent movement disorder, yet current therapeutic options remain limited. Emerging evidence implicates leucine-rich repeat and immunoglobulin-like domain-containing protein (Lingo-1) and neuroinflammation in the pathophysiology of ET. This study aimed to investigate whether agmatine, a biogenic amine neuromodulator attenuates tremors and modulates the expression of Lingo-1 and proinflammatory markers in a rodent model of ET. METHODS Tremor was induced in male Swiss Webster mice through intraperitoneal injections of harmaline (10 mg/kg) on Days 1, 3, and 5 of the study. During the same period, agmatine (40 mg/kg) was administered for 5 consecutive days. Behavioral assessments of tremor severity, gait, balance, muscular strength, locomotion, anxiety-like behavior, and memory were conducted. Moreover, Lingo-1 and interleukin (IL)-6 gene expression was examined in the cerebellum using real-time polymerase chain reaction (RT-PCR). FINDINGS Our findings demonstrated that agmatine administration significantly reduced tremors, ameliorated anxiety-like behaviors, and attenuated harmaline-induced locomotor deficits. At the molecular level, agmatine treatment significantly suppressed the overexpression of Lingo-1 elicited by harmaline. Moreover, IL-6 expression was attenuated to an extent comparable to control levels. CONCLUSIONS Collectively, this study provides the first evidence that agmatine dampens tremor severity, improves behavioral outcomes, and modulates key pathways implicated in ET pathogenesis in a rodent model. The ability of agmatine to normalize Lingo-1 and IL-6 expression suggests regulation of these pathways could underlie its neuroprotective action. These results suggest promise for agmatine as a prospective therapeutic agent in ET.
Collapse
Affiliation(s)
- Zeynab Pirmoradi
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Zahra Esmaili
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
- Department of Physiology, Medical SchoolKerman University of Medical SciencesKermanIran
| | - Mehran Ilaghi
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| |
Collapse
|
2
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9617-9632. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
4
|
Lai AKW, Ng TC, Hung VKL, Tam KC, Cheung CW, Chung SK, Lo ACY. Exacerbated VEGF up-regulation accompanies diabetes-aggravated hemorrhage in mice after experimental cerebral ischemia and delayed reperfusion. Neural Regen Res 2021; 17:1566-1575. [PMID: 34916442 PMCID: PMC8771109 DOI: 10.4103/1673-5374.330612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reperfusion therapy is the preferred treatment for ischemic stroke, but is hindered by its short treatment window, especially in patients with diabetes whose reperfusion after prolonged ischemia is often accompanied by exacerbated hemorrhage. The mechanisms underlying exacerbated hemorrhage are not fully understood. This study aimed to identify this mechanism by inducing prolonged 2-hour transient intraluminal middle cerebral artery occlusion in diabetic Ins2Akita/+ mice to mimic patients with diabetes undergoing delayed mechanical thrombectomy. The results showed that at as early as 2 hours after reperfusion, Ins2Akita/+ mice exhibited rapid development of neurological deficits, increased infarct and hemorrhagic transformation, together with exacerbated down-regulation of tight-junction protein ZO-1 and up-regulation of blood-brain barrier-disrupting matrix metallopeptidase 2 and matrix metallopeptidase 9 when compared with normoglycemic Ins2+/+ mice. This indicated that diabetes led to the rapid compromise of vessel integrity immediately after reperfusion, and consequently earlier death and further aggravation of hemorrhagic transformation 22 hours after reperfusion. This observation was associated with earlier and stronger up-regulation of pro-angiogenic vascular endothelial growth factor (VEGF) and its downstream phospho-Erk1/2 at 2 hours after reperfusion, which was suggestive of premature angiogenesis induced by early VEGF up-regulation, resulting in rapid vessel disintegration in diabetic stroke. Endoplasmic reticulum stress-related pro-apoptotic C/EBP homologous protein was overexpressed in challenged Ins2Akita/+ mice, which suggests that the exacerbated VEGF up-regulation may be caused by overwhelming endoplasmic reticulum stress under diabetic conditions. In conclusion, the results mimicked complications in patients with diabetes undergoing delayed mechanical thrombectomy, and diabetes-induced accelerated VEGF up-regulation is likely to underlie exacerbated hemorrhagic transformation. Thus, suppression of the VEGF pathway could be a potential approach to allow reperfusion therapy in patients with diabetic stroke beyond the current treatment window. Experiments were approved by the Committee on the Use of Live Animals in Teaching and Research of the University of Hong Kong [CULATR 3834-15 (approval date January 5, 2016); 3977-16 (approval date April 13, 2016); and 4666-18 (approval date March 29, 2018)].
