1
|
Jin K, Zhao D, Zhou J, Zhang X, Wang Y, Wu Z. Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8 + T cell dysfunction and suppress cervical cancer progression. Apoptosis 2024; 29:2108-2127. [PMID: 39404933 DOI: 10.1007/s10495-024-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/10/2024]
Abstract
Pulsed electromagnetic field (PEMF) therapy is a potential non-invasive treatment to modulate immune responses and inhibit tumor growth. Cervical cancer (CC) is influenced by IL-37-mediated immune regulation, making PEMF therapy a potential strategy to impede CC progression. This study aimed to elucidate the effects of PEMF on IL-37 regulation and its molecular mechanisms in CC. CC cell-xenografted mouse models, including IL-37 transgenic (IL-37tg) mice, were used to assess tumor growth through in vivo fluorescence imaging and analyze CC cell apoptosis via flow cytometry. TCGA-CESC transcriptome and clinical data were analyzed to identify key inflammation and immune-related genes. CD8+ T cell models were stimulated with PEMF, and apoptosis, oxidative stress, and inflammatory factor expression were analyzed through RT-qPCR, Western blot, and flow cytometry. PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis (p < 0.05). IL-37 interaction with SMAD3 impacted the p38/NF-κB signaling pathway, modulating CD8+ T cell activity and cytotoxicity. Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05). In vivo experiments with CC-bearing mice demonstrated that PEMF treatment downregulated IL-37 expression (p < 0.05), enhanced CD8+ T cell function, and inhibited tumor growth (p < 0.05). These molecular mechanisms were validated through RT-qPCR, Western blot, and immunohistochemistry. Thus, PEMF therapy inhibits CC progression by downregulating IL-37 and improving CD8+ T cell function via the SMAD3/p38/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ke Jin
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Dan Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
2
|
Lansford T, Campbell P, Hassanzadeh H, Weinstein M, Wind J, Beaumont A, Vokshoor A, Radcliff K, Aleem I, Coric D. Pulsed Electromagnetic Fields for Cervical Spine Fusion in Patients with Risk Factors for Pseudarthrosis. Orthop Rev (Pavia) 2024; 16:122534. [PMID: 39698480 PMCID: PMC11655132 DOI: 10.52965/001c.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 12/20/2024] Open
Abstract
Background Certain demographics and/or risk factors contribute to complications following cervical spinal surgery including pseudarthrosis, prolonged pain, and reduced quality of life (QoL). Pulsed electromagnetic field (PEMF) stimulation is a non-invasive therapy that may enhance fusion success in at-risk patients. Objective To evaluate the safety and efficacy of post-operative adjunctive PEMF therapy following cervical spinal surgery in subjects at risk for pseudarthrosis. Methods This prospective, multicenter study investigated PEMF as an adjunctive therapy to cervical spinal fusion procedures in subjects at risk for pseudarthrosis based on having at least one of the following: prior failed fusion, multi-level fusion, nicotine use, osteoporosis, or diabetes. Radiographic fusion status and patient-reported outcomes (SF-36, EQ5D, NDI, and VAS-arm pain and VAS-neck pain) were assessed. Results A total of 160 subjects were assessed for fusion 12-months postoperative, and 144 subjects were successfully fused (90.0%). Fusion success for subjects with 1, 2+, or 3+ risk factors was 91.7%, 89.0%%, and 90.9%, respectively. Significant improvements in NDI, VAS-arm and VAS-neck were observed compared to baseline scores (p < 0.001) along with improvements in SF-36 and EQ5D (p < 0.001). Conclusions Adjunctive treatment with PEMF provides a high rate of successful fusion and significant improvements in pain, function, and quality of life despite having risk factors for pseudarthrosis.
