1
|
Sawah D, Sahloul M, Ciftci F. Nano-material utilization in stem cells for regenerative medicine. BIOMED ENG-BIOMED TE 2022; 67:429-442. [DOI: 10.1515/bmt-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Abstract
The utilization of nanotechnology in regenerative medicine has been globally proven to be the main solution to many issues faced with tissue engineering today, and the theoretical and empirical investigations of the association of nanomaterials with stem cells have made significant progress as well. For their ability to self-renew and differentiate into a variety of cell types, stem cells have become popular candidates for cell treatment in recent years, particularly in cartilage and Ocular regeneration. However, there are still several challenges to overcome before it may be used in a wide range of therapeutic contexts. This review paper provides a review of the various implications of nanomaterials in tissue and cell regeneration, the stem cell and scaffold application in novel treatments, and the basic developments in stem cell-based therapies, as well as the hurdles that must be solved for nanotechnology to be used in its full potential. Due to the increased interest in the continuously developing field of nanotechnology, demonstrating, and pinpointing the most recognized and used applications of nanotechnology in regenerative medicine became imperative to provide students, researchers, etc. who are interested.
Collapse
Affiliation(s)
- Darin Sawah
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| | - Maha Sahloul
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| | - Fatih Ciftci
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| |
Collapse
|
2
|
Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, Yang X, Liu L. Ten Years of Knowledge of Nano-Carrier Based Drug Delivery Systems in Ophthalmology: Current Evidence, Challenges, and Future Prospective. Int J Nanomedicine 2021; 16:6497-6530. [PMID: 34588777 PMCID: PMC8473849 DOI: 10.2147/ijn.s329831] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The complex drug delivery barrier in the eye reduces the bioavailability of many drugs, resulting in poor therapeutic effects. It is necessary to investigate new drugs through appropriate delivery routes and vehicles. Nanotechnology has utilized various nano-carriers to develop potential ocular drug delivery techniques that interact with the ocular mucosa, prolong the retention time of drugs in the eye, and increase permeability. Additionally, nano-carriers such as liposomes, nanoparticles, nano-suspensions, nano-micelles, and nano-emulsions have grown in popularity as an effective theranostic application to combat different microbial superbugs. In this review, we summarize the nano-carrier based drug delivery system developments over the last decade, particularly review the biology, methodology, approaches, and clinical applications of nano-carrier based drug delivery system in the field of ocular therapeutics. Furthermore, this review addresses upcoming challenges, and provides an outlook on potential future trends of nano-carrier-based drug delivery approaches in ophthalmology, and hopes to eventually provide successful applications for treating ocular diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, 261041, People's Republic of China
| | - Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, 110024, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xiaotong Gao
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Guisen Zhang
- Department of Retina, Inner Mongolia Chaoju Eye Hospital, Hohhot, 010050, People's Republic of China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
3
|
Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A. Niosomal Drug Delivery Systems for Ocular Disease-Recent Advances and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1191. [PMID: 32570885 PMCID: PMC7353242 DOI: 10.3390/nano10061191] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
The eye is a complex organ consisting of several protective barriers and particular defense mechanisms. Since this organ is exposed to various infections, genetic disorders, and visual impairments it is essential to provide necessary drugs through the appropriate delivery routes and vehicles. The topical route of administration, as the most commonly used approach, maybe inefficient due to low drug bioavailability. New generation safe, effective, and targeted drug delivery systems based on nanocarriers have the capability to circumvent limitations associated with the complex anatomy of the eye. Nanotechnology, through various nanoparticles like niosomes, liposomes, micelles, dendrimers, and different polymeric vesicles play an active role in ophthalmology and ocular drug delivery systems. Niosomes, which are nano-vesicles composed of non-ionic surfactants, are emerging nanocarriers in drug delivery applications due to their solution/storage stability and cost-effectiveness. Additionally, they are biocompatible, biodegradable, flexible in structure, and suitable for loading both hydrophobic and hydrophilic drugs. These characteristics make niosomes promising nanocarriers in the treatment of ocular diseases. Hereby, we review niosome based drug delivery approaches in ophthalmology starting with different preparation methods of niosomes, drug loading/release mechanisms, characterization techniques of niosome nanocarriers and eventually successful applications in the treatment of ocular disorders.