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Tsz Chung Ng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Victor Ka Lok Hung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Chi Wai Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Sookja Kim Chung
- Macau University of Science and Technology, Taipa, Macau Special Administration Region; School of Biomedical Sciences, The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| |
Collapse
|
5
|
Kale M, Nimje N, Aglawe MM, Umekar M, Taksande B, Kotagale N. Agmatine modulates anxiety and depression-like behaviour in diabetic insulin-resistant rats. Brain Res 2020; 1747:147045. [DOI: 10.1016/j.brainres.2020.147045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
|
6
|
Kotagale NR, Taksande BG, Inamdar NN. Neuroprotective offerings by agmatine. Neurotoxicology 2019; 73:228-245. [DOI: 10.1016/j.neuro.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|
7
|
Kim JM, Lee JE, Cheon SY, Lee JH, Kim SY, Kam EH, Koo BN. The Anti-inflammatory Effects of Agmatine on Transient Focal Cerebral Ischemia in Diabetic Rats. J Neurosurg Anesthesiol 2017; 28:203-13. [PMID: 26057630 DOI: 10.1097/ana.0000000000000195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND In the previous study, we observed agmatine (AGM) posttreatment immediately after 30 minutes of suture occlusion of the middle cerebral artery (MCAO) reduced the infarct size and neurological deficit in diabetic rats. The aim of the present study was to investigate the anti-inflammatory effect of AGM to reduce cerebral ischemic damage in diabetic rats. MATERIALS AND METHODS Normoglycemic (n=20) and streptozotocin-induced diabetic rats (n=40) were subjected to 30 minutes of MCAO followed by reperfusion. Twenty diabetic rats were treated with AGM (100 mg/kg, intraperitoneal) immediately after 30 minutes of MCAO. Modified neurological examinations and rotarod exercises were performed to evaluate motor function. Western blot and immunohistochemical analysis were performed to determine the expression of inflammatory cytokines in ischemic brain tissue. Real-time polymerase chain reaction was performed to measure the mRNA expression of high-mobility group box 1, receptor for advanced glycation end products (RAGE), Toll-like receptor (TLR)2, and TLR4 RESULTS AND CONCLUSIONS:: AGM posttreatment improved the neurobehavioral activity and motor function of diabetic MCAO rats at 24 and 72 hours after reperfusion. Immunohistochemical analysis showed that AGM treatment significantly decreased the expression of inflammatory cytokines in diabetic MCAO rats at 24 and 72 hours after reperfusion (P<0.01). Western blotting and real-time polymerase chain reaction results indicated that AGM treatment significantly decreased the expression of high-mobility group box 1, RAGE, TLR2, and TLR4 in diabetic rats at 24 hours after reperfusion (P<0.05). This neuroprotective effect of AGM after MCAO was associated with modulation of the postischemic neuronal inflammation cascade.
Collapse
Affiliation(s)
- Jeong Min Kim
- Departments of *Anesthesiology and Pain Medicine ‡Anatomy †Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 2017; 474:2619-2640. [DOI: 10.1042/bcj20170007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
Abstract
Agmatine, the decarboxylation product of arginine, was largely neglected as an important player in mammalian metabolism until the mid-1990s, when it was re-discovered as an endogenous ligand of imidazoline and α2-adrenergic receptors. Since then, a wide variety of agmatine-mediated effects have been observed, and consequently agmatine has moved from a wallflower existence into the limelight of clinical neuroscience research. Despite this quantum jump in scientific interest, the understanding of the anabolism and catabolism of this amine is still vague. The purification and biochemical characterization of natural mammalian arginine decarboxylase and agmatinase still are open issues. Nevertheless, the agmatinergic system is currently one of the most promising candidates in order to pharmacologically interfere with some major diseases of the central nervous system, which are summarized in the present review. Particularly with respect to major depression, agmatine, its derivatives, and metabolizing enzymes show great promise for the development of an improved treatment of this common disease.
