1
|
Sun T, Wang J, Liu X, Huang H, Wang J, Suo M, Zhang J, Li Z. Finite element models of intervertebral disc: recent advances and prospects. Ann Med 2025; 57:2453089. [PMID: 39840609 PMCID: PMC11755745 DOI: 10.1080/07853890.2025.2453089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine. METHODS In this review, literatures which reported the FE model of intervertebral disc (IVD) were reviewed. We summarized the types and constructional methods of the FE models and analyzed the applications of some representative FE models. RESULTS The most widely used model was the nonlinear model which considers the behavior of porous elastic materials. As more advanced methods, More and more models which involve penetration parameters were used to simulate the biological behavior and biomechanical properties of IVD. CONCLUSIONS Personalized modeling should be carried out in order to better provide accurate basis for the diagnosis and treatment of the disease. In addition, microstructure, cell behavior and complex load should be considered in the process of model construction to build a more realistic model.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| |
Collapse
|
2
|
Liu Q, Liang XF, Wang AG, Liu Y, Jia TJ, Li K, Zhang CQ. Failure mechanical properties of lumbar intervertebral disc under high loading rate. J Orthop Surg Res 2024; 19:15. [PMID: 38167031 PMCID: PMC10763340 DOI: 10.1186/s13018-023-04424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) is the main clinical cause of low back pain. The pathogenesis of lumbar disc herniation is still uncertain, while it is often accompanied by disc rupture. In order to explore relationship between loading rate and failure mechanics that may lead to lumbar disc herniation, the failure mechanical properties of the intervertebral disc under high rates of loading were analyzed. METHOD Bend the lumbar motion segment of a healthy sheep by 5° and compress it to the ultimate strength point at a strain rate of 0.008/s, making a damaged sample. Within the normal strain range, the sample is subjected to quasi-static loading and high loading rate at different strain rates. RESULTS For healthy samples, the stress-strain curve appears collapsed only at high rates of compression; for damaged samples, the stress-strain curves collapse both at quasi-static and high-rate compression. For damaged samples, the strengthening stage becomes significantly shorter as the strain rate increases, indicating that its ability to prevent the destruction is significantly reduced. For damaged intervertebral disc, when subjected to quasi-static or high rates loading until failure, the phenomenon of nucleus pulposus (NP) prolapse occurs, indicating the occurrence of herniation. When subjected to quasi-static loading, the AF moves away from the NP, and inner AF has the greatest displacement; when subjected to high rates loading, the AF moves closer to the NP, and outer AF has the greatest displacement. The Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive model was used to describe the mechanical behavior of the intervertebral disc, and the fitting results were in good agreement with the experimental curve. CONCLUSION Experimental results show that, both damage and strain rate have a significant effect on the mechanical behavior of the disc fracture. The research work in this article has important theoretical guiding significance for preventing LDH in daily life.
Collapse
Affiliation(s)
- Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
- Department of Mechanics, Tianjin University, Tianjin, 300354, People's Republic of China
- Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin, 300354, People's Republic of China
| | - Xiao-Feng Liang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
| | - Ai-Guo Wang
- Affiliated Hospital of Tianjin Academia Sinica, Tianjin, 300120, People's Republic of China
| | - Ying Liu
- Affiliated Hospital of Tianjin Academia Sinica, Tianjin, 300120, People's Republic of China
| | - Tong-Ju Jia
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
| | - Kun Li
- Tianjin Key Laboratory of Film Electronic and Communication Device, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
| |
Collapse
|
3
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Modeling multiaxial damage regional variation in human annulus fibrosus. Acta Biomater 2021; 136:375-388. [PMID: 34547514 DOI: 10.1016/j.actbio.2021.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023]
Abstract
In the present article, a fully three-dimensional human annulus fibrosus model is developed by considering the regional variation of the complex structural organization of collagen network at different scales to predict the regional anisotropic multiaxial damage of the intervertebral disc. The model parameters are identified using experimental data considering as elementary structural unit, the single annulus lamellae stretched till failure along the micro-sized collagen fibers. The multi-layered lamellar/inter-lamellar annulus model is constructed by considering the effective interactions between adjacent layers and the chemical-induced volumetric strain. The regional dependent model predictions are analyzed under various loading modes and compared to experimental data when available. The stretching along the circumferential and radial directions till failure serves to check the predictive capacities of the annulus model. Model results under simple shear, biaxial stretching and plane-strain compression are further presented and discussed. Finally, a full disc model is constructed using the regional annulus model and simulations are presented to assess the most likely failed areas under disc axial compression. STATEMENT OF SIGNIFICANCE: The damage in annulus soft tissues is a complex multiscale phenomenon due to a complex structural arrangement of collagen network at different scales of hierarchical organization. A fully three-dimensional constitutive representation that considers the regional variation of the structural complexity to estimate annulus multiaxial mechanics till failure has not yet been developed. Here, a model is developed to predict deformation-induced damage and failure of annulus under multiaxial loading histories considering as time-dependent physical process both chemical-induced volumetric effects and damage accumulation. After model identification using single lamellae extracted from different disc regions, the model predictability is verified for various multiaxial elementary loading modes representative of the spine movement. The heterogeneous mechanics of a full human disc model is finally presented.