Collapse
Affiliation(s)
| | - Peter Campbell
- Spine Institute of Louisiana, Shreveport, Louisiana, USA
| | | | | | | | - Andrew Beaumont
- Aspirus Spine and Neurosciences Institute, Wausau, Wisconsin, USA
| | - Amir Vokshoor
- Institute of Neuro Innovation, Santa Monica, California, USA
| | | | - Ilyas Aleem
- University of Michigan, Ann Arbor, Michigan, USA
| | - Domagoj Coric
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina, USA
| |
Collapse
|
3
|
D’Agostino I, Marelli F. Chronic E. Coli Drug-Resistant Cystitis Treated with a Sequence of Modulated Extremely Low-Frequency Electromagnetic Fields: A Randomized Study of 148 Cases. J Clin Med 2024; 13:2639. [PMID: 38731168 PMCID: PMC11084708 DOI: 10.3390/jcm13092639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: This study investigated the effects of sequenced electromagnetic fields, modulated at extremely low frequencies and intensities, in the treatment of drug-resistant Escherichia coli (E. coli)-induced chronic bacterial cystitis. (2) Methods: A total of 148 female participants, aged 18 to 80 years diagnosed with chronic bacterial cystitis caused by drug-resistant E. coli, were recruited for this study. Participants were randomly assigned to two groups: an experimental group (n = 74) with osteopathic palpation and assessment treated with a sequence of electromagnetic fields, and a control group (n = 74) receiving a placebo treatment. Both groups were assessed at this study's outset, 4 weeks after eight applications, and at 12 weeks for symptomatic presentation and laboratory parameters. (3) Results: After 4 weeks of treatment, a significant difference was observed between the two groups regarding D-DIMER levels, IL-6 levels, erythrocyte levels, leukocyte levels, and E. coli levels (p < 0.001). By the 12th week, the experimental group continued to exhibit a significant reduction in the examined parameters compared to the control group (p < 0.001). Additionally, the treatment did not induce any side effects in the patients in the experimental group. (4) Conclusions: Treatment with coherently sequenced electromagnetic fields, modulated at an extremely low frequency and intensity, not only appears to provide an effective alternative for the symptoms of chronic bacterial cystitis caused by drug-resistant E. coli but also demonstrates a potent antibacterial effect.
Collapse
Affiliation(s)
| | - F. Marelli
- Independent Researcher, CRESO LLCs, 6830 Chiasso, Switzerland
| |
Collapse
|
4
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
5
|
Zhang X, Zhang Z, Zou X, Wang Y, Qi J, Han S, Xin J, Zheng Z, Wei L, Zhang T, Zhang S. Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway. Front Cell Dev Biol 2024; 11:1324561. [PMID: 38313000 PMCID: PMC10834758 DOI: 10.3389/fcell.2023.1324561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a worldwide spinal degenerative disease. Low back pain (LBP) is frequently caused by a variety of conditions brought on by IDD, including IVD herniation and spinal stenosis, etc. These conditions bring substantial physical and psychological pressure and economic burden to patients. IDD is closely tied with the structural or functional changes of the IVD tissue and can be caused by various complex factors like senescence, genetics, and trauma. The IVD dysfunction and structural changes can result from extracellular matrix (ECM) degradation, differentiation, inflammation, oxidative stress, mechanical stress, and senescence of IVD cells. At present, the treatment of IDD is basically to alleviate the symptoms, but not from the pathophysiological changes of IVD. Interestingly, the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is involved in many processes of IDD, including inflammation, ECM degradation, apoptosis, senescence, proliferation, oxidative stress, and autophagy. These activities in degenerated IVD tissue are closely relevant to the development trend of IDD. Hence, the p38 MAPK signaling pathway may be a fitting curative target for IDD. In order to better understand the pathophysiological alterations of the intervertebral disc tissue during IDD and offer potential paths for targeted treatments for intervertebral disc degeneration, this article reviews the purpose of the p38 MAPK signaling pathway in IDD.
Collapse
Affiliation(s)
- Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Xiaosong Zou
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Lin Wei
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
6
|
Du X, Liang K, Ding S, Shi H. Signaling Mechanisms of Stem Cell Therapy for Intervertebral Disc Degeneration. Biomedicines 2023; 11:2467. [PMID: 37760908 PMCID: PMC10525468 DOI: 10.3390/biomedicines11092467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Low back pain is the leading cause of disability worldwide. Intervertebral disc degeneration (IDD) is the primary clinical risk factor for low back pain and the pathological cause of disc herniation, spinal stenosis, and spinal deformity. A possible approach to improve the clinical practice of IDD-related diseases is to incorporate biomarkers in diagnosis, therapeutic intervention, and prognosis prediction. IDD pathology is still unclear. Regarding molecular mechanisms, cellular signaling pathways constitute a complex network of signaling pathways that coordinate cell survival, proliferation, differentiation, and metabolism. Recently, stem cells have shown great potential in clinical applications for IDD. In this review, the roles of multiple signaling pathways and related stem cell treatment in IDD are summarized and described. This review seeks to investigate the mechanisms and potential therapeutic effects of stem cells in IDD and identify new therapeutic treatments for IDD-related disorders.