Collapse
|
9
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 2016; 26:1885-1899. [PMID: 27836390 DOI: 10.1016/j.euroneuro.2016.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
Abstract
Major depressive disorder is the most common psychiatric disorder with lifetime prevalence of up to 20% worldwide. It is responsible for more years lost to disability than any other disorder. Despite the fact that current available antidepressant drugs are safe and effective, they are far from ideal. In addition to the need to administer the drugs for weeks or months to obtain clinical benefit, side effects are still a serious problem. Agmatine is an endogenous polyamine synthesized by the enzyme arginine decarboxylase. It modulates several receptors and is considered as a neuromodulator in the brain. In this review, studies demonstrating the antidepressant effects of agmatine are presented and discussed, as well as, the mechanisms of action related to these effects. Also, the potential beneficial effects of agmatine for the treatment of other neurological disorders are presented. In particular, we provide evidence to encourage future clinical studies investigating agmatine as a novel antidepressant drug.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
11
|
Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 2016; 113:467-479. [PMID: 27810390 DOI: 10.1016/j.neuropharm.2016.10.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023]
Abstract
The risk of Alzheimer's disease (AD) is higher in patients with type 2 diabetes mellitus (T2DM). Previous studies in high-fat diet-induced AD animal models have shown that brain insulin resistance in these animals leads to the accumulation of amyloid beta (Aβ) and the reduction in GSK-3β phosphorylation, which promotes tau phosphorylation to cause AD. No therapeutic treatments that target AD in T2DM patients have yet been discovered. Agmatine, a primary amine derived from l-arginine, has exhibited anti-diabetic effects in diabetic animals. The aim of this study was to investigate the ability of agmatine to treat AD induced by brain insulin resistance. ICR mice were fed a 60% high-fat diet for 12 weeks and received one injection of streptozotocin (100 mg/kg/ip) 4 weeks into the diet. After the 12-week diet, the mice were treated with agmatine (100 mg/kg/ip) for 2 weeks. Behaviour tests were conducted prior to sacrifice. Brain expression levels of the insulin signal molecules p-IRS-1, p-Akt, and p-GSK-3β and the accumulation of Aβ and p-tau were evaluated. Agmatine administration rescued the reduction in insulin signalling, which in turn reduced the accumulation of Aβ and p-tau in the brain. Furthermore, agmatine treatment also reduced cognitive decline. Agmatine attenuated the occurrence of AD in T2DM mice via the activation of the blunted insulin signal.
Collapse
Affiliation(s)
- Somang Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 120-752, South Korea; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Chul-Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 120-752, South Korea; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Eosu Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Ho-Taek Song
- Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 120-752, South Korea; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| |
Collapse
|
12
|
Song J, Lee B, Kang S, Oh Y, Kim E, Kim CH, Song HT, Lee JE. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling. Exp Neurobiol 2016; 25:24-32. [PMID: 26924930 PMCID: PMC4766111 DOI: 10.5607/en.2016.25.1.24] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Byeori Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Somang Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yumi Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eosu Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chul-Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho-Taek Song
- Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
13
|
Cui W, Zhang Y, Lu D, Ren M, Yuan G. Upregulation of p‑Akt by glial cell line‑derived neurotrophic factor ameliorates cell apoptosis in the hippocampus of rats with streptozotocin‑induced diabetic encephalopathy. Mol Med Rep 2015; 13:543-9. [PMID: 26549420 DOI: 10.3892/mmr.2015.4507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/22/2015] [Indexed: 11/06/2022] Open
Abstract
The loss of neurotrophic factor support has been shown to contribute to the development of the central nervous system. Glial cell line‑derived neurotrophic factor (GDNF), a potent neurotrophic factor, is closely associated with apoptosis and exerts neuroprotective effects on numerous populations of cells. However, the underlying mechanisms of these protective effects remain unknown. In the present study, a significant increase in Bax levels and DNA fragmentation was observed in the hippocampus obtained from the brains of diabetic rats 60 days after diabetes had been induced. The apoptotic changes were correlated with the loss of GDNF/Akt signaling. GDNF administration was found to reverse the diabetes‑induced Bax and DNA fragmentation changes. This was associated with an improvement in the level of p‑Akt/Akt. In addition, combination of GDNF with a specific inhibitor of the phosphoinositide 3‑kinase (PI3K)/Akt pathway, Wortmannin, significantly abrogated the effects of GDNF on the levels of p‑Akt/Akt, Bax and DNA fragmentation. However, a p38 mitogen‑activated proten kinase (MAPK) inhibitor, SB203580, had no effect on the expression of p‑Akt/Akt, Bax or DNA fragmentation. These results demonstrate the pivotal role of GDNF as well as the PI3K/Akt pathway, but not the MAPK pathway, in the prevention of diabetes‑induced neuronal apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Weigang Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yinghua Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Derong Lu
