1
|
Liu Q, Liu Z, Guo H, Liang J, Zhang Y. The progress in quantitative evaluation of callus during distraction osteogenesis. BMC Musculoskelet Disord 2022; 23:490. [PMID: 35610718 PMCID: PMC9128294 DOI: 10.1186/s12891-022-05458-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The manual monitoring of callus with digital radiography (X-ray) is the primary bone healing evaluation, assessing the number of bridged callus formations. However, this method is subjective and nonquantitative. Recently, several quantitative monitoring methods, which could assess the recovery of the structure and biomechanical properties of the callus at different stages and the process of bone healing, have been extensively investigated. These methods could reflect the bone mineral content (BMC), bone mineral density (BMD), stiffness, callus and bone metabolism at the site of bone lengthening. In this review, we comprehensively summarized the latest techniques for evaluating bone healing during distraction osteogenesis (DO): 1) digital radiography; 2) dual-energy X-ray scanning; 3) ultrasound; 4) quantitative computed tomography; 5) biomechanical evaluation; and 6) biochemical markers. This evidence will provide novel and significant information for evaluating bone healing during DO in the future.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Schwarzenberg P, Klein K, Ferguson SJ, von Rechenberg B, Darwiche S, Dailey HL. Virtual mechanical tests out-perform morphometric measures for assessment of mechanical stability of fracture healing in vivo. J Orthop Res 2021; 39:727-738. [PMID: 32970350 DOI: 10.1002/jor.24866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/04/2023]
Abstract
Finite element analysis with models derived from computed tomography (CT) scans is potentially powerful as a translational research tool because it can achieve what animal studies and cadaver biomechanics cannot-low-risk, noninvasive, objective assessment of outcomes in living humans who have actually experienced the injury, or treatment being studied. The purpose of this study was to assess the validity of CT-based virtual mechanical testing with respect to physical biomechanical tests in a large animal model. Three different tibial osteotomy models were performed on 44 sheep. Data from 33 operated limbs and 20 intact limbs was retrospectively analyzed. Radiographic union scoring was performed on the operated limbs and physical torsional tests were performed on all limbs. Morphometric measures and finite element models were developed from CT scans and virtual torsional tests were performed to assess healing with four material assignment techniques. In correlation analysis, morphometric measures and radiographic scores were unreliable predictors of biomechanical rigidity, while the virtual torsion test results were strongly and significantly correlated with measured biomechanical test data, with high absolute agreement. Overall, the results validated the use of virtual mechanical testing as a reliable in vivo assessment of structural bone healing. This method is readily translatable to clinical evaluation for noninvasive assessment of the healing progress of fractures with minimal risk. Clinical significance: virtual mechanical testing can be used to reliably and noninvasively assess the rigidity of a healing fracture using clinical-resolution CT scans and that this measure is superior to morphometric and radiographic measures.
Collapse
Affiliation(s)
- Peter Schwarzenberg
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Karina Klein
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Salim Darwiche
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hannah L Dailey
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
3
|
Augat P, Morgan EF, Lujan TJ, MacGillivray TJ, Cheung WH. Imaging techniques for the assessment of fracture repair. Injury 2014; 45 Suppl 2:S16-22. [PMID: 24857023 DOI: 10.1016/j.injury.2014.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Imaging of a healing fracture provides a non-invasive and often instructive reproduction of the fracture repair progress and the healing status of bone. However, the interpretation of this reproduction is often qualitative and provides only an indirect and surrogate measure of the mechanical stability of the healing fracture. Refinements of the available imaging techniques have been suggested to more accurately determine the healing status of bone. Plain radiographs provide the ability to determine the degree of bridging of the fracture gap and to quantify the amount of periosteal callus formation. Absorptiometric measures including dual X-ray absorptiometry and computed tomography provide quantitative information on the amount and the density of newly formed bone around the site of the fracture. To include the effect of spatial distribution of newly formed bone, finite element models of healing fracture can be employed to estimate its load bearing capacity. Ultrasound technology not only avoids radiation doses to the patients but also provides the ability to additionally measure vascularity in the surrounding soft tissue of the fracture and in the fracture itself.
Collapse
Affiliation(s)
- P Augat
- Institute of Biomechanics, Trauma Center Murnau, Prof.-Kuentscher-Str. 8, 82418 Murnau, Germany; Institute of Biomechanics, Paracelsus Medical University Salzburg, Strubergasse 21, Salzburg, Austria.
| | - E F Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA.
| | - T J Lujan
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - T J MacGillivray
- Clinical Research Imaging Centre, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - W H Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|