Collapse
Affiliation(s)
- Saliha Durak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Monireh Esmaeili Rad
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Hande Eda Sutova
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
4
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
5
|
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev 2018; 39:302-327. [DOI: 10.1002/med.21509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Florence Masse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Mathieu Ouellette
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Guillaume Lamoureux
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Elodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| |
Collapse
|
6
|
Abd AJ, Kanwar RK, Pathak YV, Al Mohammedawi M, Kanwar JR. Nanomedicine-Based Delivery to the Posterior Segment of the Eye: Brighter Tomorrow. DRUG DELIVERY FOR THE RETINA AND POSTERIOR SEGMENT DISEASE 2018:195-212. [DOI: 10.1007/978-3-319-95807-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
8
|
Lachmapure M, Paralikar P, Palanisamy M, Alves M, Rai M. Efficacy of biogenic silver nanoparticles against clinical isolates of fungi causing mycotic keratitis in humans. IET Nanobiotechnol 2017; 11:809-814. [PMCID: PMC8676044 DOI: 10.1049/iet-nbt.2017.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/13/2017] [Accepted: 05/18/2017] [Indexed: 09/11/2023] Open
Abstract
Mycotic keratitis is mainly responsible for vision loss caused by various fungi. Sometimes, proper treatment of such infection is not possible due to unavailability of effective antifungal agents and development of resistance of such fungi to antimycotic drugs. Hence, it is necessary to search for potential antifungal agents, which can effectively eradicate fungal infection of eyes. Nanoparticles‐based antifungal drugs overcome this problem by increasing permeability and properties of drug molecules. In the present study, silver nanoparticles were synthesised by using Helminthosporium sp. and Chaetomium sp. following sequential reduction technique. The synthesised silver nanoparticles were detected primarily by UV‐visible spectrophotometer showing absorption spectra at 424 and 433 nm, respectively. Nanoparticles tracking analysis confirmed the mean particle size of silver nanoparticles as 45 and 55 nm. The synthesised AgNPs showed significant antifungal activity against fungi causing mycotic keratitis, when used alone and in combination with ketoconazole and amphotericin B in the range of 30–70 microgram per millilitre of minimum inhibitory concentration. Thus, the synthesised AgNPs can be used to enhance the activities of ketoconazole and amphotericin B.
Collapse
Affiliation(s)
- Monika Lachmapure
- Nanobiotechnology Lab.Department of BiotechnologySant Gadge Baba Amravati UniversityMaharashtraIndia
| | - Priti Paralikar
- Nanobiotechnology Lab.Department of BiotechnologySant Gadge Baba Amravati UniversityMaharashtraIndia
| | - Manikandan Palanisamy
- Aravind Eye Hospital and Postgraduate Institute of OphthalmologyCoimbatore641 014Tamil NaduIndia
- Department of Medical Laboratory SciencesCollege of Applied Medical SciencesMajmaah UniversityMajmaah11952Saudi Arabia
| | - Monica Alves
- Department of OphthalmologyUniversity of CampinasBrazil
| | - Mahendra Rai
- Nanobiotechnology Lab.Department of BiotechnologySant Gadge Baba Amravati UniversityMaharashtraIndia
| |
Collapse
|
9
|
Nano-ophthalmology: Applications and considerations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1459-1472. [DOI: 10.1016/j.nano.2017.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
10
|
Xia T. Multifunctional nanotherapeutics for treatment of ocular disease. ANNALS OF EYE SCIENCE 2017; 2:22. [PMID: 30123872 PMCID: PMC6097193 DOI: 10.21037/aes.2017.03.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Abstract
Glaucoma is the second leading cause of blindness worldwide, and the antiglaucoma treatments currently available suffer from various complications. Nanotechnology-based treatments show a great deal of promise in overcoming these complications and form the basis for next-generation glaucoma treatment strategies, with the help of applications such as controlled release, targeted delivery, increased bioavailability, diffusion limitations, and biocompatibility. Significant progress has been made in nanomedicine in the efficiency of antiglaucoma medications, nanofabrication systems such as microelectromechanical systems that remove the limitations of nanodevices, and tissue regeneration vesicles for developing glaucoma treatments not based on intraocular pressure. With the use of these advanced technologies, the prevention of glaucoma-induced blindness will be possible in the near future. Herein, we reviewed the recent advances in nanotechnology-based treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Sibel Cetinel
- From the Chemical and Materials Engineering and Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
12
|
Cetinel S, Montemagno C. Nanotechnology for the Prevention and Treatment of Cataract. Asia Pac J Ophthalmol (Phila) 2015; 4:381-7. [PMID: 26716434 DOI: 10.1097/apo.0000000000000156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this article was to review recent advances in the applications of nanotechnology in cataract treatment and prevention strategies. DESIGN A literature review on the use of nanotechnology for the prevention and treatment of cataract was done. METHODS Research articles about nanotechnology-based treatments and prevention technologies for cataract were searched on Web of Science, and the most recent advances were reported. RESULTS Nonsteroid anti-inflammatory drugs, natural antioxidants, biologic and chemical chaperones, and chaperones such as molecules have found great application in preventing and treating cataracts. Current scientific research on new treatment strategies, which focuses on the biochemical basis of the disease, will likely result in new anticataract agents. However, none of the drug formulations will be approved for use unless efficient delivery is promised. Nanoparticle engineering together with biomimetic strategies enable the development of next-generation, more efficient, less complex, and personalized treatments. CONCLUSIONS The only currently available treatment for cataracts, surgical replacement of the opacified lens, is not an easily accessible option in developing countries. New treatment strategies based on topical drugs would enable treatment to reach massive populations facing the threat of blindness and more effectively deal with the postsurgical complications. Nanotechnology plays a key role in improving drug delivery systems with enhanced controlled release, targeted delivery, and bioavailability to overcome diffusion limitations in the eye.
Collapse
Affiliation(s)
- Sibel Cetinel
- From the *Chemical and Materials Engineering and †Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|