Collapse
Affiliation(s)
| | | | | | - Haifei Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.D.); (K.L.); (S.D.)
| |
Collapse
|
7
|
Circadian Rhythm Modulates the Therapeutic Activity of Pulsed Electromagnetic Fields on Intervertebral Disc Degeneration in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9067611. [PMID: 35368872 PMCID: PMC8975688 DOI: 10.1155/2022/9067611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
Circadian rhythm (CR) imparts significant benefits in treating multiple diseases, such as heart diseases and arthritis. But the CR effect on intervertebral disc degeneration (IVDD) therapy remains unclear. Recent studies revealed that pulsed electromagnetic fields (PEMF) are capable of alleviating IVDD. In this study, we evaluated the CR-mediated regulation of PEMF therapeutic effect on IVDD induced by rat tail disc needle puncture. Our results demonstrated that the daytime PEMF stimulation (DPEMF) is more effective than the nighttime PEMF (NPEMF) in delaying IVDD. Moreover, the rats treated with DPEMF maintained better disc stability and histology after 8 weeks, relative to NPEMF. CR and PEMF cotherapies were also examined in cellular models, whereby serum shock was used to induce different levels of clock gene expression in the nucleus pulposus (NP), thus imitating CR in vitro. PEMF at ZT8 (higher level of clock gene expression) correlated with a higher extracellular matrix (ECM) component expression, compared to ZT20 (lower level of clock gene expression). Taken together, these data suggest a strong role of CR in regulating the beneficial effect of PEMF on IVDD. Our findings provide a potential clinical significance of CR in optimizing PEMF positive effects on IVDD.
Collapse
|
8
|
Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6647497. [PMID: 34368353 PMCID: PMC8342182 DOI: 10.1155/2021/6647497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/30/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Pulsed electromagnetic field (PEMF) therapy is a type of physical stimulation that affects biological systems by producing interfering or coherent fields. Given that cell types are significantly distinct, which represents an important factor in stimulation, and that PEMFs can have different effects in terms of frequency and intensity, time of exposure, and waveform. This study is aimed at investigating if distinct positive and negative responses would correspond to specific characteristics of cells, frequency and flux density, time of exposure, and waveform. Necessary data were abstracted from the experimental observations of cell-based in vitro models. The observations were obtained from 92 publications between the years 1999 and 2019, which are available on PubMed and Web of Science databases. From each of the included studies, type of cells, pulse frequency of exposure, exposure flux density, and assayed cell responses were extracted. According to the obtained data, most of the experiments were carried out on human cells, and out of 2421 human cell experiments, cell changes were observed only in 51.05% of the data. In addition, the results pointed out the potential effects of PEMFs on some human cell types such as MG-63 human osteosarcoma cells (p value < 0.001) and bone marrow mesenchymal stem cells. However, human osteogenic sarcoma SaOS-2 (p < 0.001) and human adipose-derived mesenchymal stem cells (AD-MSCs) showed less sensitivity to PEMFs. Nevertheless, the evidence suggests that frequencies higher than 100 Hz, flux densities between 1 and 10 mT, and chronic exposure more than 10 days would be more effective in establishing a cellular response. This study successfully reported useful information about the role of cell type and signal characteristic parameters, which were of high importance for targeted therapies using PEMFs. Our findings would provide a deeper understanding about the effect of PEMFs in vitro, which could be useful as a reference for many in vivo experiments or preclinical trials.
Collapse
|
9
|
Benya PD, Kavanaugh A, Zakarian M, Söderlind P, Jashashvili T, Zhang N, Waldorff EI, Ryaby JT, Billi F. Pulsed electromagnetic field (PEMF) transiently stimulates the rate of mineralization in a 3-dimensional ring culture model of osteogenesis. PLoS One 2021; 16:e0244223. [PMID: 33539401 PMCID: PMC7861434 DOI: 10.1371/journal.pone.0244223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 11/25/2022] Open
Abstract
Pulsed Electromagnetic Field (PEMF) has shown efficacy in bone repair and yet the optimum characteristics of this modality and its molecular mechanism remain unclear. To determine the effects of timing of PEMF treatment, we present a novel three-dimensional culture model of osteogenesis that demonstrates strong de novo generation of collagen and mineral matrix and exhibits stimulation by PEMF in multiple stages over 62 days of culture. Mouse postnatal day 2 calvarial pre-osteoblasts were cast within and around Teflon rings by polymerization of fibrinogen and cultured suspended without contact with tissue culture plastic. Ring constructs were exposed to PEMF for 4h/day for the entire culture (Daily), or just during Day1-Day10, Day11-Day 27, or Day28-Day63 and cultured without PEMF for the preceding or remaining days, and compared to no-PEMF controls. PEMF was conducted as HF Physio, 40.85 kHz frequency with a 67 ms burst period and an amplitude of 1.19 mT. Osteogenesis was kinetically monitored by repeated fluorescence measurements of continuously present Alizarin Red S (ARS) and periodically confirmed by micro-CT. PEMF treatment induced early-onset and statistically significant transient stimulation (~4-fold) of the mineralization rate when PEMF was applied Daily, or during D1-D10 and D11-D27. Stimulation was apparent but not significant between D28-D63 by ARS but was significant at D63 by micro-CT. PEMF also shifted the micro-CT density profiles to higher densities in each PEMF treatment group. Ring culture generated tissue with a mineral:matrix ratio of 2.0 by thermogravimetric analysis (80% of the calvaria control), and the deposited crystal structure was 50% hydroxyapatite by X-ray diffraction (63% of the calvaria and femur controls), independent of PEMF. These results were consistent with backscatter, secondary electron, and elemental analysis by scanning electron microscopy. Thus, in a defined, strong osteogenic environment, PEMF applied at different times was capable of further stimulation of osteogenesis with the potential to enhance bone repair.