Collapse
|
5
|
Lepard JR, Zimmerman KD, Arynchyna AA, Gutman JA, Salehani AA, Rocque BG, Rozzelle CJ. Pediatric herniated lumbar disc: a population-based risk factor analysis. J Neurosurg Pediatr 2020; 25:311-318. [PMID: 31783360 DOI: 10.3171/2019.9.peds19167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/10/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Surgical treatment of herniated lumbar disc (HLD) remains rare in children. The purpose of this study was to evaluate for potential disease risk factors leading to surgery based on a large single-center experience. METHODS Data for all patients who had undergone surgical treatment for HLD between December 2008 and December 2016 at a single pediatric tertiary care referral center were collected and compared to data for a healthy control population obtained through a Youth Risk Behavior Surveillance System (YRBSS) survey in order to determine relevant disease risk factors. Univariate and multivariate logistic regression were used to determine the effect of potential risk factors. RESULTS Twenty-seven patients in the disease cohort and 5212 healthy controls from the general population were included in the risk factor analysis. The mean body mass index was significantly higher in the disease population (30.2 vs 24.0 kg/m2, p < 0.0001). Children who had undergone microdiscectomy were more likely to be obese (OR 7.4, 95% CI 3.46-15.8, p < 0.001). No association was found between lumbar microdiscectomy and sports participation (OR 1.0, 95% CI -0.002 to 0.005, p = 0.37). CONCLUSIONS Microdiscectomy remains a viable and safe option in the setting of failed conservative management for pediatric HLD. Childhood obesity is a risk factor for HLD and many other diseases, which increases its importance as a public health priority.
Collapse
|
6
|
Sagittal Alignment With Downward Slope of the Lower Lumbar Motion Segment Influences Its Modes of Failure in Direct Compression: A Mechanical and Microstructural Investigation. Spine (Phila Pa 1976) 2019; 44:1118-1128. [PMID: 30817724 DOI: 10.1097/brs.0000000000003018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Microstructural investigation of compression-induced herniation of ovine lumbar discs with and without added component of anterior-inferior slope. OBJECTIVE Does increased shear arising from a simulated component of motion segment slope imitating sacral slope weaken the lateral annulus and increase risk of overt herniation at this same region. SUMMARY OF BACKGROUND DATA An increase in sacral slope secondary to lordosis and pelvic incidence increases shear stresses at the lumbosacral junction and has been associated with an increase in spondylolisthetic disorders and back injury. The small component of forward shear induced when a segment is compressed in flexion is suggested to cause differential recruitment of the lateral annular fibers leading to its early disruption followed by intra-annular nuclear tracking to the posterolateral/posterior regions. However, the influence of even greater forward shear arising from the added component of slope seen where pelvic incidence and lumbar lordosis are increased in the lower lumbar spine is less understood. METHODS Ovine motion segments were compressed at 40 mm/min up to failure; 9 with a horizontal disc alignment and 26 with a segment slope of 15° and then analyzed structurally. RESULTS All the horizontal discs failed (11.8 ± 2.4 kN) via vertebral fracture without any evidence of soft tissue failure even in the lateral aspects of the discs. The increased forward shear resulting from the slope decreased the failure load (6.4 ± 1.6 kN). The sloping discs mostly suffered mid-span, noncontinuous disruption of the lateral annulus with some extruding nuclear material directly from these same lateral regions. CONCLUSION The increased level of forward shear generated in moderately sloping lumbar segments when compressed was abnormally damaging to the lateral regions of the disc annulus. This is consistent with the view that shear differentially loads the oblique-counter oblique fiber sets in the lateral annulus, increasing its vulnerability to early disruption and overt herniation. LEVEL OF EVIDENCE N/A.
Collapse
|