- Department of Internal Digestive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mingxin Ren
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guoyan Yuan
- Department of Neurosurgery, The First Affiliated Hospital, Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
14
|
Song J, Park J, Kim JH, Choi JY, Kim JY, Lee KM, Lee JE. Dehydroascorbic Acid Attenuates Ischemic Brain Edema and Neurotoxicity in Cerebral Ischemia: An in vivo Study. Exp Neurobiol 2015; 24:41-54. [PMID: 25792869 PMCID: PMC4363333 DOI: 10.5607/en.2015.24.1.41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
Ischemic stroke results in the diverse phathophysiologies including blood brain barrier (BBB) disruption, brain edema, neuronal cell death, and synaptic loss in brain. Vitamin C has known as the potent anti-oxidant having multiple functions in various organs, as well as in brain. Dehydroascorbic acid (DHA) as the oxidized form of ascorbic acid (AA) acts as a cellular protector against oxidative stress and easily enters into the brain compared to AA. To determine the role of DHA on edema formation, neuronal cell death, and synaptic dysfunction following cerebral ischemia, we investigated the infarct size of ischemic brain tissue and measured the expression of aquaporin 1 (AQP-1) as the water channel protein. We also examined the expression of claudin 5 for confirming the BBB breakdown, and the expression of bcl 2 associated X protein (Bax), caspase-3, inducible nitric oxide synthase (iNOS) for checking the effect of DHA on the neurotoxicity. Finally, we examined postsynaptic density protein-95 (PSD-95) expression to confirm the effect of DHA on synaptic dysfunction following ischemic stroke. Based on our findings, we propose that DHA might alleviate the pathogenesis of ischemic brain injury by attenuating edema, neuronal loss, and by improving synaptic connection.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ja Yong Choi
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kyoung Min Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul 120-752, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
15
|
Ahmad S, Elsherbiny NM, Haque R, Khan MB, Ishrat T, Shah ZA, Khan MM, Ali M, Jamal A, Katare DP, Liou GI, Bhatia K. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology 2014; 45:100-10. [PMID: 25316624 DOI: 10.1016/j.neuro.2014.10.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 11/30/2022]
Abstract
Stroke is a severe neurological disorder characterized by the abrupt loss of blood circulation into the brain resulting into wide ranging brain and behavior abnormalities. The present study was designed to evaluate molecular mechanism by which sesamin (SES) induces neuroprotection in mouse model of ischemic stroke. The results of this study demonstrate that SES treatment (30 mg/kg bwt) significantly reduced infarction volume, lipid per-oxidation, cleaved-caspase-3 activation, and increased GSH activity following MCAO in adult male mouse. SES treatment also diminished iNOS and COX-2 protein expression, and significantly restored SOD activity and protein expression level in the ischemic cortex of the MCAO animals. Furthermore, SES treatment also significantly reduced inflammatory and oxidative stress markers including Iba1, Nox-2, Cox-2, peroxynitrite compared to placebo MCAO animals. Superoxide radical production, as studied by DHE staining method, was also significantly reduced in the ischemic cortex of SES treated compared to placebo MCAO animals. Likewise, downstream effects of superoxide free radicals i.e. MAPK/ERK and P38 activation was also significantly attenuated in SES treated compared to placebo MCAO animals. In conclusion, these results suggest that SES induces significant neuroprotection, by ameliorating many signaling pathways activated/deactivated following cerebral ischemia in adult mouse.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University (Jeddah), P.O. Box 344, Rabigh 21911, Kingdom of Saudi Arabia.
| | - Nehal M Elsherbiny
- Department of Clinical Biochemistry, Mansoura University, Mansoura, Egypt
| | - Rizwanul Haque
- Centre for Biological Science (Biotechnology), Central University of Bihar, Patna, Bihar, India
| | | | - Tauheed Ishrat
- Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA
| | - Mohammad M Khan
- Department of Biochemistry, Faculty of Medicine, Zawia University, AZ-Zawia, Libya
| | - Mehboob Ali
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Arshad Jamal
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University (Jeddah), P.O. Box 344, Rabigh 21911, Kingdom of Saudi Arabia
| | | | - Gregory I Liou
- Department of Ophthalmology, School of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Kanchan Bhatia
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University (Jeddah), P.O. Box 344, Rabigh 21911, Kingdom of Saudi Arabia.
