1
|
Shi S, Zhang H, Yin X, Wang Z, Tang B, Luo Y, Ding H, Chen Z, Cao Y, Wang T, Xiao B, Zhang M. 3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1742-1750. [PMID: 31490166 DOI: 10.1107/s160057751900674x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.
Collapse
Affiliation(s)
- Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tiantian Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
2
|
Morphometric Analysis of Rat Spinal Cord Angioarchitecture by Phase Contrast Radiography: From 2D to 3D Visualization. Spine (Phila Pa 1976) 2018; 43:E504-E511. [PMID: 28885295 DOI: 10.1097/brs.0000000000002408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An advanced imaging of vasculature with synchrotron radiation X-ray in a rat model. OBJECTIVE To develop the potential for quantitative assessment of vessel network from two-dimensional (2D) to 3D visualization by synchrotron radiation X-ray phase contrast tomography (XPCT) in rat spinal cord model. SUMMARY OF BACKGROUND DATA Investigation of microvasculature contributes to the understanding of pathological development of spinal cord injury. A few of X-ray imaging is available to visualize vascular architecture without usage of angiography or invasive casting preparation. METHODS A rat spinal cord injury model was produced by modified Allen method. Histomorphometric detection was simultaneously analyzed by both histology and XPCT from 2D to 3D visualization. The parameters including tissue lesion area, microvessel density, vessel diameter, and frequency distribution of vessel diameter were evaluated. RESULTS XPCT rendered the microvessels as small as capillary scale with a pixel size of 3.7 μm. It presented a high linear concordance for characterizing the 2D vascular morphometry compared with the histological staining (r = 0.8438). In the presence of spinal cord injury model, 3D construction quantified the significant angioarchitectural deficiency in the injury epicenter of cord lesion (P<0.01). CONCLUSION XPCT has a great potential to detect the smallest vascular network with pixel size up to micron dimension. It is inferred that the loss of abundant microvessels (≤40 μm) is responsible for local ischemia and neural dysfunction. XPCT holds a promise for morphometric analysis from 2D to 3D imaging in experimental model of neurovascular disorders. LEVEL OF EVIDENCE N/A.
Collapse
|