Collapse
Affiliation(s)
- Paul D. Benya
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aaron Kavanaugh
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Martin Zakarian
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Philip Söderlind
- Department of Architecture and Urban Design, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tea Jashashvili
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nianli Zhang
- Orthofix Medical Inc., Lewisville, Texas, United States of America
| | - Erik I. Waldorff
- Orthofix Medical Inc., Lewisville, Texas, United States of America
| | - James T. Ryaby
- Orthofix Medical Inc., Lewisville, Texas, United States of America
| | - Fabrizio Billi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Habib M, Horne DA, Hussein K, Coughlin D, Waldorff EI, Zhang N, Ryaby JT, Lotz JC. Magnetic Nanoparticles Synergize with Pulsed Magnetic Fields to Stimulate Osteogenesis In Vitro. Tissue Eng Part A 2020; 27:402-412. [PMID: 32746770 DOI: 10.1089/ten.tea.2020.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delayed bone healing is a major challenge in orthopedic clinical practice, highlighting a need for technologies to overcome ineffective cell growth and osteogenic differentiation. The objective of this study was to investigate the synergistic effects of the PhysioStim (PEMF) signal with iron-ion doped tri-calcium phosphate bone substitute on human mesenchymal stem cell (hMSC) osteogenesis in vitro. Intrinsically magnetic nano-bone substitutes (MNBS) were developed with single particles on the order of 100 nm, saturation magnetization of 0.425 emu/g, and remanent magnetization of 0.013 emu/g. MNBS were added to hMSC culture and cell viability, alkaline phosphatase (ALP) activity, mineralization, and osteogenic gene expression in the presence and absence of PEMF were quantified for up to 10 days. MNBS attached to the surface of and were internalized by hMSCs when cultured together for 4 days and had no impact on cell viability with PEMF exposure for up to 7 days. Although total ALP activity was significantly increased with PEMF treatment alone, with a peak at day 5, PEMF combined with MNBS significantly increased ALP activity, with a peak at day 3, compared with all other groups (p < 0.01). The shift can be explained by significantly increased extracellular ALP activity beginning at day 2 (p < 0.01). PEMF combined with MNBS demonstrated continuously increasing mineralization overtime, with significantly greater Alizarin Red S concentration compared with all other groups at day 7 (p < 0.01). Increases in ALP activity and mineral content were in agreement with osteogenic gene expression that demonstrated peak ALP gene expression at day 1, and upregulated BMP-2, BGLAP, and SPP1 gene expression at day 7 (p < 0.05). The results of this study demonstrate the synergistic effects of PEMF and MNBS on osteogenesis and suggest that PEMF and MNBS may provide a method for accelerated bone healing.
Collapse
Affiliation(s)
- Mohamed Habib
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Mechanical Engineering Department, Al Azhar University, Cairo, Egypt
| | - Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, USA
| | - Khaled Hussein
- Mechanical Engineering Department, Al Azhar University, Cairo, Egypt
| | - Dezba Coughlin
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, San Francisco, USA
| |
Collapse
|
11
|
Horne DA, Jones PD, Adams MS, Lotz JC, Diederich CJ. LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomed Phys Eng Express 2020; 6:035033. [PMID: 33438678 DOI: 10.1088/2057-1976/ab8b26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.
Collapse
Affiliation(s)
- Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, United States of America. The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, United States of America. Thermal Therapy Research Group, Radiation Oncology Department, University of California, San Francisco, United States of America
| | | | | | | | | |
Collapse
|