| |
Collapse
|
16
|
Moosavi M, Zarifkar AH, Farbood Y, Dianat M, Sarkaki A, Ghasemi R. Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3β signaling disruption. Eur J Pharmacol 2014; 736:107-14. [DOI: 10.1016/j.ejphar.2014.03.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
|
17
|
MSTMP, a Stilbene Derivative, Protects SH-SY5Y Cells Against Oxidative Stress. Can J Neurol Sci 2014; 41:382-8. [PMID: 24718825 DOI: 10.1017/s0317167100017340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE the protective effects of a novel stilbene derivative, (e)-2-(3,4,5- trimethoxystyryl)-3,5,6-trimethylpyrazine (MStMp), on hydrogen peroxide (h2o2)-induced human derived neuroblastoma cell (Sh-Sy5y) damage and its molecular mechanisms were investigated. METHODS Sh-Sy5y cells were exposed to 200 μmol.l-1 h2o2 for 12 h. the effect of MStMp on cell viability and apoptosis was assessed by 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (Mtt) assay and flow cytometry method. the activities of lactate dehydrogenase (ldh), superoxide dismutase (Sod) and nitric oxide synthetase (noS) and the content of malondialdehyde (Mda), reduced glutathione (gSh) and nitric oxide (no) in cells were determined by commercial kits. the expressions of pro-apoptotic factor caspase-3, caspase-9 and inducible noS (inoS) were detected by Western blotting. intracellular formation of reactive oxygen species (roS) was assessed using 6-carboxy-2’,7’-dichlorofluorescin diacetate (dCfh-da) fluorescent probe. RESULTS MStMp increased the Sh-Sy5y cell viability by inhibition of cell apoptosis induced by h2o2. these effects were accompanied by an increase of Sod activity, gSh level, and a decrease of Mda content. Moreover, MStMp showed stronger effects on inhibition of ldh leakage, apoptotic cells, intracellular roS level and the expression of caspase-3 and caspase-9 than tMp. furthermore, MStMp induced a decrease of no level and the activity of inoS, tnoS in a time-dependent manner. CONCLUSIONS MStMp prevents h2o2-induced cell injury through anti-oxidation and anti-apoptosis via roS-no pathway.
Collapse
|
18
|
|
19
|
Ahn SK, Hong S, Park YM, Choi JY, Lee WT, Park KA, Lee JE. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity. Life Sci 2012; 91:1345-50. [PMID: 23123442 DOI: 10.1016/j.lfs.2012.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
AIMS Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. MAIN METHODS For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. KEY FINDINGS Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (p<0.001), as determined by lactate dehydrogenase assay. It suppressed the nitrite production from 16.4±3.14μM to 5.5±1.27μM (p<0.001), as measured using the Griess reaction. Agmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. SIGNIFICANCE Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Soo Kyung Ahn
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Differential topochemistry of three cationic amino acid transporter proteins, hCAT1, hCAT2 and hCAT3, in the adult human brain. Amino Acids 2012; 44:423-33. [DOI: 10.1007/s00726-012-1348-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/20/2012] [Indexed: 11/26/2022]
|
21
|
Bhutada P, Mundhada Y, Humane V, Rahigude A, Deshmukh P, Latad S, Jain K. Agmatine, an endogenous ligand of imidazoline receptor protects against memory impairment and biochemical alterations in streptozotocin-induced diabetic rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:96-105. [PMID: 22300747 DOI: 10.1016/j.pnpbp.2012.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/27/2022]
Abstract
Agmatine, a polycationic amine synthesized via decarboxylation of l-arginine by arginine decarboxylase is reported to exhibit anti-hyperglycemic, antioxidant and memory enhancing effects. Therefore, we tested its influence against cognitive dysfunction in streptozotocin-induced diabetic rats using Morris water maze and object recognition paradigm. Lipid peroxidation and glutathione levels as parameters of oxidative stress and choline esterase (ChE) activity as a marker of cholinergic function were assessed in the cerebral cortex and hippocampus. Thirty days after diabetes induction rats showed a severe deficit in learning and memory associated with increased lipid peroxidation, decreased reduced glutathione, and elevated ChE activity. In contrast, chronic treatment with agmatine (5-10mg/kg, i.p. for 30 days) improved cognitive performance, lowered hyperglycemia, oxidative stress, and ChE activity in diabetic rats. Further, memory improving effects of agmatine were independent of adrenal I(2) imidazoline receptors. In a separate set, agmatine treatment for an initial 15 days after diabetes confirmation also significantly reduced memory impairment during training trials after 30 days of diabetes confirmation. Moreover, treatment during training trials (30 days after diabetes) also significantly reduced memory impairment in diabetic rats. In conclusion, the present study demonstrates that treatment with agmatine prevents changes in oxidative stress and ChE activity, and probably consequent memory impairment in diabetic rats.
Collapse
Affiliation(s)
- Pravinkumar Bhutada
- Sinhgad College of Pharmacy, Post-Graduate Research Department, Off Sinhgad road, Vadgaon (Bk), Pune 41, Maharashtra, India.
| | | | | | | | | | | | | |
Collapse
|